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ABSTRACT

Contemporary datacenters house tens of thousands of servers. The
servers are closely monitored for operating conditions and utiliza-
tions by collecting their performance data (e.g., CPU utilization).
In this paper, we show that existing database and file-system solu-
tions are not suitable for warehousing performance data collected
from a large number of servers because of the scale and the com-
plexity of performance data. We describe the design and imple-
mentation of DataGarage, a performance data warehousing system
that we have developed at Microsoft. DataGarage is a hybrid solu-
tion that combines benefits of DBMSs, file-systems, and MapRe-
duce systems to address unique challenges of warehousing perfor-
mance data. We describe how DataGarage allows efficient storage
and analysis of years of historical performance data collected from
many tens of thousands of servers—on commodity servers. We
also report DataGarage’s performance with a real dataset and a 32-
node, 256-core shared-nothing cluster and our experience of using
DataGarage at Microsoft for the last one year.

1. INTRODUCTION

Contemporary datacenters house tens of thousands of servers.
Since they are large capital investments for online service providers,
the servers are closely monitored for operating conditions and uti-
lizations. Assume that each server in a datacenter is continuously
monitored by collecting 500 hardware and software performance
counters (e.g., CPU utilization, job queue size). Then, a data cen-
ter with 100,000 servers yields 50 million concurrent data streams
and, with a mere 15-second sampling rate, more than 1TB data a
day. While the most recent data is used in real-time monitoring and
control, archived historical data is also used for tasks such as capac-
ity planning, workload placement, pattern discovery, and fault diag-
nostics. Many of these tasks require computing pair-wise correla-
tion, histogram, and first-order trend over last several months [10,
13]. However, due to sheer volume and complexity of the data,
archiving it for a long period of time and supporting useful queries
on it reasonably fast is extremely challenging.

In this paper we show that traditional data warehousing solu-
tions are suboptimal for performance data, the data of performance
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counters collected from monitored servers. This is primarily due to
the scale and the complexity of performance data. For example,
one important design goal of performance data warehousing is to
reduce storage footprint since an efficient storage solution can re-
duce storage, operational, and query processing overhead. Prior
works have shown two different approaches to organize data as re-
lational tables. In the wide-table approach, a single table having
one column for each possible counter is used to store data from
a large number of heterogenous servers, with null values in the
columns that do not exist for a server. In the narrow-table ap-
proach, data from different servers is stored in a single table as
key-value pairs [5]. We show that both these approaches have a
high storage overhead, as well as high query execution overhead,
for performance data warehousing. This is because different sets of
software and hardware counters are monitored in different servers
and therefore performance data collected from different servers are
highly heterogenous. Another reason why off-the-shelf warehous-
ing solutions are not optimal for performance data is that their data
compression techniques, which work well for text or integer data,
do not perform well on floating-point performance data. (We dis-
cuss the challenges in details in Sections 3 and 4.)

Prior works have also shown two different approaches to general,
large-scale data storage and analysis. The first approach, which
we call TableStore, stores data as relational tables in a parallel
DBMS or multiple single-node DBMS (e.g., HadoopDB [2]). Par-
allel DBMSs process queries with database engines, while HadoopDB
processes queries using a combination of database engine and a
MapReduce-style query processor [6]. The second approach, which
we call FileStore, stores data as files or streams in a distributed
filesystem and processes queries on it using a MapReduce-like sys-
tem (such as Hadoop [7] or Dryad [8]). We show in Section 3 that
both TableStore and FileStore have very large storage footprints
for performance data due to its high heterogeneity. Previous work
has shown that a database query engine on top of a TableStore has
better query performance and simpler query interface, but it has
poor fault tolerance [12]. On the other hand, FileStore has a lower
cost, higher data management flexibility, and more robustness dur-
ing MapReduce query processing, but it has inferior query perfor-
mance and more complex query interface than a DBMS approach.

In this paper, we describe our attempt to build a DBMS and
filesystem hybrid that combines the benefits of TableStore and File-
Store for performance data warehousing. We describe design and
implementation of DataGarage, a system that we have built at Mi-
crosoft to warehouse performance data collected from tens of thou-
sands of servers in Microsoft datacenters. The design of Data-
Garage has the following key aspects:

1. In contrast to traditional single wide-table or single narrow-
table approaches of organizing data as relational tables, Data-



Garage uses a new approach of using many (e.g., tens of

thousands) wide-tables. Each wide-table contains performance

data collected from a single server and is stored as a database

file in a format accessible by a light-weight embedded database.

