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Abstract. A statistical generative model for the speech process is described that
embeds a substantially richer structure than the HMM currently in predominant use for
automatic speech recognition. This switching dynamic-system model generalizes and
integrates the HMM and the piece-wise stationary nonlinear dynamic system (state-
space) model. Depending on the level and the nature of the switching in the model
design, various key properties of the speech dynamics can be naturally represented in
the model. Such properties include the temporal structure of the speech acoustics, its
causal articulatory movements, and the control of such movements by the multidimen-
sional targets correlated with the phonological (symbolic) units of speech in terms of
overlapping articulatory features.

One main challenge of using this multi-level switching dynamic-system model for suc-
cessful speech recognition is the computationally intractable inference (decoding with
confidence measure) on the posterior probabilities of the hidden states. This leads to
computationally intractable optimal parameter learning (training) also. Several versions
of BayesNets have been devised with detailed dependency implementation specified to
represent the switching dynamic-system model of speech. We discuss the variational
technique developed for general Bayesian networks as an efficient approximate algo-
rithm for the decoding and learning problems. Some common operations of estimating
phonological states’ switching times have been shared between the variational technique
and the human auditory function that uses neural transient responses to detect temporal
landmarks associated with phonological features. This suggests that the variation-style
learning may be related to human speech perception under an encoding-decoding the-
ory of speech communication, which highlights the critical roles of modeling articulatory
dynamics for speech recognition and which forms a main motivation for the switching
dynamic system model for speech articulation and acoustics described in this chapter.
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1. Introduction. Speech recognition technology has made dramatic
progress in recent years (cf. [30, 28]), attributed to the use of powerful
statistical paradigms, availability of increasing quantities of speech data
corpus, and to the development of powerful algorithms for model learning
from the data. However, the methodology underlying the current tech-
nology has been founded on weak scientific principles. Not only does the
current methodology require prohibitively large amounts of training data
and lack robustness under mismatch conditions, its performance also falls
at least one order of magnitude short of that of human speech recognition
on many comparable tasks (cf. [32, 43]). For example, the best recognizers
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today still produce errors in more than one quarter of the words in natu-
ral conversational speech in spite of many hours of speech material used as
training data. The current methodology has been primarily founded on the
principle of statistical “ignorance” modeling. This fundamental philosophy
is unlikely to bridge the performance gap between human and machine
speech recognition. A potentially promising approach is to build into the
statistical speech model most crucial mechanisms in human speech com-
munication for use in machine speech recognition. Since speech recognition
or perception in humans is one integrative component in the entire closed-
loop speech communication chain, the mechanisms to be modeled need to
be sufficiently broad — including mechanisms in both speech production
and auditory perception as well as in their interactions.

Some recent work on speech recognition have been pursued along this
direction [6, 18, 13, 17, 46, 47]. The approaches proposed and described in
[1, 5, 49] have incorporated the mechanisms in the human auditory process
in speech recognizer design. The approaches reported in [18, 21, 19, 44, 3,
54] have advocated the use of the articulatory feature-based phonological
units which control human speech production and are typical of human
lexical representation, breaking away from the prevailing use of the phone-
sized, “beads-on-a-string” linear phonological units in the current speech
recognition technology. The approaches outlined in [35, 12, 11, 14, 13] have
emphasized the functional significance of the abstract, “task” dynamics in
speech production and recognition. The task variables in the task dynamics
are the quantities (such as vocal tract constriction locations and degrees)
that are closely linked to the goal of speech production, and are nonlinearly
related to the physical variables in speech production. Work reported and
surveyed in [10, 15, 38, 47] have also focused on the dynamic aspects in
the speech process, but the dynamic object being modeled is in the space
of speech acoustics, rather than in the space of the production-affiliated
variables.

