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Abstract

Learning to code has become so popular that it is now
almost the default that beginners will encounter cod-
ing on a website, along with thousands of others at the
same time. Providing feedback and recognition in the
face of such increasing numbers is a challenge that can
be met by the automated test generation. Through au-
tomation and access to massive amounts of data, we
show that the frequency, coverage, accuracy and per-
sonalization of feedback can be improved over earlier
systems. Recognition can also be made automatic by us-
ing a gaming model. Based on the Code Hunt program-
ming Game, we have developed and tested a system of
test-driven synthesis (TDS) and produced results that
show that we can accurately produce sensible feedback.
Moreover the feedback increases engagement in contin-
uing with the difficult task of learning to code. We also
report on the effect of recognition of progress during the
game and during contests.

1. Introduction

Everyone thrives on feedback and craves recognition.
They are the cornerstone of academic life and, one can
say, of scientific progress. Researchers are very familiar
with peer review as a means to measuring the validity
of their work and improving it. Sometimes, peer review
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is taken to an additional level and papers or the re-
searchers themselves are judged to be above others and
given awards. Feedback and recognition are arguably
even more important for those who are learning a skill.
Without feedback, they can remain stuck at a certain
place, become discouraged and give up. Without recog-
nition, they do not have a yardstick by which to mea-
sure their progress and do not know where they stand
in relation to others. However, feedback is only mean-
ingful if it is accurate, and recognition is most valuable
if it is in relation to a significant number of peers. Tra-
ditional subjective feedback and recognition, based on
the vagaries of humans, have always had the potential
to lead to confusion and unhappiness. Is it possibly to
become more objective, and therefore more accurate?
Our research shows that within a certain domain, and
by employing data at scale, that it is.

Our domain is that of learning to code. In the past
few years, coding has moved front and center in the
public consciousness [ref]. Introductory programming
courses at universities are now but a small part of what
has become a national movement in countries such as
the USA and the UK {ref to csedweek and Make it
Digital} . With so many students from a young age be-
ing encouraged to code, there has been an explosion of
websites and apps for learning programming. For ex-
ample, {Code.org} lists over 20 of these. Some of on-
line programming sites are stand-alone and intended
for drill and practice; some are accompanied by con-
tent, constituting tutoring systems; and some are em-
bedded in massive open online course (MOOCs), or can
be. All of them share a common factor - huge numbers
of adopters. Over two years, most of the sites showcased
on code.org have attracted over a million learners, and
the top one over 27 million. The challenge is how to pro-
vide feedback while the student is developing a program,
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and how to recognize achievement afterwards. Even if
grading as such is not required or appropriate, com-
mercial sites are interested in providing recognition in
terms of stars and certificates in order to entice users
to complete the tutorial or course and to come back
for a follow-up if there is one. And everyone is inter-
ested in ensuring that the whole experiment in online
programming does not backfire because students—and
teachers—find it just too hard.

Our goal is to provide both feedback and recognition,
defined as:

 feedback: information about a next step that can be
taken to make progress towards a solution, known as
a hint;

* recognition: information about the quality of the
solution, known as a score.

To achieve accuracy, we work at scale, harnessing the
hundreds of thousands of users of our online program-
ming game, Code Hunt. Thus the hints and scores we
return are not based on a match with a single human’s
idea of what is correct, but on that of many.

1.1. Automated Feedback

The critical problem is that the scale of online program-
ming systems and MOOCs can run into thousands of
simultaneous users making human assistance infeasible.
Automation is the key. However, the field of automated
feedback generation brings its own challenges [6]. For
decades the traditional automated technique for pro-
gram feedback has been to run the submitted program
against a fixed test suite, producing results that indi-
cate for which tests the program passed or failed. There
is a survey of approaches in [5] and a compendium of
recent tools in [7]. Particularly for students new to pro-
gramming, a counterexample from a failing test suite
may be insufficient to guide a student to understanding
their error. In contrast, even when no test cases pass,
a human grader is often able to identify the mistakes
the student made and therefore provide precise person-
alized feedback.