Database files are stored in a distributed file system, result-
ing in a novel DBMS-filesystem hybrid. We show that such a
design reduces storage footprint and makes queries compact,
simple, and run faster than alternative approaches.

2. DataGarage uses novel floating-point data compression algo-
rithms that use ideas from column-oriented databases.

3. For data analysis, DataGarage accepts SQL queries, pushes
them inside many parallel instances of an embedded database,
aggregates results along an aggregation hierarchy, and dy-
namically adapts with faulty or resource-poor nodes (like
MapReduce).

Thus, DataGarage combines the storage flexibility and low cost of a
file system, compression benefits of a column-store database, per-
formance and simple query interface of a DBMS, and robustness
of MapReduce in the same system. To the best of our knowledge,
DataGarage is the first large-scale data warehousing system that
combines the benefits of these different systems.

In our production prototype of DataGarage, we use Microsoft
SQL Server Compact Edition (SSCE) files [14] to store data and
SSCE runtime library to execute queries on them. SSCE was orig-
inally designed for mobile and embedded systems, and to the best
of our knowledge, DataGarage is the first large-scale data analysis
system to use SSCE. Our implementation of the DataGarage sys-
tem is extremely simple—it uses existing NTFS file system, Win-
dows scripting shell, SSCE files and runtime library, and several
thousand lines of custom code to glue everything together. We
have been using DataGarage for the last one year to archive data
from many tens of thousands of servers in Microsoft datacenters.

Many design decisions behind DataGarage were guided by the
lessons we learnt from our previous unsuccessful attempts of us-
ing existing solutions to warehouse performance data. At a high
level, DataGarage and HadoopDB have similarities—they both use
TableStore for storage and MapReduce for query processing. How-
ever, the fundamental difference between these two systems is that
HadoopDB uses a single DBMS system in each node, while Data-
Garage uses tens of thousands of embedded database files. As we
will show later, such finer-grained partitioning of data into many
light-weight relational stores significantly reduces storage footprint
of heterogenous performance datasets and makes typical DataGarage
queries simple, compact, and efficient. We believe that our current
design adequately addresses the unique challenges of a typical per-
formance data warehousing system.

In the rest of the paper, we make the following contributions.
First, we discuss unique properties of performance data, desired
goals of a warehousing system for performance data, and why ex-
isting solutions fail to achieve the goals (Sections 2 and 3). Second,
we describe design and implementation of DataGarage. We show
how it reduces storage footprint by fine-grained data partitioning
and compression techniques (Section 4). We also describe how
its query engine achieves scalability and fault-tolerance by using a
MapReduce-like approach (Section 5). Third, We evaluate Data-
Garage with a real dataset and a 32-node, 256-core shared nothing
cluster (Section 6). Finally, we describe our experience of using
DataGarage in Microsoft for the last one year (Section 7).

2. DESIGN RATIONALE

In this section, we describe performance data collection process,
properties of performance data, and desired properties of a perfor-
mance data warehousing system.

2.1 Performance Data Collection

Performance data from a server is collected by a background
monitoring process that periodically scans selected software and
hardware performance counters (e.g., CPU utilization) of the server
and stores their values in a file. In effect, daily performance data
looks like a wide-table, each row containing counter values col-
lected at a time (as shown in Table 1). A few hundred performance
counter values are collected from a typical server.

The number of performance counters and the sampling period
are decided based on analysis requirements and resource availabil-
ity. The more counters one can collect, the more types of analysis
he can perform. For example, if one collects only hardware counter
data (e.g., processor and disk utilization), he can analyze how much
load a server is handling—but he may not precisely know the un-
derlying reason of such load. If he also collects SQL Server usage
counters, he can correlate these two types of counters and obtain
some insight into why the server is loaded and if something can be
done about it. Similarly, the more frequently one collects counter
data, the more precise he can be about his analysis—using hourly
averages of counter data, one can find which hour has the highest
load, using 15-second averages he can also find under which condi-
tions a particular disk is a bottleneck, using 1-second sampling he
can further obtain good estimates of disk queue lengths.