Although dynamic modeling has been a central focus of much recent
work in speech recognition, the dynamic object being modeled either in
the space of “task” variables or of acoustic variables does not and may
not be potentially able to directly take into account the many important
properties in true articulatory dynamics. Some earlier work used [16, 22]
either quantized articulatory features or articulatory data to design speech
recognizers, employing highly simplistic models for the underlying artic-
ulatory dynamics. Some other earlier proposals and empirical methods
exploited pseudo-articulatory dynamics or abstract hidden dynamics for
the purpose of speech recognition [2, 4, 23, 45], where the dynamics of a
set of pseudo-articulators is realized either by FIR filtering from sequen-
tially placed, phoneme-specific target positions or by applying trajectory-
smoothness constraints. Such approaches relied on simplistic nature in
the use of the pseudo-articulators. As a result, compensatory articulation,
which is a key property of human speech production and which requires
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modeling correlations among a set of articulators, could not be taken into
account. This has drastically diminished the power of such models for
potentially successful use in speech recognition.

To incorporate crucial properties in human articulatory dynamics —
including compensatory articulation, target behavior, and relatively con-
strained dynamics (due to biomechanical properties of the articulatory
organs) — in a statistical model of speech, it appears necessary to use
true, multidimensional articulators, rather than the pseudo-articulators at-
tempted in the past. Given that much of the acoustic variation observed in
speech that makes speech recognition difficult can be attributed to articu-
latory phenomena, and given that articulation is one key component in the
closed-loop human speech communication chain, it is reasonable to expect
that incorporating a faithful and explicit articulatory dynamic model in the
statistical structure of automatic speech recognizer will contribute to bridg-
ing the performance gap between human and machine speech recognition.
Based on this motivation, a general framework for speech recognition using
a statistical description of the speech articulation and acoustic processes
is developed and outlined in this chapter. Central to this framework is a
switching dynamic system model used to characterize the speech articula-
tion (with its control) and the related acoustic processes, and the Bayesian
network (BayesNet) representation of this model. Before presenting some
details of this model, we first introduce an encoding-decoding theory of
human speech perception which formalizes key roles of modeling speech
articulation.

2. Roles of articulation in encoding-decoding theory of speech
perception. At a global and functional level, human speech communica-
tion can be viewed as an encoding-decoding process, where the decoding
process or perception is an active process consisting of auditory reception
followed by phonetic/linguistic interpretation. As an encoder implemented
by the speech production system, the speaker uses knowledge of meanings
of words (or phrases), of grammar in a language, and of the sound rep-
resentations for the intended linguistic message. Such knowledge can be
made analogous to the keys used in engineering communication systems.
The phonetic plan, derived from the semantic, syntactic, and phonologi-
cal processes, is then executed through the motor-articulatory system to
produce speech waveforms.

As a decoder which aims to accomplish speech perception, the listener
uses a key, or the internal “generative” model, which is compatible with the
key used by the speaker to interpret the speech signal received and trans-
formed by the peripheral auditory system. This would enable the listener to
reconstruct, via (probabilistic) analysis-by-synthesis strategies, the linguis-
tic message intended by the speaker.! This encoding-decoding theory of

1While it is not universally accepted that listeners actually do analysis-by-synthesis
in speech perception, it would be useful to use such a framework to interpret the roles
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human speech communication, where the observable speech acoustics plays
the role of the carrier of deep, linguistically meaningful messages, may be
likened to the modulation-demodulation scheme in electronic digital com-
munication and to the encryption-decryption scheme in secure electronic
communication. Since the nature of the key used in the phonetic-linguistic
information decoding or speech perception lies in the strategies used in the
production or encoding process, speech production and perception are in-
timately linked in the closed-loop speech chain. The implication of such a
link for speech recognition technology is the need to develop functional and
computational models of human speech production for use as an “internal
model” in the decoding process by machines. Fig. 1 is a schematic diagram
showing speaker-listener interactions in human speech communication and
showing the several components in the encoding-decoding theory.

SPEAKER| ~ LISTENER

. . decoded
brain brain | message

Fia. 1. Speaker-listener interactions in the encoding-decoding theory of speech
perception.

