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Abstract 

We have proposed the deep-structured conditional random fields (CRFs) for 
sequential labeling and classification recently. The core of this model is its 
deep structure and its discriminative nature. This paper outlines the learning 
strategies and algorithms we have developed for the deep-structured CRFs, 
with a focus on the new strategy that combines the layer-wise unsupervised 
pre-training using entropy-based multi-objective optimization and the 
conditional likelihood-based back-propagation fine tuning, as inspired by the 
recent development in learning deep belief networks. 

 

1 Introduction  

Conditional random fields (CRFs) are discriminative models that directly estimate the 
probabilities of the state sequence conditioned on the whole observation sequence. This is in 
contrast to the generative models such as the hidden Markov models (HMMs) that describe the 
joint probability of the observation and the states. Given their discriminative nature and their 
high flexibility in choosing features, CRFs have been widely and successfully used to solve 
sequential labeling problems, notably those in natural language processing [1] [2] and speech 
processing [3].  
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Figure 1. The graphical representation of the linear-chain CRF 

The linear-chain CRF depicted in Figure 1 is the most popular CRF due to its simplicity and 
efficiency. Given a 𝑇 -frame observation sequence 𝒙 =  𝑥1 , 𝑥2 , ⋯ , 𝑥𝑇 , the conditional 
probability of the state sequence 𝒚 =  𝑦1 , 𝑦2 , ⋯ , 𝑦𝑇   (which may be augmented with a special 
start (𝑦0) and end (𝑦𝑇+1) state) is formulated as 
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𝑝 𝒚|𝒙; Λ =
𝑒𝑥𝑝  𝜆𝑖𝑓𝑖 𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡 𝑡,𝑖  

𝑍 𝒙; Λ 
 (1) 

where we have used 𝑓𝑖 𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡  to represent both the observation features 𝑓𝑖 𝑦𝑡 , 𝒙, 𝑡  and 
the state transition features 𝑓𝑖 𝑦𝑡 , 𝑦𝑡−1, 𝑡 . The partition function 

𝑍 𝒙; Λ =  𝑒𝑥𝑝   𝜆𝑖𝑓𝑖 𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡 

𝑡,𝑖

 
𝒚

 (2) 

is used to normalize the exponential form so that it becomes a valid probability measure. The 
model parameters Λ =  𝜆𝑖  are typically optimized to maximize the 𝐿2 regularized conditional 
state sequence log-likelihood 

𝐽1 Λ, 𝑋 =  log 𝑝 𝒚 𝒌 |𝒙 𝒌 ; Λ 

𝑘

−
 Λ 2

2𝜎2
 (3) 

where 𝜎2 is a parameter that balances the log-likelihood and the regularization term and is 
typically tuned using a development set. The derivatives of 𝐽1 Λ, 𝑋  over the model parameters 
𝜆𝑖  are given by 

𝜕𝐽1 Λ, 𝑋 

𝜕𝜆𝑖

= 𝐸  𝑓𝑖 𝒚, 𝒙  − 𝐸 𝑓𝑖 𝒚, 𝒙  −
𝜆𝑖

𝜎2
 

=  𝑓𝑖 𝒚
 𝒌 , 𝒙 𝒌  

𝑘

−
𝜆𝑖

𝜎2
−   𝑝 𝒚|𝒙 𝒌 ; Λ 𝑓𝑖 𝒚, 𝒙 𝒌  

𝒚𝑘

, 
(4) 

which can be efficiently estimated using the forward-backward (sum-product) algorithm [1] 
[4]. The model parameters in the CRFs can thus be optimized using algorithms such as 
generalized iterative scaling (GIS) [5], gradient and conjugate gradient (e.g. L-BFGS) ascent 
[6], and RPROP [7].  

