Decision Jungles: Compact and Rich Models for Classification Supplementary Material

Jamie Shotton Toby Sharp Pushmeet Kohli Sebastian Nowozin John Winn Antonio Criminisi Microsoft Research, Cambridge, UK

1 Bregman Clustering

We now show a correspondence between the information gain objective (3) of the main paper and the Bregman clustering objective [1].

In the main paper we specify the partitioning of data between two layers by means of a directed graph assigning subsets to left and right arcs, which in turn are assigned to a child node. Here, the Bregman clustering is run on sets of instances derived from partitioned each parent node instance set into left and right subsets. If we fix these splits we can now solve the problem of assigning these sets S_{ii} to the new child layer using Bregman clustering.

We denote class counts of set i and class k by $S_{i,k}$ and use $i \in j$ and j(i) to denote the assignment of set i to child node j in the next level. The counts are obtained by summation, $S_{j,k} = \sum_{i \in j} S_{i,k}$. We use $\mu_{j,k} = \sum_{i \in j} S_{i,k}/(\sum_k \sum_{i \in j} S_{i,k})$ to denote normalized histograms.

We start with the objective of Algorithm 1 in [1] and derive the equivalence by elementary manipulations as follows.

$$\sum_{j} \sum_{i \in j} |S_{i}| D_{KL}(S_{i}||\mu_{j}) = \sum_{j} \sum_{i \in j} |S_{i}| \sum_{k} \frac{S_{i,k}}{|S_{i}|} \log \frac{\frac{S_{i,k}}{|S_{i}|}}{\mu_{j,k}}$$

$$= \sum_{i} |S_{i}| \sum_{k} \frac{S_{i,k}}{|S_{i}|} \log \frac{\frac{S_{i,k}}{|S_{i}|}}{\mu_{j(i),k}}$$

$$= \sum_{i} \sum_{k} S_{i,k} \left[\underbrace{\log S_{i,k} - \log |S_{i}| - \log \mu_{j(i),k}}_{=:C} \right]$$

$$= \sum_{j} \sum_{i \in j} \sum_{k} S_{i,k} \left[-\log \mu_{j(i),k} \right] + C$$

$$= \sum_{j} \sum_{i \in j} \sum_{k} S_{i,k} \left[-\log \frac{\sum_{s \in j} S_{s,k}}{\sum_{k} \sum_{s \in j} S_{s,k}} \right] + C$$

$$= -\sum_{j} |S_{j}| \sum_{k} \frac{S_{j,k}}{|S_{j}|} \log \frac{S_{j,k}}{|S_{j}|} + C$$

$$= \sum_{j} |S_{j}| H(S_{j}) + C. \tag{1}$$

Hence, except for an additive constant C that does not depend on the assignment, the Bregman clustering objective using the KL-divergence is equivalent to the minimum information gain loss objective (3) of the main paper.

2 DAG Visualization

Fig. 1 shows a visualization of one of the resulting merged DAGs.

3 UCI Experiments

Table 1 lists the UCI multiclass classification data sets we used together with the number of classes, the total number of samples available, and the number of feature dimensions. All data sets have been obtained from the libsym data set collection page.

Data set	CLASSES	SAMPLES	DIMENSIONS
POKER	9	1025010	10
COVTYPE	7	581012	54
CODRNA	2	331152	8
IJCNN1	2	141691	22
SEISMIC	3	98528	50
CONNECT4	3	67557	127
W8A	2	64700	300
MNIST	9	60000	780
SHUTTLE	7	58000	9
PROTEIN	3	24387	357
LETTER	26	20000	16
PENDIGITS	9	10992	16
SECTOR	105	9619	55197
USPS	10	9298	256
GISETTE	2	7000	5000
SATIMAGE	6	6435	36
DNA	3	3186	180
OIL	3	3000	12
VOWEL	10	990	10
WEBKB	5	877	1703
VEHICLE	4	846	18
svmguide4	3	612	10
FACES-OLIVETTI	40	400	10304
SVMGUIDE2	3	391	20
SOY	3	307	35
GLASS	6	214	9
WINE	3	178	13
IRIS	3	150	4

Table 1: UCI data set characteristics.

The experimental setup is as follows. For each data set all instances from the training, validation, and test set, if available, are combined to a large set of instances. We repeat the following procedure five times: randomly permute the instances, and divide them 50/50 into training and testing set. Train of the training set, evaluate the performance on the test set. We report average multiclass accuracy and standard deviation over these five repetitions.

Tree/DAG parameters: each ensemble contains 8 trees or DAGs. The DAG is grown starting from the fifth layer for a maximum of 55 steps. Each DAG layer has at most 1.2 times the number of nodes as the previous layer, or a maximum of 128. The number of feature tests is the same for trees and DAGs and set to 64 dimensions and 20 thresholds per dimension.

Figures 2 to 5 report the average test set accuracy as a function of the total number of nodes in the model for the 28 UCI data sets.

References

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with Bregman divergences. *Journal of Machine Learning Research*, 6:1705–1749, Oct. 2005.

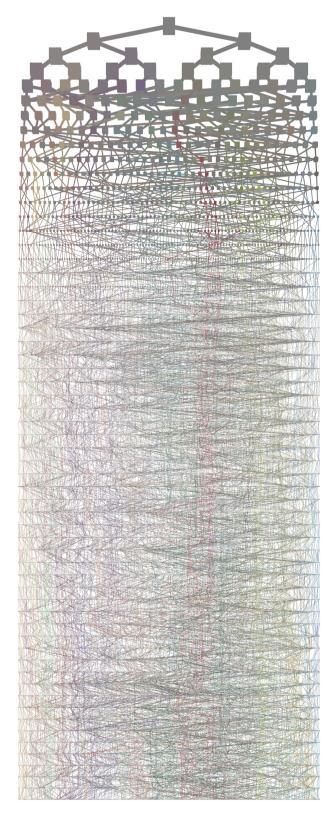


Figure 1: **DAG Visualization.** Colors indicate the most likely classes at each node, and saturation indicates purity. The visual layout of the DAG has been optimized slightly to minimize the sum of absolute horizontal edges from each level to the next.