The encoding-decoding theory of speech perception outlined above
highlights crucial roles of speech articulation for speech perception. In
summary, the theory consists of three basic, integrated elements: 1) ap-
proximate motor-encoding — the symbolic phonological process interfaced
with dynamic phonetic process in speech production; 2) robust auditory
reception — speech signal transformation prior to the cognitive process;

of articulation in speech perception.
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3) cognitive decoding — optimal (by statistical criteria) matching of the
auditory transformed signal with the “internal” model derived from a set
of motor encoders distinct for separate speech classes. In this theory, the
“internal” model in the brain of the listener is hypothesized to have been
“approximately” established during the childhood speech acquisition pro-
cess (or during the process of learning foreign languages in adulthood).

The speech production process as the approximate motor encoder in
the above encoding-decoding theory consists of the control strategy of
speech articulation, the actual realized speech articulation, and the acous-
tic signal as the output of the speech articulation system. On the other
hand, the auditory process plays two other key roles. First, it transforms
the acoustic signal of speech to make it robust against environmental vari-
ations. This provides the modified information to the decoder to make its
job easier than otherwise. Second, many transient and dynamic properties
in the auditory system’s responses to speech help create temporal land-
marks in the stream of speech to guide the decoding process [50, 53, 54].
(See more detailed discussions on the temporal landmarks in Section 4.3).
As will be shown in this chapter, the optimal decoding using the switch-
ing dynamic system model as the encoder incurs exponentially growing
computation. Use of the temporal landmarks generated from the audi-
tory system’s responses may successfully overcome such computational dif-
ficulties, hence providing an elegant approximate solution to the otherwise
formidable computational problem in the decoding.

In addition to accounting for much of the existing human speech per-
ception data, the computational nature of this theory, with some details
described in the remaining of this chapter with special focus on statisti-
cal modeling of the dynamic speech articulation and acoustic processes,
enables it to be used as the basic underpinning of computer speech recog-
nition systems.

3. Switching state space model for multi-level speech dynam-
ics. In this section, we outline each component of the multi-level speech
dynamic model. The model serves as a computational device for the ap-
proximate encoder in the encoding-decoding theory of speech perception
outlined above. We provide motivations for the construction of each model
component from principles of speech science, present a mathematical de-
scription of each model component, and justify assumptions made to the
mathematical description. The components in the overall model consists
of a phonological model, a model for the segmental target, a model for the
articulatory dynamics, and a model for the mapping from articulation to
acoustics. We start with the phonological-model component.

3.1. Phonological construct. Phonology is concerned with sound
patterns of speech and the nature of discrete or symbolic units that form
such patterns. Traditional theories of phonology differ in the choice and
interpretation of the phonological units. Early distinctive feature based
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theory [8] and subsequent autosegmental, feature-geometry theory [9] as-
sumed a rather direct link between phonological features and their phonetic
correlates in the articulatory or acoustic domain. Phonological rules for
modifying features represented changes not only in the linguistic structure
of the speech utterance, but also in the phonetic realization of this struc-
ture. This weakness has been recognized by more recent theories, e.g.,
articulatory phonology [7], which emphasize the importance of accounting
for phonetic levels of variation as distinct from those at the phonological
levels.

In the framework described here, it will be assumed that the linguistic
function of phonological units is to maintain linguistic contrasts and is
separate from phonetic implementation. It is further assumed that the
phonological unit sequence can be described mathematically by a discrete-
time, discrete-state homogeneous Markov chain. This Markov chain is
characterized by its state transition matrix A = [a,;] where a;; = P(s =
j|8k,1 = Z)

How to construct sequences of symbolic phonological units for any ar-
bitrary speech utterance and how to built them into an appropriate Markov
state (i.e., phonological state) structure will not be dealt with here. We
merely mention that for effective use of the current framework in speech
recognition, the symbolic units must be of multiple dimensions that overlap
with each other temporally, overcoming beads-on-a-string limitations. We
refer the readers to some earlier work for ways of constructing such over-
lapping units, either by rules or by automatic learning, which have proved
effective in the HMM-like speech recognition framework [21, 19, 18, 56].