Although great performance has been observed using the single-layer CRFs, limitations 
associated with their shallow structure are also noticeable. For example, the single-layer CRFs 
typically require manual construction of many different features to achieve good performance 
and require a large amount of training data to obtain the generalization ability. They lack the 
ability to automatically generate robust discriminative internal features from the raw features. 
As an example, we have shown [8][9] that when continuous features are used, better 
performance can be achieved by imposing constraints on the distribution of the features, which 
is equivalent to expanding each continuous feature 𝑓𝑖 𝑦𝑡−1 , 𝑦𝑡 , 𝒙, 𝑡  into 𝐿 features 

𝑓𝑖𝑙 𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡 = 𝑎𝑙 𝑓𝑖 𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡  𝑓𝑖 𝑦𝑡−1, 𝑦𝑡 , 𝒙, 𝑡 , (5) 

where 𝑎𝑙 .   is a weight function whose definition can be found in [8][10][11]. However, the 
single-layer CRFs cannot learn these expanded features automatically.  

Motivated by the recent advances in deep learning developed by the neural network 
community [12][13][14][15][16], we have recently proposed the deep-structured CRFs for 
sequential labeling and classification and observed promising results on the text labeling [2] 
and language identification tasks [9]. In the deep-structured CRFs, multiple layers of simple 
CRFs are stacked together to achieve a much more powerful modeling and discrimination 
ability.  

Using multiple layers of CRFs to improve the modeling power is not new. Several flavors of 
hierarchical CRFs have been proposed in the literature [3][17][18]. Those models typically 
aim at tackling the granularity problem at different representation layers and use the lower 
layer CRFs as the building blocks for the higher layer CRFs. The deep-structured CRF 
discussed in this paper distinguishes itself from the conventional hierarchical models in that it 
aims at learning discriminative intermediate representations from the raw features and at 
combining all sources of information to obtain a superior classification ability.  

The purpose of this paper is to summarize the learning strategies and algorithms we have 
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developed for the deep-structured CRFs, with a focus on the new strategy that combines the 
entropy-based layer-wise unsupervised pre-training and the conditional likelihood-based 
back-propagation fine tuning. We first describe the architecture of the deep-structured CRF in 
Section 2. We then illustrate the layer-wise supervised learning strategy, and the strategy that 
combines the layer-wise unsupervised pre-training and the likelihood back-propagation fine 
tuning in Sections 3 and 4, respectively. We provide some experimental results in Section 5 and 
summarize the paper in Section 6. 

 

2 Architecture o f  Deep-Structured CRF 

The architecture of the deep-structured CRF discussed in this paper is depicted in Figure 2, 
where the final layer is a linear-chain CRF and the lower layers are zero-th-order CRFs that do 
not use state transition features. Using zero-th-order instead of linear-chain CRFs in the lower 
layers can significantly reduce the computational cost while only slightly degrades the 
classification performance. In the deep-structured CRF, the observation sequence at layer 𝑗 
consists of two parts: the previous layer’s observation sequence 𝒙𝒋−𝟏  and the frame-level 

marginal posterior probabilities 𝑝 𝑦𝑡
𝑗−1

 𝒙𝒋−𝟏  from the preceding layer 𝑗 − 1. This is inspired 

by the tandem structure used in some automatic speech recognition systems [19]. Note that the 
features constructed on the observations may use only part of the input information though. 
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Figure 2. The graphical representation of the deep-structured CRF.  

In the deep-structured CRF, the state sequence inference is carried out layer-by-layer in a 
bottom-up manner so that the computational complexity is limited to at most linear to the 
number of layers used. The model parameter estimation is more complicated. At the final layer 
the number of states can be directly determined by the problem to be solved and the parameters 
can be learned in the supervised way. However, parameter learning can be tricky for the 
intermediate layers, which serve as abstract internal representations of the original observation 
and may have completely different number of states than the final layer.  