Recently, there have been some promising results
produced using symbolic execution and modeling [16]
which produce specific instructions as to changes that
a student should make to bring the program in line
semantically with a reference implementation. Though
ground breaking in many respects, a limitation of the
approach is that it relies on a single reference imple-
mentation, and works with the small, neatly specified
programs found in introductory programming courses.
The feedback is also proscriptive, leaving little room
for the student to learn as to why the hint instructions
given should be applied. set our horizons wider.

TODO: I would like to show three examples in par-
allel of the hint levels

The system we shall describe identifies small changes
to a submitted program which will transform it into a
solution. We move a level above specific changes in the
code and talk about features, indicating what kind of
change would move the program towards a correct solu-
tion. These hints are phrased as “You might find feature
x useful here” or “Feature y is rarely used in this solu-
tion”. We can make such seemingly sweeping statements
because we are basing our feedback not on a one-to-one
comparison between the submitted code and a single
reference solution, but on potentially 100,000s of solu-
tions. The large scale of online programming brings with
it an opportunity to match its own challenge: with ac-
cess to an increasingly large number of students and
their attempts on each program, there is a massive
amount of data to be mined. The data tells us what
the student solutions look like, how they arrive at them,
and what mistakes they make. With an automated tech-
nique, the scale helps instead of hurts the quality of
feedback: using this data, the only explicit input the
teacher needs to give our system is a single reference
solution defining a specification for each problem. Due
to the data mining, our tool can correct students work-
ing on any solution strategy, including ones the teacher
might not have chosen as the reference, or may not even
have been aware of.

1.2. Automated Recognition

It has become increasingly uncommon for students to be
told how they are performing in relation to their peers
within a formal class environment. However, within the
gaming community, competition drives success. It is
possible to learn from this model and to inject into a
online programming tool elements of gaming such as
scores, a leader board and contests so that students
have the opportunity to gauge their progress. For top
performers, the recognition that they seek is there.

Even if showing relative performance is deemed un-
wise, immediate recognition that a level has been ob-
tained is a strong motivator for a learner and can lead
to continuing perseverance at the task of learning to
program.

1.3. Paper Outline

The base system on which we study automated feed-
back and recognition is the programming game Code
Hunt, from Microsoft Research. Code Hunt is a white
box testing system based on Pex [19], with a gaming
front end, as described in Section 2. To it, we added
a fully automated tool, TDS, which uses data mining
along with recent developments in program synthesis
to provide feedback for player attempts (Sections 3, 4,
and 5). The tool provides personalized hints in real-
time, which direct the attention of players while they
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Figure 1. The Code Hunt test results screen.

code. In Section 6, we evaluate the impact of the feed-
back we provide. Turning to recognition, we discuss the
facilities that are available by default within a system
like Code Hunt, and then also how they can be taken
to the next level with contests. Section 7 provides a full
related work survey.

1.4. Contributions of this paper
TODO:

2. Domain Definition

There are many online programming tools [7]. Code
Hunt is distinguished from the others in the following
ways: it uses symbolic execution to test programs; and
it is progressively open sourcing its data for public use.
As such it is ideal for the study we are conducting.

2.1. The Code Hunt Game

Code Hunt [21] is an educational programming game
where the player writes a program in a standard pro-
gram language (Java or C#) in a simple in-browser pro-
gramming environment, but the hook is [Singh] that
the player is not told the specification of the program
they are writing. Discovering the specification is part of
the puzzle. This is quite unlike a homework assignment
where a student might be told to “implement a sorting
function”. Instead the player is presented with a set of
input-output test cases and has to start guessing what
the required program might be.

At each level of the game, the player starts with an
empty method named “Puzzle” with the proper sig-
nature (for example, int Puzzle(int x, int y) for a
secret function that takes two integers and returns an
integer). At any time, the player can click the “Capture
Code” button. The result of a capture may be

1. a “You win!” message indicating that their program
satisfies the secret specification,

2. a compiler error, as would be given in a normal
programming environment,

3. or a set of test cases showing inputs on which the
player’s program agrees and disagrees with the secret

You repaired and captured the code fragment.
SKILL RATING: I
onar orbed!

TOTAL SCORE: 2
KEEPTRVING <N LTI
)

Figure 2. Code Hunt results screen.

specification along with the corresponding outputs of
both the player’s program and the secret specifica-
tion, as shown here.