3.2. Articulatory control and targets. After a phonological model
is constructed, the processes for converting abstract phonological units into
their phonetic realization need to be specified. This is a central issue
in speech production. It concerns the nature of invariance and variabil-
ity in the processes interfacing phonology and phonetics, and specifically,
whether the invariance is more naturally expressed in the articulatory or
acoustic/auditory domains. Early proposals assumed a direct link between
abstract phonological units and physical measurements. The “quantal the-
ory” [53] proposed that phonological features possessed invariant acoustic
correlates that could be measured directly from the speech signal. The
“motor theory” [31] proposed instead that articulatory properties are as-
sociated with phonological symbols. No conclusive evidence supporting
either hypothesis has been found without controversy, however.

In the current framework, a commonly held view in the phonetics
literature is adopted that discrete phonological units are associated with a
temporal segmental sequence of phonetic targets or goals [34, 29, 40, 41, 42].
The function of the articulatory motor control system is to achieve such
targets or goals by manipulating the articulatory organs according to some
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control principles subject to the articulatory inertia and possibly minimal-
energy constraints.

Compensatory articulation has been widely documented in the pho-
netics literature where trade-offs between different articulators and non-
uniqueness in the articulatory-acoustic mapping allow for the possibilities
that many different articulatory target configurations may be able to real-
ize the same underlying goal, and that speakers typically choose a range
of possible targets depending on external environments and their interac-
tions with listeners [29]. In order to account for compensatory articulation,
a complex phonetic control strategy need be adopted. The key modeling
assumptions adopted regarding such a strategy is as follows. First, each
phonological unit is associated with a number of phonetic parameters that
are described by a state-dependent distribution. These measurable param-
eters may be acoustic, articulatory or auditory in nature, and they can
be computed from some physical models for the articulatory and audi-
tory systems. Further, the region determined by the phonetic correlates
for each phonological unit can be mapped onto an articulatory parame-
ter space. Hence the target distribution in the articulatory space can be
determined simply by stating what the phonetic correlates (formants, artic-
ulatory positions, auditory responses, etc.) are for each of the phonological
units (many examples are provided in [55]), and by running simulations in
suitably-detailed articulatory and auditory models.

A convenient mathematical representation for the distribution of the
articulatory target vector t is a multivariate Gaussian distribution, de-
noted by

t ~ N (t;m(s), 3(s)).

Since the target distribution is conditioned on a specific phonological unit
(such as a bundle of overlapped features represented by an HMM state s)
and since the target does not switch until the phonological unit changes,
the statistics for the temporal sequence of the target process follows that
of a segmental HMM. A most recent review of the segmental HMM can
found in [26].

3.3. Articulatory dynamics. At the present state of knowledge, it
is difficult to speculate how the conversion of higher-level motor control
into articulator movement takes place. Ideally, modeling of articulatory
dynamics and control would require detailed neuromuscular and biome-
chanical models of the vocal tract, as well as an explicit model of the
control objectives and strategies. This is clearly too complicated to imple-
ment. A reasonable, simplifying assumption would be that the combined
(non-linear) control system and articulatory mechanism behave, at a func-
tional level, as a linear dynamic system that attempts to track the control
input equivalently represented by the articulatory target in the articula-
tory parameter space. Articulatory dynamics can then be approximated
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as the response of a dynamic vocal tract model driven by a random target
sequence (as a segmental HMM). (The output of the vocal tract model
then produces a time-varying tract shape which modulates the acoustic
properties of the speech signal as observed data.)

This simplifying assumption then reduces the generic nonlinear state
equation:

Z(k + 1) - gs[z(k)atsaw(k)]
into a mathematically tractable linear one:
(3.1) z(k+1) = ®.z(k) + (I— Ps)ts + w(k),

where z € R" is the articulatory-parameter vector, I is the identity ma-
trix, w is the IID and Gaussian system noise (w(k) ~ N[w(k);0,Qs,]), ts
is the HMM-state dependent, target vector (expressed in the articulatory
domain), and ®; is the HMM-state-dependent system matrix. The depen-
dence of the t; and ® parameters of the above dynamic system on the
phonological state is justified by the fact that the functional behavior of an
articulator depends on the particular goal it is trying to implement, and
on the other articulators with which it is cooperating in order to produce
compensatory articulation.