In the production deployment of DataGarage, the sampling inter-
val is 15 seconds and the number of collected counters varies from
100 to 1000 among different servers. For some other monitoring
scenarios the sampling period may be as high as 2 minutes and the
number of counters as low as 10.

Monitoring is relatively cheap for a single server. Our Data-
Garage monitoring process uses 0.01% of processor time on a stan-
dard server and produces 5-100MB of data per server per day. For
100,000 servers this results in a daily flow of over 1TB of data.
This sheer volume alone can make the tasks of transferring the data,
archiving it for years, and analyzing it extremely challenging.

2.2 Performance Data Characteristics

Performance data collected from a large number of servers has
the following unique properties.

Counter sets. Performance data collected from different servers
can be highly heterogenous. This is because each server may have
a different set of counters due to different numbers of physical and
logical disks, network cards, installed applications (SQL Server,
IIS, .NET), etc. We have seen around 30,000 different performance
counters over all DataGarage monitored servers, while different
servers are monitored for different subsets, of size less than 1,000
for most servers, of these counters.

Counter Data. Almost all performance data is floating-point data
(with timestamps). Once collected, the data is read-only. Data can
often be “dirty”; e.g., due to bugs in the OS or in the data collec-
tion process, we have observed dirty values such as 2, 000, 000 for
the performance counter $DiskIdleTime, which is supposed to
be within the range [0,100]. Such dirty data must be i) ignored
during computing average disk idle time, and ii) retained in the
database, as the frequency and scale of such strange values may
indicate something unusual in the server.

Query. Queries are relatively infrequent. While most queries
involve simple selection, filtering, and aggregation, complex data
mining queries (e.g., discovering trends or correlations) are not
uncommon. Queries are typically scoped according to a hierar-
chy of monitored servers (e.g., hotmail.com servers within a
rack inside a given datacenter). Example queries include comput-



Figure 1: A tabular view of performance data from a server

ServerID SampledTime CPUUtil MemFreeGB NetworkUtil dskOBytes dsklBytes
13153 15:00:00.460 98.2 2.3 47 78231 19000
13153 15:00:16.010 97.3 3.4 49 65261 18293
13153 15:00:31.610 96.1 3.5 51 46273 23132

3.8

13153 15:00:46.020 95.2

48 56271 28193

ing average memory utilization or discovering unusual CPU load
of servers within a datacenter or used by an online property (e.g.,
hotmail.com), estimating hardware usage trend for long term
capacity planning, correlating one server’s behavior with another
server’s, etc.

2.3 Desired Properties

We now describe the desired properties of a warehousing system
designed for handling a massive amount of performance data.

Storage Efficiency. The primary design goal is to reduce the
storage footprint as much as possible. As mentioned before, mon-
itoring 100,000 servers produces more than 1TB raw binary data;
archiving and backing up this data for years can easily take a petabyte
of storage space. Transferring this massive data (e.g., from mon-
itored servers to storage nodes), archiving it, and running queries
on it can be extremely expensive and slow. Moreover, if the data is
stored on a public cloud computing platform (for flexibility in using
more storage and processing on demand), one pays only for what
one uses and hence price increases linearly with requisite storage
and network bandwidth. This again highlights the importance of
reducing storage footprint.

One can envision building a custom cluster solution such as eBay’s
Teradata that can manage approximately 2.4PB of relational data
in a cluster of 72 nodes (two quad-core CPUs, 32GB RAM, 104
300GB disks per node); however, the huge cost of such a solution
cannot be justified for archiving performance data because of its
relatively light workload and often non-critical usage.

Query Performance and Robustness. The system should be
fast in processing complex queries on a large volume of data. A
faster system can make a big difference in the amount, quality, and
depth of analysis a user can do. A high performance system can
also result in cost savings, as it can allow a company to delay an
expensive hardware upgrade or to avoid buying additional compute
nodes as an application continues to scale. It can also reduce the
cost of running queries in a cloud computing platform, where the
cost increases linearly with the requisite compute power.

The system should also be able to tolerate faulty or slow nodes.
Our desired system will likely be run on a shared-nothing cluster of
cheap and unreliable commodity hardware, where the probability
of a node failure during query processing is very high. Moreover,
it is nearly impossible to get a homogenous performance across a
large number of compute nodes (due to heterogeneity in hardware
and software configuration, disk fragmentation, etc.) Therefore, it
is desirable that the system can run queries even if a small number
of storage nodes are unavailable and its query processing time is
not adversely affected if a small number of the computing nodes
involved in query processing fail or experience slowdown.