The last case is the core of the game. Given those test
cases, the player then attempts to intuit the pattern to
determine the specification and modifies their program
according to their theory. This process repeats until the
player has both correctly guessed the specification and
properly implemented a program for that specification,
at which point the game will tell them they have won
the level and encourage them to move on to the next
level.

In its basic form, Code Hunt does not have feedback
in the form of hints that assist a player when blocked.
However, it does have recognition of how succint the
code was for the solution. This is shown in

Skill rating for the solution is one, two or three bars,
and for this puzzle, the player achieved only one. The
score is the rating multiplied by the difficulty of the
puzzle. As the game goes on, the multiplier gets greater.
The player can replay the level to achieve a better score.
It is very important to provide qualitative feedback like
a rating in order to encourage learning players to write
better code. In Section XXX we report on how many
players did so. At any time, the player can consult
where he or she stands in a leader board of all players
within a particular zone, thus addressing the need for
recognition. There is more about recognition in Section
XXXX.

2.2. The Code Hunt Data

Code Hunt has a default level progression targeting
the AP computer science curriculum (approximately
equivalent to a first semester college computer science
course), with 130 graded problems. It has also been used
for 18 worldwide contests targeted at programmers with
high skill levels, or for in house contests for schools or
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conferences. Over the course of a year, from March 2014
to March 2015, it has been played by over 130,000 users.
They have produced 640,000 final correct solutions to
the problems. For each solution, there can be anything
from 2 to 50 attempts. All of these programs are logged
and will be made available to the community.

The first public data set contains the programs writ-
ten by students worldwide during a contest over 48
hours. There are approximately 250 users, 24 puzzles
and about 13,000 programs.

The data mined for the study presented here is much
larger and as it is based on the default zone.

TODO: describe data as of August - Judith can help
if needed.

3. The Feedback System
3.1. Layers of Feedback

Code Hunt with our hint generation system offers four
kinds of feedback listed in Table 1 which are specialized
to the level by mining increasing amounts of data:

1. Compiler errors. No specialization to the level, so no
data needed. If there is a compiler error, no other
feedback is given as there is no program to analyze.

2. Counterexamples. Requires a single solution to the
level in order to generate counterexamples with
Pex [18]. The counterexamples are the core of the
Code Hunt game experience, although they also act
as hints and are used as such in other systems.

3. Line hints, telling the user the location(s) of one pos-
sible set of fixes to get a correct solutuion, similar to
Autograder [16]. Requires multiple solutions (mined
from other users) as it is better at directing users
toward solutions similar to ones in the data.

4. Recommendation hints, specifying structures or ex-
pressions which the user might find useful or which
are in the user’s program but shouldn’t appear in a
solution. Requires multiple solutions and attempt se-
quences leading up to them in order to have enough
evidence that a given structure or expression is usu-
ally useful or usually not useful.

This paper focuses on the last two kinds of feedback,
which together we call Code Hunt’s hint generation
system.

3.2. Hint generation

TODO reference for flow in games?

In any game, a major design goal is to keep the player
engaged and in flow. Staying in flow is dependent on
maintaining the proper level of difficulty: too easy and
the game feels unfulfilling and boring, too hard and
the game feels frustrating, but just right and the game
feels challenging but doable and fun. In Code Hunt
the puzzle aspect of figuring out what specification the

counterexamples are leading toward keeps the player
engaged, but if the player is unable to figure out what to
do, they will get frustrated and give up. The hints give
additional feedback to help prevent the player getting
stuck without giving away the answers, so the game
remains challenging.

We generate two kinds of hints:

1. “Line hints” tell a player they are close and only need
to change a specific line or set of lines.

2. “Recommendation hints” are for players that are
further from a solution and warn them away from
elements that will be unhelpful or toward ones that
will be helpful.

Line hints For line hints, the problem we target is
to guide players who are near a solution to focus on
the parts of their program that need to be changed
instead of the majority of their program which is already
correct. Specifically, the feedback given will be one or
more lines of their program which can be modified to
produce a correct solution. This both lets the player
know they are on the right track and prevents them
from getting distracted away from the correct solution.