3.4. Acoustic model. While a truly consistent framework we are
striving for based on explicit knowledge of speech production and percep-
tion ideally should include detailed high-order state-space models of the
physical mechanisms involved, this becomes unfeasible due to excessive
computational requirements. The simplifying assumption adopted is that
the articulatory and acoustic state of the vocal tract can be adequately
described by low-order vectors of variables representing respectively the
relative positions of the major articulators, and the corresponding time-
averaged spectral parameters derived from the acoustic signal (or other
parameters computed from auditory models). Given further that an ap-
propriate time scale is chosen, it will also be assumed that the relationship
between articulatory and acoustic representations can be modeled by a
static memoryless transformation, converting a vector of articulatory pa-
rameters into a vector of acoustic (or auditory) measurements.

This noisy static memoryless transformation can be mathematically
represented by the following observation equation in the state-space model:

(3.2) o(k) = hlz(k)] + v(k).

where o € R™ is the observation vector, v is the IID observation noise
vector (v(k) ~ N[v(k); 0, R]) uncorrelated with the state noise w, and h][.]
is the static memoryless transformation from the articulatory vector to its
corresponding acoustic observation vector.
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There are many ways of choosing the static nonlinear function for h[z].
Let us take an example of multi-layer perceptron (MLP) with three layers
(input, hidden and output). Let wj; be the MLP weights from input to
hidden units and W;; be the MLP weights from hidden to output units,
where [ is the input node index, j the hidden node index and ¢ the output
node index. Then the output signal at node i can be expressed as a (non-
linear) function h(.) of all the input nodes (making up the input vector)
according to

(3.3)

J L
hi(Z)ZWij'S<ZU}jl'Zl), ].SZSI,

j=1 =1

where I, J and L are the numbers of nodes at the output, hidden and input
layers, respectively. s(.) is the hidden unit’s nonlinear activation function,
taken as the standard sigmoid function of

1

(3.4) e

5(2)
The derivative of this sigmoid function has the following concise form:

s'(z) = s(2)(1 — 5(2)),

making it convenient for use in many computations.

Typically, the analytical forms of nonlinear functions, such as the MLP,
make the associated nonlinear dynamic systems difficult to analyze and
make the estimation problems difficult to solve. Approximations are fre-
quently used to gain computational simplifications while sacrificing accu-
racy for approximating the nonlinear functions.

One most commonly used technique for the approximation is the trun-
cated (vector) Taylor series expansion. If all the Taylor series terms of order
two and higher are truncated, then we have the linear Taylor series approx-
imation that is characterized by the Jacobian matrix J and the point of
Taylor series expansion zg:

(3.5)

(3.6) h(z) ~ h(zo) + J(20)(z — zo).

Each element of the Jacobian matrix J is partial derivative of each vector
component of the nonlinear output with respect to each of the input vector
components. That is,

Oh1(zo) Ohi(zo) . Ohi(zo)
0z Ozo Ozn
ahQ(Zg) 8}L2(Zo) .. 8}L2 (Z())
ah 0z Ozo Ozp
0
Ohu (Zo) Ohw (Zo) .. Ohm(20)
0z Dzo Ozn
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As an example, for the MLP nonlinearity of Eqn. 3.3, the (¢,1)-th element
of the Jacobian matrix is

J
(38) Y Wij-si(y)-(1—s;(y) wy, 1<i<I, 1<I<L,
j=1

where y = ZlL,:l Wiz

Use of the radial basis function as the nonlinearity in the general
nonlinear dynamic system model, as an alternative to the MLP described
above, can be found in [24].