In the following sections, we will describe two learning strategies for the deep-structured 
CRFs. In the layer-wise supervised learning, we restrict the number of states at intermediate 
layers to be the same as that in the final layer. so that the same label used to train the final layer 
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can be used to train all the intermediate layers. In the second strategy of entropy-based 
layer-wise unsupervised pre-training followed by conditional likelihood-based back 
propagation learning, we allow for an arbitrary number of states in the intermediate layers.  
This learning scheme first learns each intermediate layer separately in an unsupervised 
manner, and then fine-tunes all the parameters jointly.  

 

3 Layer-wise Supervised Learning  

If we restrict the number of states at intermediate layers to be the same as that in the final layer 
and treat each state at intermediate layers the same as that in the final layer, we can train the 
intermediate layers layer-by-layer using the same label used to train the final layer. Note that 
the output of the deep-structured CRF model is a state sequence; so the parameters in the final 
layer are optimized by maximizing the regularized conditional log-likelihood (3) at the 
state-sequence level. In contrast to the highest layer, all remaining layers are trained by 
maximizing the frame-level marginal log-likelihood of 

𝐽2 Λ, 𝑋 =  log 𝑝 𝑦𝑡
 𝑘 

|𝒙 𝑘 ; Λ 

𝑘,𝑡

−
 Λ 2

2𝜎2
 (6) 

since this marginal probability is the only additional information passed into the higher layers. 
This criterion, however, is equivalent to the state-sequence level criterion 𝐽1 Λ, 𝑋  when the 
zero-th-order CRF is used in the intermediate layers since 

𝐽1 Λ, 𝑋 =  log 𝑝 𝒚 𝒌 |𝒙 𝒌 ; Λ 

𝑘

−
 Λ 2

2𝜎2
 

=  log
𝑒𝑥𝑝  𝜆𝑖𝑓𝑖 𝑦𝑡

 𝒌 
, 𝑦𝑡−1

 𝒌 
, 𝒙 𝒌 , 𝑡 𝑡,𝑖  

𝑍 𝒙 𝒌 ; Λ 
𝑘

−
 Λ 2

2𝜎2
 

=   𝜆𝑖𝑓𝑖 𝑦𝑡
 𝒌 

, 𝒙 𝒌 , 𝑡 − log 𝑍 𝒙 𝒌 ; Λ 

𝑡,𝑖𝑘

−
 Λ 2

2𝜎2
 

=   𝜆𝑖𝑓𝑖 𝑦𝑡
 𝒌 

, 𝒙 𝒌 , 𝑡 − log 𝑍 𝒙 𝒌 ; Λ 

𝑖𝑘,𝑡

−
 Λ 2

2𝜎2
 

= 𝐽2 Λ, 𝑋 . 

(7) 

 𝐽2 Λ, 𝑋  can be optimized in a complexity of 𝑂 𝑇𝑌 , where 𝑇 is the number of frames and 𝑌 is 
the number of states. Since the output of each frame in the zero-th-order CRF is independent of 
each other, the process can be further speeded up using parallel computing techniques.   

Note that the observation features at each layer can be constructed differently, and possibly 
across different frames than the previous layer also. This allows for the great flexibility of the 
higher layers to incorporate longer-span features from lower-layer decoding results. Allowing 
for long-span features can be helpful for speech recognition [20] [21][22][23] tasks.  

We now describe some desirable theoretical properties of  this training strategy. 

Theorem 1: The objective function 𝐽1 Λ, 𝑋  on the training set will not decrease as more layers 
are added in the deep-structure CRF. 

Proof: Let's consider the extension from an N-layer deep-structured CRF to an N+1 layer 
deep-structured CRF. The parameters for the first N-1 layers are the same for both systems. For 

the N-layer system, the observation features at the final layer are constructed on 𝒙𝑵 and the 

corresponding parameter set is Λ
𝑁

. For the N+1-layer system, the observation features are 
constructed on the observations that are augmented by 𝑝′ 𝑦𝑡

𝑁|𝒙𝑵  at each frame, where we use 
𝑝′  to indicate that the probability is estimated using the N-th layer in the N+1-layer system. 