The non-trivial part of this problem comes from the
fact that there are many solutions to each level. While
many solutions may be nearly identical—for instance,
differing only by variable names—other solutions may
actually be fundamentally different approaches to the
problem that the creator of the level never thought of.
We want to allow players creativity and not push them
toward a hard-coded approved solution. Additionally, a
student one typo away from a correct answer may be
nowhere near a solution the creator of the level had ever
thought of.

In order to not be limited by a hand-coded teacher
model like Autograder [16], the hint generator mines
other player’s solutions to determine what may appear
in a solution to that level. The hint generator is powered
by a program synthesis algorithm which can use that
information to build new solutions as long as it knows
the expressions used in it. At a high level, the algorithm
starts from the player’s attempt and attempts to solve
the level. If successful, it returns which lines of code it
changed.

Recommendation hints When a player is far away
from a solution, it’s not helpful to tell them to change
every line of their attempt. Instead, we need to devise
other forms of hints to give them.

Recommendation hints are built around recommend-
ing for or against the use of specific features in a pro-
gram. Features may be structures like loops or nested
loops or expressions like int.MaxValue or 3 + <int>.

If a player is off-track, then we may be able to
give a hint to nudge them away from a bad strategy.
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Kind of feedback Example

Level-specific info

Compiler errors
Counterexamples
Line hints

Cannot implicitly convert type “int” to “string” none
Correct output for x=1 is 2, your code returns 0
Look at line 4 to capture the code
Recommendation hints You may find a loop useful on this level

a solution
many solutions
many attempt sequences

The expression <int> + <int> is rarely used to solve this level

Table 1. Different kinds of feedback in Code Hunt

Specifically, if they are using a feature that will not lead
to a solution, they can be given a hint suggesting they
not use it. We need to be careful to avoid recommending
against features that merely lead to an unknown or
rarely used solution: we do not want to tell players they
are wrong when they are merely being original. To do
so, we only recommend against a feature if many other
players have used it in their early attempts but not their
solutions.

In the other direction, if there’s no features to rec-
ommend against, then we can instead nudge the player
toward a solution by recommending features that are
commonly used in solutions, particularly ones that are
not used by players that never reach a solution.

Both kinds of recommendation hints require data
mining the attempt sequences of many players on the
same puzzle. For each of those attempts, the system
needs to analyze them to detect which features they
use and then collect summary statistics across all of the
players for use in deciding which hint to give.

Outline The program synthesis algorithm powering
the line hints is described in Section 4 while the hint
generation algorithm is described in Section 5.

4. Component-based synthesis

The program synthesis algorithm for the line hints is
based on the DSL-Based Synthesis component of Test-
Driven Synthesis (TDS) [12].

TDS performs synthesis as an iterative process: each
iteration generates a new program which satisfies all of
the constraints used so far which, along with additional
constraints, is the input to the next iteration. Those
iterations consist of running the DSL-Based Synthesis
algorithm which takes an input program and modifies
to satisfy additional constraints.

Because the DSL-Based Synthesis algorithm is al-
ready designed to take a program and modify it, we
can easily use it to take a player’s attempt and modify
it into a solution. The entire TDS algorithm is not used
because after multiple iterations it often veers far away
from the player’s attempt that it started from, which,
while great for generating a working program, is less
useful for generating an informative hint. So, instead
TDS is only used for a single iteration, which has the

Algorithm 1: CBS(P, S, e)

input : program P, set of test cases S, set of
expressions e to build new expressions
from

output: a program P’ that satisfies S or TIMEQUT

/* Try generates one or more programs and

if one satisfies S, CBS returns it. */

allExprs < e;

C + contexts of P that fail some test case in S|

m < number of branches in P;

W N =

4 while not timed out do

5 foreach ¢ < C do

6 foreach expr < allEzprs do

7 L L Try c(expr);

8 Try conditional solutions up to m branches;
9 allExprs < generate new expressions;

10 return TIMEOUT;

effect of limiting the size of changes the algorithm is
able to find.

4.1. Algorithm

The component-based synthesis (CBS) algorithm takes
an input program P, a set of expressions e that may
be used to build the output program, and a set of
test cases S the output program must satisfy. The
algorithm modifies the input program by finding some
subexpression and replaces it with a new expression,
generating a new program P’.