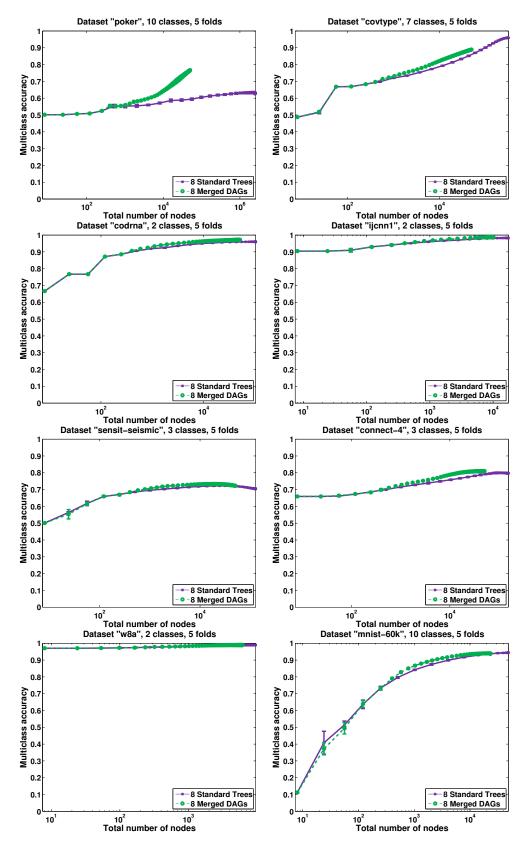


Figure 2: UCI classification results.

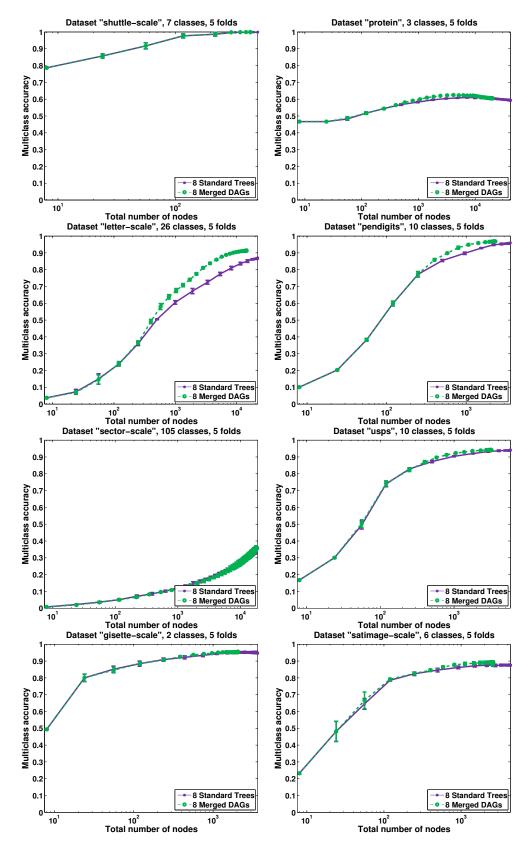


Figure 3: UCI classification results.

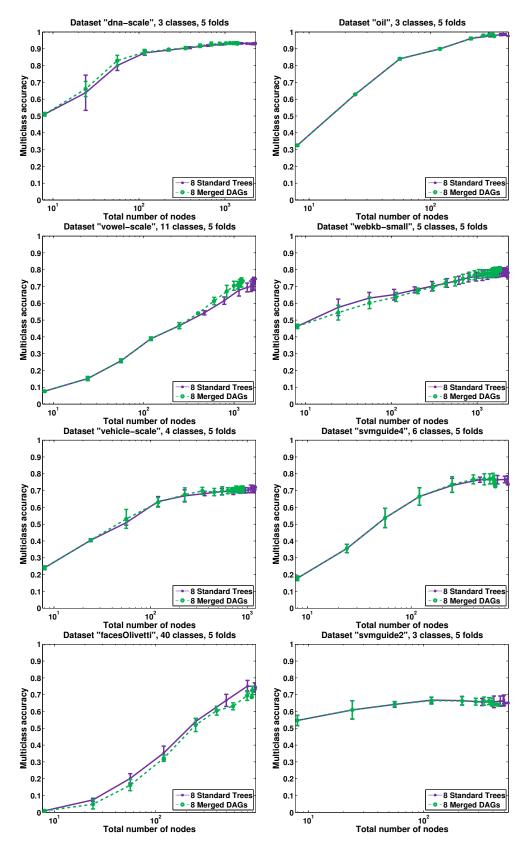


Figure 4: UCI classification results.

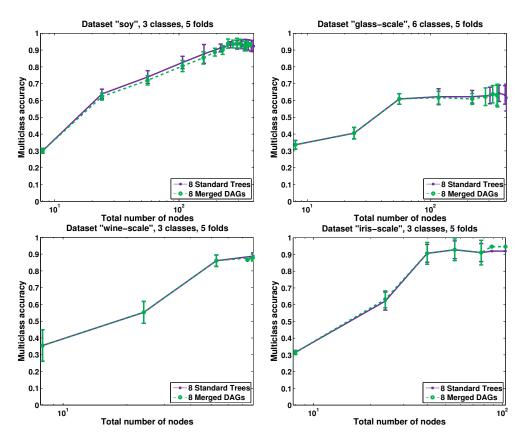


Figure 5: UCI classification results.