The corresponding parameter set at the final layer in the N+1-layer system is Λ
𝑁+1 ⊇ Λ

𝑁
. 

Since  
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max
Λ

𝑁
𝐽1 Λ

𝑁 , 𝑋 ≤ max
Λ

𝑁+1
𝐽1 Λ

𝑁+1, 𝑋  (8) 

and the optimization problem is convex at each layer, the learning algorithm which achieves 
the global optimum enabled by the convexity can always find a parameter set in the N+1-layer 
system that gives a higher value of 𝐽1 Λ, 𝑋 .∎ 

It directly follows that 

Corollary 1: The deep-structured CRF performs no worse than the single-layer CRF on the 
training set.   

Note that the conditional log-likelihood increase in the training set can be carried over to the 
test set with a properly chosen regularization term. However, as the number of intermediate 
layers continues to grow, the gain will eventually saturate. 

 

4 Layer-wise Unsupervised Learning with Fine Tuning 

The layer-wise supervised training paradigm described in Section 3 works only when the 
number of states in the intermediate layers is the same as that in the final layer so that the same 
supervision can be used to train each layer. This requirement, however, significantly restricts 
the potential of the deep-structured CRF for extracting powerful, optimization-driven internal 
representations automatically from the original data sequence. In this section, we relax this 
constraint and allow for completely different internal representations with vastly different 
number of states in the intermediate layers. This relaxation requires a different training 
algorithm with different objective function(s) as an intermediate step. 

A conceptually simple approach to train the deep-structured CRF with arbitrarily configured 
intermediate layers is to train all the model parameters jointly. However, it has been shown 
[13][14][15][16] that when the number of layers increases, joint training can be very 
inefficient and leads to poor local optimum. Alternatively, one can train the intermediate layers 
one by one in an unsupervised manner, for example, in a generative way by optimizing the 
association between the input and the output for each intermediate layer.  

In this paper, we propose a layer-wise unsupervised learning strategy with a discriminative 
flavor where we cast the intermediate layer learning problem into a multi -objective 
programming (MOP) one. More specifically, we minimize the average frame-level conditional 
entropy and maximize the state occupation entropy at the same time. Minimizing the average 
frame-level conditional entropy forces the intermediate layers to be sharp indicators of 
subclasses (or clusters) for each input vector, while maximizing the occupation entropy 
guarantees that the input vectors be represented distinctly by different intermediate states. The 
training of this MOP problem is carried out in a similar way to  that described in [19]. 
Specifically, we start from maximizing the state occupation entropy. We then update the 
parameters by alternating between minimizing the frame-level conditional entropy and 
maximizing the average state occupation entropy. At each epoch, we optimize one objective by 
allowing the other one to become slightly worse within a limited range. This range is gradually 
tightened epoch by epoch. The model parameters are then fine tuned using the conditional 
likelihood-based back propagation we will describe shortly. 

 

4 .1  M a xi mize  the  s ta t e  o ccupa t io n  entro py  

For simplicity, let us denote by 𝒙, 𝒉, and Λh =  𝜆𝑖
𝑕   the input, output, and parameters of an 

intermediate layer, respectively. The intermediate layer state occupation entropy is defined as  

𝐻 𝑕 = −  𝑝 𝑕 

𝑕

𝑙𝑜𝑔𝑝 𝑕  (9) 

where  
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𝑝 𝑕 =
1

𝐾
  𝑝 𝑕𝑡 = 𝑕 𝒙 𝒌 , Λh 

𝑡𝑘

. (10) 