The decision of where to modify the program and
what to put there are the interesting aspects of the
algorithm. The choices of where are decided when
the algorithm starts, while the choices of what are
continually generated as the algorithm runs until it
either finds a solution or times out. Each new expression
generated is tried in every type-correct location the
algorithm identified as worth modifying.

4.2. Where to modify

Where the input program may be modified is defined in
terms of contexts where a context is a program with a
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typed hole that can be filled in by an expression of the
proper type to produce a program.

The intuition for the strategy of replacing subexpres-
sions is that the program generated so far is doing the
correct computation for some subset of the input space
and is overspecialized to that subset. The test cases let
us know which parts of the program are correct and
therefore do not need to be considered for replacement.
Specifically, only code executed by some failing test case
may be replaced.’

Each context represents a hypothesis about which
part of the program is correct and correspondingly
that the expression removed is overspecialized. Due
to the way the expressions to fill in the contexts are
generated, the removed expression appears in the set
of expressions, so if a small change is sufficient, the
expression will not be changed much.

In the full TDS, one such hypothesis is always that
the entire program is wrong and should be replaced
entirely. This is not a useful hypothesis for the setting of
hint generation: the use of the hint is to tell the player
to not get distracted by modifying the parts of their
program that is already correct. If there are no such
parts, then there’s no hint to give. Furthermore, since
we can’t be sure the synthesis algorithm will always
find a solution if there is one (for instance, the player’s
strategy may work but only if they use an expression no
other player has used on the level so it is not available
to the synthesis algorithm), we can never be sure the
player is actually off-track. If we could, then we could
tell the player to scrap their attempt and try something
new.

Contexts are made out of each branch as well as the
entire program in order to better support building new
conditional structures (Section 4.4) using parts of one
or more of the existing branches.

This theory does not limit contexts to a single hole,
but, empirically, doing so keeps the number of contexts
manageable and seems to be sufficient in practice to
produce many hints.

4.3. Choosing new expressions

The initial set of expressions comes from the input
along with every subexpression of the input program.
The latter is due to both the fact that a subexpression
might be modified slightly before being put back into
the context it was removed from and due to the general
hypothesis in program repair work that repairs to a
program tend to be similar to code already existing in

1 Angelic debugging [2] could be used to further narrow down
which subexpressions are worth modifying, but it’s unclear it
would be worth the setup time (thereby increasing the minimum
time for generating a hint) to do so in such a time-constrained
application working on such small programs.

that program.

New expressions to use in the contexts are generated
by component-based synthesis [8]. In component-based
synthesis, a set of components (expressions and meth-
ods) are provided as input and iteratively combined to
produce expressions in order of increasing size until an
expression is generated that matches the specification.
In our case, the “specification” is the test cases. As op-
posed to previous component-based synthesis work, the
generated expressions are used to fill in contexts pro-
ducing larger programs which are then tested.

In our system, all components are expressions. Meth-
ods are represented as curried functions. The synthe-
sizer generates new expressions by taking one curried
function and applying it to an expression marked with
the correct type. Each iteration of the synthesizer does
so for every valid combination of previously generated
expressions in order to generate programs of increasing
size. Representing methods as anonymous functions also
simplifies handling methods that themselves take func-
tions as arguments, which are common in higher-order
functions like map and fold.

As the number of components generated after k
iterations is exponential with the base being the number
of components (i.e., functions and constants in the input
expression set) in the worst case, a set that is too
large will cause CBS to run out of time or memory
before finding a solution. In practice, around 40-50
components seems to be the limit for CBS running on
the available hardware with a 30 second timeout.

Optimizations

Minimizing the number of generated expressions is im-
portant for performance. Redundant expressions are
eliminated in two ways: the first is syntactic and hence
it is fast and always valid, while the second is semantic
and valid only when an expression does not take on mul-
tiple values in a single execution (e.g., if the program is
recursive).

Syntactic All expressions constructed are rewritten
into canonical forms according to a hard-coded set
of algebraic rewrite and duplicates are discarded. For
example, x+y and y+x are written differently but can be
rewritten into the same form so one will be discarded.

Related to this, constant folding is applied where
possible, so, for example, 2*5 and 5+5 would both be
constant folded to 10, further reducing the search space.