Simple and flexible query interface. Average data analysts are
not expected to write code for simple and routine queries such as se-
lection/filtering/aggregation; these should be answered using famil-
iar languages such as SQL. More complex queries, which are infre-
quent, may require loading outputs of simpler queries into business
intelligence tools that aid in visualization, query generation, result

dash-boarding, and advanced data analysis. Complex queries also
may require user defined functions for complex (e.g., data mining)
queries that are not easily supported by standard tools; the system
should support this as well.

3. PERFORMANCE DATA WAREHOUSING
ALTERNATIVES

In this section we first consider two available approaches of gen-
eral, large-scale data storage and analysis. Then we discuss how
they fail to achieve all the aforementioned desirable properties in
the context of performance data warehousing.

3.1 Existing Approaches

»TableStore. We call TableStore the traditional approach of stor-

ing data in standard relational tables, which are partitioned over

multiple nodes in a shared nothing cluster. Parallel DBMSs (e.g.,

DBMS-X) transparently partition data over nodes and give users

the illusion of a single-node DBMS. Recently proposed HadoopDB

uses multiple single node DBMS. Queries on a TableStore are exe-

cuted by parallel DBMSs’ query processing engines (e.g., in DBMS-
X) or by MapReduce-like systems (e.g., in HadoopDB). Existing

TableStore systems support standard SQL queries.

»FileStore. ~ We call FileStore the alternative data storage ap-
proach where data is stored as files or streams in a file system
distributed over a large cluster of shared-nothing servers. Execut-
ing distributed queries on FileStore using a MapReduce-like sys-
tem (e.g., Hadoop, Dryad) has got much attention lately. Recent
work on this approach has focused on efficiently storing a large
collection of unstructured and structured data (e.g., BigTable [5])
in a distributed filesystem, integrating declarative query interfaces
to the MapReduce framework (e.g., SCOPE [4], Pig [11]), etc.

3.2 Comparison

We compare the two above approaches in terms of several desir-
able properties.

o Storage efficiency. Both TableStore and FileStore score poorly
in terms of storage efficiency for performance data. For TableStore,
the inefficiency comes from two factors. First, due to the high het-
erogeneity of dataset, storing data collected from different servers
within a single DBMS can waste a lot of space. We will discuss the
issue in more details in Section 4.1. Second, compression schemes
available in existing row-oriented database systems do not work
well on floating point data. For example, our experiments show that
the built-in compression techniques in SQL Server 2008 provides a
compression factor of ~ 2 for real performance data.' Such a small
compression factor is not sufficient for massive data and does not
justify the additional decompression overhead during query pro-
cessing. On the other hand, FileStore can have comparable or even
larger storage footprint than TableStore. Without a schema, a com-
pression algorithm may not be able to take advantage of tempo-

'Column-store databases optimized for floating point data may
provide a better compression benefit.



ral correlation of data in a single column (e.g., as in column-store
databases [1]) and to use lossy compression technique appropriate
for certain columns.

e Query performance. Previous work has shown that for many
different workloads, queries over a TableStore runs significantly
faster than those over a FileStore [12]. Query processing systems
on FileStore are slower because they need to parse and load data
during query time. The overhead would be even more signifi-
cant for performance data—since performance data from differ-
ent servers have different schemas, a query (e.g., the Map func-
tion in MapReduce) needs to first load and parse the appropriate
schema for a file before parsing and loading the file’s content. In
contrast, a TableStore can model and load the data into tables be-
fore query processing. Moreover, query engine over a TableStore
can use many performance enhancing mechanisms (e.g., indexing)
developed by the database research community over the past few
decades.

o Robustness. Parallel DBMSs (that run on TableStores) score
poorer than MapReduce systems (that typically run on FileStores)
in fault tolerance and ability to operate in a heterogenous environ-
ment [2, 12]. MapReduce systems exhibit better robustness due to
their frequent checkpoint of completed subtasks, dynamic identi-
fication of failed or slow nodes and reassignment of their tasks to
other live or faster nodes.