The derivative of 𝐻 𝑕  with respect to 𝜆𝑖
𝑕  can be calculated as 

𝜕𝐻 𝑕 

𝜕𝜆𝑖
𝑕 = −

𝜕𝑝 𝑕 

𝜕𝜆𝑖
𝑕 𝑙𝑜𝑔𝑝 𝑕 −

𝜕𝑙𝑜𝑔𝑝 𝑕 

𝜕𝜆𝑖
𝑕 𝑝 𝑕  

= − 𝑙𝑜𝑔𝑝 𝑕 + 1 
𝜕𝑝 𝑕 

𝜕𝜆𝑖
𝑕  

= −
1

𝐾
 𝑙𝑜𝑔𝑝 𝑕 + 1   

𝜕𝑝 𝑕𝑡 = 𝑕 𝒙 𝒌 , Λh 

𝜕𝜆𝑖
𝑕

𝑡𝑘

. 

(11) 

Since  

𝜕𝑝 𝑕𝑡 = 𝑕 𝒙 𝒌 , Λh 

𝜕𝜆𝑖
𝑕

=  𝑝 𝑕𝑡  𝒙
 𝒌 , Λh − 𝑝2 𝑕𝑡  𝒙

 𝒌 , Λh  𝑓𝑖 𝑕𝑡 , 𝒙 𝒌 , 𝑡  (12) 

we obtain the final gradient 

𝜕𝐻 𝑕 

𝜕𝜆𝑖
𝑕 = −

1

𝐾
 𝑙𝑜𝑔𝑝 𝑕 + 1    𝑝 𝑕𝑡  𝒙

 𝒌 , Λh − 𝑝2 𝑕𝑡  𝒙
 𝒌 , Λh  𝑓𝑖 𝑕𝑡 , 𝒙 𝒌 , 𝑡 

𝑡𝑘

. (13) 

 

4 .2  M in i mize  the  f ra me - le v e l  co ndi t io na l  entro py  

The frame-level conditional entropy at the intermediate layer can be written as  

𝐻 𝑕 𝒙, Λh = −  𝑝 𝑕 𝒙 𝒌 , Λh 

𝑕𝑘

𝑙𝑜𝑔𝑝 𝑕 𝒙 𝒌 , Λh . (14) 

Following the similar procedure we compute the derivative of 𝐻 𝑕 𝒙, Λh  with respect to 𝜆𝑖
𝑕  as 

𝜕𝐻 𝑕 𝒙, Λh 

𝜕𝜆𝑖
𝑕 = −   𝑙𝑜𝑔𝑝 𝑕𝑡 𝒙

 𝒌 , Λh + 1 

𝑡𝑘

𝜕𝑝 𝑕 𝒙 𝒌 , Λh 

𝜕𝜆𝑖
𝑕  

= −    𝑙𝑜𝑔𝑝 𝑕𝑡  𝒙
 𝒌 , Λh + 1 

𝑡𝑘

 𝑝 𝑕 𝒙 𝒌 , Λh − 𝑝2 𝑕 𝒙 𝒌 , Λh  𝑓𝑖 𝑕𝑡 , 𝒙 𝒌 , 𝑡  

(15) 

 

4 . 3  F ine  tun ing  w i th  co ndi t io na l  l ike l iho o d -ba se d  ba c k pro pa g a t io n  

In the fine tuning step, we aim to optimize the state sequence log-likelihood  

𝐿 ΛN , ΛhN−1 , ⋯ , Λh1 =  𝑙𝑜𝑔𝑝 𝒚 𝒌  𝒙 𝒌 , ΛN , ΛhN−1 , ⋯ , Λh1 

𝑘

 

=  𝐿 𝒌  ΛN , ΛhN−1 , ⋯ , Λh1 

𝑘

. 