Semantic The vast majority of the time, an expres-
sion takes on only a single value for each example input.
In other words, the expression is equivalent to a lookup
table from the example being executed to its value on
that example. Only expressions with distinct values are
interesting, so, for example x*x and 2+x would be con-
sidered identical if the only example inputs were x = 2
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and x = —1. This is similar to the redundant expression
elimination in version space algebras [9]. The exceptions
are if the expression is part of a recursive program or
lambda expression, in which case this optimization is
not used.

4.4. Conditionals

So far we have not considered synthesizing programs
containing conditionals, which are of course neces-
sary for most programs. We consider first synthesiz-
ing programs where a single cascading sequence of
if..else if..else expressions occur at the top-level
of the function body, with each branch not containing
conditionals. Then the goal is to have as few branches in
the one top-level conditional as possible. The problem
is to partition the examples into which-branch-handles-
them to achieve this goal.

For every program p CBS tries, the set of examples
it handles correctly is recorded and called T'(p). If
T(p) = S (all examples handled), p is a correct solution
and can be returned. Otherwise, each set of S programs
Q (where |Q| < m) whose union of handled examples
U,eq T'(p) equals S is a candidate for a solution with
appropriate conditionals. To be a solution, ) also needs
guards that lead examples to a branch that is valid for
them; to simplify this, whenever a boolean expression
g is generated, the set of examples it returns true for,
B(g), is recorded. The sets @ are considered in order
of increasing size, so if there are multiple solutions, the
one with the fewest branches will be chosen.

4.5. Loops

TODO Actually discuss loop templates? It’s not obvi-
ous they actually help hint generation. At best they
may be a significant performance optimization, but I’'m
pretty sure they don’t add expressivity.

5. Hint generation algorithm

TODO describe algorithms, emphasizing that both use
large-scale data mining

5.1. Line hints

The line hint generation algorithm is based off the
component-based synthesis algorithm described in Sec-
tion 4. While it is based on the TDS algorithm [12] de-
veloped for end-user programming-by-example (PBE [4,
10]); in this work we adapt it for the educational set-
ting. Two novel features of TDS make it appropriate for
this use:

1. TDS takes an iterative approach to synthesizing pro-
grams, where at each intermediate step a program
is generated that satisfies some subset of the test
cases. We take advantage of this design to insert the
player’s attempt as a program for the algorithm to

build upon.

2. Unlike other program synthesis technologies that
work across multiple domains, TDS does not rely
on an SMT solver or similar technology [17, 24].
This allows for the flexibility to work in any domain
without worrying about support for that domain
from the underlying solver.

Additionally, the support for synthesizing loops and
conditionals makes it flexible in the control flow struc-
tures of programs it can support. Just a few loop synthe-
sis strategies can cover many of the loops that appear
in simple programming assignments.

Initial program In TDS as used for end-user programming-

by-example, the initial program Fp is L, the empty pro-
gram that fails on all inputs. For hint generation, the
initial program is instead the player’s attempt.

Test cases The synthesis algorithm depends on test
cases to determine the correct program. It could get
them from the test cases shown to the player, but the
hint should direct the player toward the actual correct
solution, so those test cases may be insufficient. They
could be augmented by querying Code Hunt just like
what happens when the player clicks the “Capture
Code” button, but, in practice, this is much too slow
as generating counterexamples takes several seconds, so
it cannot appear in the inner loop of the hint generator
which has to be able to display a hint to the player
within at most several seconds. In practice, all test cases
that have been shown to all players as counterexamples
are recorded. Using more test cases slows down the
synthesis algorithm (in the worst case, the time to test
a possible solution is proportional to the number of test
cases to run it on), so initially only the 10 test cases
most commonly shown to players are used, but if more
are needed, then it continues down the list.