3.5. Switching state space model. Eqns. 3.1 and 3.2 form a spe-
cial version of the switching state-space model appropriate for describing
multi-level speech dynamics. The top-level dynamics occurs at the discrete-
state phonology, represented by the state transitions of s with a relatively
long time scale. The next level is the target (t) dynamics; it has the same
time scale and provides systematic randomness at the segmental level. At
the level of articulatory dynamics, the time scale is significantly shortened.
This is continuous-state dynamics driven by the target process as input,
which follows HMM statistics. The state equation 3.1 explicitly describes
this dynamics in z, with index of s (which takes discrete values) implic-
itly representing the switching process. At the lowest level of acoustic
dynamics, there is no switching process. Since the observation equation
3.2 is static, this simplifying speech model assumes that acoustic dynamics
results solely from articulatory dynamics.

4. BayesNet representation of the segmental switching dy-
namic speech model. Developed traditionally by machine-learning re-
searchers, BayesNets have found many useful applications. A BayesNet
is a graphical model that describes dependencies in the probability dis-
tributions defined over a set of variables. A most interesting class of the
BayesNet, as relevant to speech modeling, is dynamic BayesNets that are
specifically aimed at modeling time series statistics. For time series data
such as speech vector sequences, there are causal dependencies between
random variables in time. The causal dependencies give some specific,
left-to-right BayesNet structures. Such specific structures either permit
development of highly efficient algorithms (e.g., for the HMM) for the prob-
abilistic inference (i.e., computation of conditional probabilities for hidden
variables) and for learning (i.e., model parameter estimation), or enable
the use of approximate techniques (such as variational techniques) to solve
the inference and learning problems.

Both the HMM and the stationary (i.e., no switching) dynamic sys-
tem model are two of the simplest examples of a dynamic BayesNet, for
which the efficient algorithms developed already in statistics and in speech
processing [51, 38, 20] turn out to be identical to those based on the more
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general principles of BayesNet theory applied to the special network struc-
tures associated with these models. However, for the more complex speech
model such as the switching dynamic system model described above, no ex-
act solutions for inference and learning are available without exponentially
growing computation with the size of the data. Approximate solutions
have been provided for some simple versions of the the switching dynamic
system model in literatures of statistics [52], speech processing [33], and
of neural computation and BayesNet [25, 39]. The BayesNet framework
allows us to take a fresh view on the complex computational issues for such
a model, and provides guidance and insights to the algorithm development
as well as model refinement.

4.1. Basic BayesNet model. We now discuss how the particular
multi-component speech model described in Section 3 can be represented
and implemented by BayesNets. Fig. 2 shows one type of dependency struc-
ture (indicated by the direction of arrows) of the model, where (discrete)
time index runs from left to right. The top-row random variables s(k)
take discrete values over the set of phonological states (overlapped feature
bundles), and the remaining random variables for the targets, articulators,
and acoustic vectors are continuously valued for each time index.

F1a. 2. Dynamic BayesNet for a basic version of the switching dynamic system
model of speech. The random variables on Row 1 are discrete, hidden linguistic states
with the Markov-chain temporal structure. Those on Row 2 are continuous, hidden
articulatory targets as ideal articulation. Those on Row 3 are continuous, hidden states
representing physical articulation with the Markov temporal structure also. Those on
Row 4 are continuous, observed acoustic/auditory vectors.
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Each dependency in the above BayesNet can be implemented by speci-
fying the associated conditional probability. In the speech model presented
in Section 3, the horizontal (temporal) dependency for the phonological
(discrete) states is specified by the Markov chain transition probabilities:

(41) P(Sk = j|8k,1 = Z) = Qjj.

The vertical (level)? dependency for the target random variables is specified
by the following conditional density function:

(4.2) p(6(k)|sk) = N (t(k); m(sk), B(s))-

Possible structures in the covariance matrix 3(sy) in the above target
distribution can be explored using physical interpretations of the targets
as idealized articulation. For example, the velum component is largely
uncorrelated with other components; so is the glottal component. On the
other hand, tongue components are correlated with each other and with
the jaw component. For some linguistic units (/u/ for instance), some
tongue components are correlated with the lip components. Therefore, the
covariance matrix 3(sy) has a block diagonal structure. If we represent
each component in the target vector in the BayesNet, then each target
node in Fig. 2 will contain a sub-network.