(16) 

jointly for all parameters conditioned on all the layers, where ΛN  is the parameter set for the 

final layer, and ΛhN−1 , ⋯ , Λh1  are parameters for the 𝑁 − 1 hidden layers. The observation as 
the input to the final layer is  

 𝑥𝑡 𝑓𝑡
h1 𝑓𝑡

h2 ⋯ 𝑓𝑡
hN−1 , 𝑡 = 1, ⋯ , 𝑇 (17) 

where the hidden layer's frame-level log-likelihood is 

𝑓𝑡
hn =  log 𝑝 𝑕𝑡

n  𝒙, 𝒇h1 , ⋯ , 𝒇hn−1 , Λhn      if n > 1 (18) 
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and 

𝑓𝑡
hn =  log 𝑝 𝑕𝑡

n  𝒙, Λhn      if n = 1. (19) 

The derivative of the objective function over 𝜆𝑖
𝑕𝑛  is 

𝜕𝐿 ΛN , ΛhN−1 , ⋯ , Λh1 

𝜕𝜆𝑖
𝑕𝑛

=   
𝜕𝐿 𝒌  ΛN , ΛhN−1 , ⋯ , Λh1 

𝜕𝒇
hj

𝜕𝒇
hj

𝜕𝜆𝑖
𝑕𝑛

𝑁−1

𝑗=𝑛𝑘

 

=   1 − 𝑝 𝑦𝑡 |𝒙 𝒌 , ΛN , ΛhN−1 , ⋯ , Λh1   𝝀
hj

𝜕𝒇
hj

𝜕𝜆𝑖
𝑕𝑛

𝑁−1

𝑗=𝑛𝑘

 

(20) 

where  𝜕𝒇
hj

𝜕𝜆𝑖
𝑕𝑛  can be recursively calculated as in (20) by noticing that 𝑓𝑡

hj
 has the same 

form as the 𝐿 ΛN , ΛhN−1 , ⋯ , Λh1  except with fewer layers.  

 

5 Experimental  Results  

Table 1 summarizes the recognition accuracy (RA) on a seven language/dialect recognition 
task using the layer-wise unsupervised learning with fine tuning approach, where the 
distribution constraint refers to the feature expansion approach described in [8], CRF refers to 
the single-layer linear-chain CRF, and DSCRF refers to the deep-structured CRF described in 
this paper. Note that the DSCRF with 128 hidden states and four-knot distribution constraint 
has the same number of parameters as the Gaussian mixture model (GMM) with 256 mixtures. 
Due to the page limit, readers are referred to [9] for the detailed experimental setup. As a 
comparison, the best configuration of GMM using the maximum mutual information (MMI) 
training contains 256 Gaussian mixtures and achieved 82.5% recognition accuracy on this 
task. It is clear from Table 1 that the deep-structured CRF significantly outperforms the 
single-layer CRF with recognition accuracies of 83.6% vs. 44.6% and 79.5% vs. 34.3% with 
and without the distribution constraint respectively before using the tandem features and the 
fine tuning. When the tandem feature is applied, the recognition accuracy can be improved to 
85.1% which was further improved to 86.4% when the fine tuning is applied. 

Additional results on the layer-wise supervised training and on other tasks such as natural 
language processing can be found in [2].  

Table 1: Summary of the recognition accuracy (RA) on the seven 
language/dialect recognition task 

Model 
# States 

/Mixtures 
Distribution 

Constraint 
Tandem RA(%) 

CRF - no - 34.3 

CRF - yes - 44.6 

DSCRF+pretrain 

128 no no 79.5 

128 yes no 83.6 

128 yes yes 85.1 

DSCRF+finetune 128 yes yes 86.4 

 

6 Summary  

In this paper, we have described a deep-structured CRF model, in which multiple layers of 
CRFs are stacked together to achieve higher classification accuracy. We illustrated two 
approaches to learning the model parameters in the deep-structured CRF. 

In its nut-shell, the deep-structured CRF shares many ideas from the deep belief network 
(DBN) [12][13]. However, it differentiates itself from the DBN in that the layer-wise 
pre-training is carried out in a discriminative flavor and that the sequential information is 
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integrated in the same way as used in the conventional CRF. The latter contrasts the DBN, 
which requires additional temporal processing mechanisms to model the sequential input data.  
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