Datamining solutions Component-based synthesis
requires a set of expressions as an input which guides
the search by limiting the set of programs to search
through to those using those expressions. Limiting the
search space is important because the search space
of all programs using all constructs appearing in all
Code Hunt levels is too large to search through quickly.
Therefore, for each level, we mine player solutions for
what expressions they used. As long as there are at least
50 solutions, expressions that appear in at least 5 other
players’ solutions for a given level are considered by the
hint generator. The cut-off is due to the observation that
there is a large long-tail of useless expressions in the set
of all expressions appearing any player’s solution.
Given that each level will have multiple solution
strategies involving different expressions, it would be
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great if we could mine expressions only from solutions
that used the same strategy that the player is currently
attempting. While there’s no obvious way to automati-
cally partition the solution strategies, one easy approxi-
mation is to consider the set of temporary variable types
in the program. Different strategies might involve dif-
ferent variable types and working with different vari-
able types will definitely involve different expressions,
so it’s a reasonable way to partition the expression sets.
Specifically, we collect an expression set for each level
and each set (ignoring repeats) of temporary variable
types that appeared in an attempt leading to a solution
where that expression was used.

This is a relatively shallow mining of the data col-
lected by Code Hunt, but it is sufficient to produce the
expression set needed to run component-based synthesis
efficiently without per-level human effort.

Selecting the best hint Although the process has
been described as generating a single hint, in reality,
if there is one small change to correct the program,
the synthesizer often finds several more soon after.
Therefore, the synthesizer is not stopped immediately
after finding the first solution. This gives an opportunity
to rank the hints and select the best one to show to the
player. As our goal was to present the smallest change
to the player, we rank the hints by textual edit distance:
changing a single character on one line is better than
rewriting an expression on another, even though the
distance measured in edits to the AST may be the same
or even larger.

5.2. Recommendation hints

TODO Rewrite this section. Actually include the greek.

Recommendation hints involving suggesting a player
use or not use a given feature in their program. By
“feature”, we mean structures like “nested loops” as well
as expressions like “<char>.toString()”.

We want to advise against features that won’t lead
to a solution without discouraging different solution and
recommend features that do lead to a solution without
suggesting features that appear in both good and bad
attempts. We discover these by data mining attempt
sequences.

We place attempts in three categories:

1. Solutions.

2. Incorrect attempts by players who eventually reached
a solution.

3. Incorrect attempts by players who have not yet
reached a solution.

Due to the structuring of the game, there’s no way to
be sure players in (3) won’t soon find a solution. We
can’t be sure they’re off-track, they might just be in the
middle of playing. Additional assumptions about time

since the last attempt might help there (e.g. if the last
attempt was at least a day ago, then assume the player
has given up on the level), but the current system does
not use the timing of the attempts.

Clearly features in (1) are likely to be useful for a
solution, but, more importantly, features in (1) but not
in (2) or (3) are especially interesting. Similarly, features
in (2) and (3) but not (1) are worth warning against.

In a large corpus, we want to be able to ignore
small counts as noise: an expression used nowhere but a
single solution might be great but is more likely just a
fluke. Similarly, even a bad feature will end up in some
solutions if only due to its presence in dead code in
those solutions.

All of this together leads to a statistical model where
we want to, for each feature, estimate the probability
that a program containing that feature is a solution (for
positive recommendations) or a dead-end (for negative
recommendations).

The naive computation would be to count all of the
users who used the feature ever and find the propor-
tion that submitted a solution containing it. That gives
a simple estimate of the probability that a player us-
ing that feature will find a solution using it. We only
generate a hint if the probability estimate exceeds 75%.

To clean up the issues remarked upon above relating
to features with too little data to draw conclusions, we
add noise to the counts. Specifically, we pretend that
there are an additional 20 players who used the feature
that aren’t in our data and that half of them used the
feature in a solution. The selection of 20 is empirically
based on seeming to give good results for our data.

Additionally, we do not use a flat 75% threshold.
Instead we adjust the probability estimate with its
standard deviation to acknowledge that we have lower
confidence in an estimate based on fewer players.

5.3. Combining the hint mechanisms

While both hint mechanisms may generate a hint, at
most one hint is shown to the user. The following kinds
of hints are attempted in order, going to the next in the
list only if there is no hint of the previous kinds:

1. A line hint that does not recommend changing all of
the code.

2. A line hint on the only line of the program, specifying
that the expression to be changed is a “constant”,
“number”, “string”, “method call”, or “variable”.

3. A recommendation hint for an “unhelpful” feature
that the player has used.

4. A recommendation hint for a “helpful” feature that

the player has not used.