The joint horizontal and vertical dependency for the articulatory (con-
tinuous) state is specified, based on state equation 3.1, by the conditional
density function:

Palz(k+1)|2(k), t(k), sx] = pw(2(k+1) = @, 2(k) = (I- D5, )t (k)]

(4.3)
= Nz(k+1); ®,,2(k)+(I— P, )t(k), Qs,]-

The vertical dependency for the observation random variables is speci-
fied, based on observation equation 3.2, by the conditional density function:

polo(k)|z(k)] = pv[o(k) — h(z(k))]

(4.4)
= No(k)); h(z(k)), R].

Eqns. 4.1, 4.2, 4.4, and 4.5 then completely specify the switching dynamic
model in Fig. 2 since they define all possible dependencies in its BayesNet
representation. Note that while the phonological state s; and its associ-
ated target t(k) in principle are at a different time scale than the phonetic
variables z(k) and o(k), for simplicity purposes and as one possible imple-
mentation, Eqns. 4.1-4.5 have placed them at the same time scale.

Note also that in Eqn. 4.5 the “forward” conditional probability for
the observation vector (when the corresponding articulatory vector z(k) is
known) is Gaussian, as is the measurement noise vector’s distribution. The

2This refers to the level of the speech production chain as the “encoder”.
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mean of the Gaussian is the prediction of the nonlinear function h(z(k)).
However, the “inverse” or “inference” conditional probability p[z(k)|o(k)]
will not be Gaussian due to the nonlinearity of h(.) as well as the switching
process that controls the dynamics in z(k). The fact that the conditional
distribution for z(k) is not Gaussian is one major source of difficulty for
the inference and learning problems associated with the nonlinear switching
dynamic system model.

4.2. Extended BayesNet model. One modification and extension
of the basic BayesNet model of Fig. 2 is to explicitly represent parallel
streams of the overlapping phonological features and their associated artic-
ulatory dimensions. As discussed in Section 3.1, the phonological construct
of the model consists of multidimensional symbols (feature bundles) over-
lapping in time. The BayesNet for this expanded model is shown in Fig. 3,
where the individual components of the articulator vector from the paral-
lel overlapping streams are ultimately combined to generate the acoustic
vectors.

Fic. 3. Dynamic BayesNet for an expanded version of the switching dynamic sys-
tem model of speech. Parallel streams of the overlapping phonological features and their
associated articulatory dimensions are explicitly represented. The articulators from the
parallel streams are ultimately combined to jointly determine the acoustic vectors.
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Another modification of the basic Bayesian-net model of Fig. 2 is to
incorporate the segmental constraint on the switching process for the dy-
namics of the target random vector t(k). That is, while random, t(k)
remains fixed until the phonological state s; switches. The switching of
target t(k) is synchronous with that of the phonological state, and only at
the time of switching, t(k) is allowed to take a new value according to its
probability density function. This segmental constraint can be described
mathematically by the following conditional probability density function:

5[t(k) — t(k — 1)] Zf Sk = Sk—1,

plt(k)|sk, sp—1,t(k—1)] =
k) ( ) { N (t(k);m(sk), X(sx)) otherwise.

This adds the new dependency of random vector of t(k) on sx_1 and t(k —
1), in addition to the existing s; as in Fig. 2. The modified BayesNet
incorporating this new dependency is shown in Fig. 4.

.\3\.\‘
11

L )

Fic. 4. Dynamic BayesNet for the switching dynamic system model of speech
incorporating the segmental constraint for the target random variables.
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4.3. Discussions. Given the BayesNet representations of switching
dynamic system models for speech, rich tools for approximate inference and
learning can be exploited and further developed. Since the exact inference
is impossible, at least in theory, the success of applying such a model to
speech recognition crucially depends on the accuracy of the approximate
algorithms.