If there are no hints of those four kinds, then no hint is
shown.
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6. Evaluation

Section 6.1 presents an A/B test of disabling hints for
some players in order to collect data on the effect our
hint mechanism has on player behavior.

Section 6.2 presents an experiment which lends some
credence to our intuition that line hints get generated
when “close” to a solution and the system successfully
falls back on recommendation hints when “far” from a
solution.

6.1. A/B test

We wanted to know how hints affect players interacting
with the game. The best possible data would be to be
able to watch many people where each one played the
game with and without hints. This has two problems

1. Bringing people in and watching them is expensive
and time-consuming. We can instead take advan-
tage of the fact that user interactions with the game
are logged, so our experiment can be done on nor-
mal users. Furthermore, because the hints are not
a promised feature, the users do not even need to
know they are part of an experiment, both making
recruiting easier and not perturbing the data by let-
ting users know they are being studied.

2. It’s not meaningful to have the same people play
the game twice (with and without hints) because
they will already know the answers when playing the
second time.

6.1.1. Design
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To that end, we ran an A/B test on https://www.codehunt.com

where for a two week period all new users were sorted
into one of three conditions:

1. Hints always (whenever a hint is generated)
2. Hints never
3. Hints on some levels

We only collected data on new users in order to avoid
users having already seen hints and therefore expecting
them.

6.1.2. Results

Data was collected on 407 users who began playing
between the start of the experiment and two days before
the data collection period ended.

Those users submitted a total of 34886 attempts.
7734 (22%) of those attempts were correct solutions.
Of the remaining 27152 incorrect attempts, 5143 (19%)
of them did not compile, so semantic hints could not be
generated, instead compiler errors were shown.

Of the 21868 incorrect attempts that did compile,
the program synthesis algorithm was able to solve 9604
(44%) of them. As not all solutions lead to good line
hints, only 6284 (65%) of those were used to produce

line hints. Similarly, 2762 (13%) had “helpful” recom-
mendation hints available and 13580 (62%) had “un-
helpful” recommendation hints available for a total of
16342 (75%) of attempts having a recommendation hint
available, while only 12394 (75%) of those were selected
as the hint generated.

The breakdown of hint kinds generated® for the
21868 incorrect attempts that did compile were 1498
(7%) normal line hints, 4786 (22%) line hints referenc-
ing the expression kind to change, 2273 (10%) “helpful”
recommendation hints, and 10121 (46%) “unhelpful”
recommendation hints. No hint was generated for the
remaining 3190 (15%) attempts.

6.1.3. Stickiness

What we actually want to know is whether hints affect
player behavior, and, perhaps more importantly, is that
effect positive. In order to answer that in the positive,

2 These numbers are about hints generated, not hints shown to the
player. Hints are still generated for players with hints disabled,
they just aren’t shown to the player.
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we looked at the effect of hints on the stickiness of the
game; that is, how long the players continue playing. In
line with our hypothesis that hints reduce frustration,
we expect some users who do not see hints may stop
playing out of frustration while users who do see hints
are less likely to do so.

Figure 3 shows how long players kept playing the
game. The y-axis is the proportion of players in each
condition while the z-axis is the time between the first
and last attempt submitted by a player. The dashed ver-
tical line in the middle is the 1-day mark. Looking there,
we see that about 40% of the players in the “some-
times hint” condition played for at least a day, as did
about 20% of those in the “always hint” condition, but
only about 10% of those in the “never hint” condition
did. The lines going off the graph to the right indicates
players that continued playing after the 48-hour period
shown in the graph.

Looking at time played in a different way, Figure 4’s
z-axis is the number of levels won in the same 48-hour
period. The vertical dashed lines mark a few of the
harder levels early on in the game where the sharp drop
in the “never hint” line is visible but smaller in the
other lines.? Looking to the right side of the graph, we
can clearly see that the players who received hints went
on to beat more levels than those that did not receive
hints. Of course, this makes sense, since the hints make
the game easier.

From these two graphs, we can conclude that hints
lead to players playing the game longer, which was the
goal. Furthermore, giving hints sometimes instead of al-
ways seems to be somewhat better at getting players to
continue playing, perhaps due to constant hints making
the game too easy.

6.2. Distance to solution
TODO Include charts
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