It is worth noting that while the exact optimal inference for the phono-
logical states (the speech recognition problem) has exponential complex-
ity in computation, once the approximate times of the switching in the
phonological states become known, computational complexity can be sub-
stantially reduced. With the application of the variational technique (e.g.,
[27]) developed for BayesNet inference and learning to some generic, un-
structured versions of the switching state-space model [39, 25]), one can
separate the discrete states from the remaining portion of the network. (Re-
cent research [37] also provides evidence that approximate methods such
variational learning work well for a speech model called loosely-coupled
HMM.) For the structured switching state-space model of speech dynamics
as presented in this paper, this allows one to iteratively estimate the poste-
rior distributions of the discrete phonological and continuous articulatory
states. Inference on the phonological states becomes essentially a search
for the state switching times with soft decisions. For example, when one
uses the Gaussian mixture distribution to approximate the true posteriors
in the speech model discussed so far, the E-step (needed for the recog-
nizer’s MAP decoding procedure) in the variational EM algorithm can be
shown to be a solution to a set of algebraic nonlinear system of equations.
Achieving efficient and accurate solutions to these closely coupled equa-
tions for the purpose of decoding the optimal phonological state sequence
can be greatly facilitated when some crude estimates (e.g., within the range
of several frames) of the phonological state boundaries, which we call the
landmarks, are made available.

Interestingly, such an important role of the phonological state bound-
ary estimates fits closely with the encoding-decoding theory of speech per-
ception outlined in Section 2. As we discussed in Section 2, one crucial
role of auditory reception for human speech perception is to provide tem-
poral landmarks for the phonological features via the many transient neu-
ral response properties in the auditory system [50, 53, 54]. Recall that
in the switching dynamic system model of speech presented in this pa-
per, the phonological units are represented not in terms of phones that
consist of a bundle of synchronously aligned features, but in terms of in-
dividual features. Therefore, the temporal landmarks associated with the
individual features that may be detected by transient neural responses in
the auditory system have important functional roles to play in providing
the crude boundary information to facilitate the decoding of phonological
states (speech perception). This common operation performed by the au-
ditory system and by one aspect of the variational technique suggests that
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the variational-style decoding algorithms may be closely related to human
speech perception.

5. Summary and discussions. We outlined an encoding-decoding
theory of speech perception in this chapter, which highlights the importance
and critical role of modeling articulatory dynamics in speech recognition.
This is an integrated motor-auditory theory where the motor or produc-
tion system provides the internal model for the listener’s speech decoding
device, while the auditory system provides sharp temporal landmarks for
phonological features to constrain the decoder’s search space and to mini-
mize possible loss of decoding accuracy.

Most of current speech systems are very fragile. For further progress
in the field, the author believes that it is necessary to bring in human-
like intelligence of speech perception into computer systems. The switch-
ing dynamic system models discussed in this chapter offer one powerful
mathematical tool for implementing the encoding-decoding mechanism of
human speech communication. We have shown that the BayesNet frame-
work allows us to take a fresh view on the complex computational issues in
inference (decoding) and in learning, and to provide guidance and insights
to the algorithm development.

It is hoped that the framework presented here will help integrate re-
sults from speech production and advanced machine learning within the
statistical paradigms for speech recognition. An important, long-term goal
will involve development of computer systems to the extent that they can
be evaluated efficiently on realistic, large speech databases, collected in a
variety of speaking styles (conversational styles in particular) and for a
large population of speakers.

The ultimate goal of the research, whose components are described
in some detail in this chapter, is to develop high-performance systems
for integrated speech analysis, coding, synthesis, and recognition within
a consistent statistical framework. Such a development is guided by the
encoding-decoding theory of human speech communication, and is based on
computational models of speech production and perception. The switch-
ing dynamic system models of speech and their BayesNet representations
presented are a significant extension of the current highly simplified statis-
tical models used in speech recognition. Further advances in this research
direction will require greater integration within a statistical framework of
existing research in modeling speech production, speech recognition, and
advanced machine learning.
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