e Query interface. Database solutions over TableStore have sim-
ple query interfaces: they all support SQL and ODBC, and many
of them also allow user defined functions. However, typical queries
over performance data are scoped hierarchically, which cannot be
naturally supported in a pure TableStore. MapReduce also has flex-
ible query interface. Since Map and Reduce functions are written
using general purpose language, it is possible for each task to do
anything on its input. However, average performance data analysts
may find it cumbersome to write code for data loading, Map, and
Reduce functions for everyday queries.

e Cost. Apart from the limitations discussed above, an off-the-
shelf TableStore solution may be overkill for performance data ware-
housing. A parallel database is very expensive, especially in a
cloud environment (e.g., in Microsoft Azure, the database service is
100 x more expensive than the storage service for the same storage
capacity). A significant part of the cost is due to expensive mech-
anisms to ensure high data availability, transaction processing with
the ACID property, high concurrency, etc. These properties are not
essential for a performance data warehouse where data is read-only,
queries are infrequent, and weaker data durability/availability guar-
antee (e.g., that given by a distributed file system) is sufficient. In
contrast, FileStores are cheaper to own and manage than DBMSs.
A distributed file system allows simple manipulation of files: files
can be easily copied or moved across machines for analysis and
older files can be easily deleted to reclaim space. A file system
provides the flexibility to compress individual files using domain-
specific algorithms, to replicate important files to more machines,
to access files according to the file system hierarchy, to place re-
lated files together, and to place fewer files in machines with less
resource or degraded performance.

Discussion.  Ideally, a performance data warehousing system
should have the best of both these approaches: the storage flexibil-
ity and cost of a file system, compression benefits of column-store
databases, query processing performance and simple query inter-
face of a DBMS, and robustness of MapReduce. In the following,
we describe our attempt to build such a hybrid system.

4. DATAGARAGE

The architecture of DataGarage follows two design principles.
First, data is stored in many TableStores and queries are executed
using many parallel instances of a database engine. Second, in-
dividual TableStores are stored in a distributed file system. Both
these principles contribute to reducing storage footprint. In addi-
tion, the first principle gives us query execution performance of
DBMSs, while the second principle enables us to use MapReduce-
style query execution for its scalability and fault-tolerance.

4.1 The Choice of TableStores

The heterogeneity of performance data collected from different
server poses a challenge in deciding a suitable TableStore structure.
Consider different options of storing heterogenous counter sets col-
lected from different servers inside a TableStore.

A Wide-table. First consider the wide-table option, where data
from all servers are stored in a single table, with one column for
each possible counter across all servers (Figure 2(a)). Then, each
row will represent data from a server at a specific timestamp—
the counters monitored in that server will have valid values while
other counters will have null values. Clearly, such a wide-table
will have a large number of columns. In our DataGarage deploy-
ment, we have seen around 30, 000 different performance counters
from different servers. Hence, a wide-table needs to have that many
columns, many more than the maximum number of columns a table
can have in many commercial database systems.? Even if so many
columns can be accommodated, the table will be very sparse, as a
small subset of all possible counters are monitored in each server.
In our deployment, most servers are monitored for fewer than 1000
counters, and the sets of monitored counters vary across servers.
The table will therefore have a very high space overhead.?

One option to reduce the space overhead is to create different
server types such that all the servers with the same type have the
same set of counters. Then, one can create multiple wide-tables,
one for each server type. Each wide-table will store data for all
servers of the same type. Such an organization will avoid the null
entries in the table. Unfortunately, this does not work in practice as
a typical data center has too many server types (i.e., most servers
are different in terms of both their hardware and software counters).
Also, rearrangement of logical disks or application mix on a server
create new set of counters for the server, making the number of
combinations (or, types) simply too big. Moreover, such rearrange-
ments require the server to move from one type to another and its
data to span multiple tables over time, complicating the query pro-
cessing on historical data. Although such rearrangements do not
happen frequently for a single server, they become frequent in a
population of tens of thousands of servers.

A Narrow-table. Another option to avoid the above problems cre-
ated by wide-tables is to use a narrow-table, with one counter per
row (Figure 2(b)). Each column in the original table is translated
into multiple data rows of the form (ServerID, Timestamp,
CounterID, Value). This narrow-table approach allows us to
keep data from different servers in one table - even if their counter
sets differ. Moreover, since data can be accommodated within a
single table, any off-the-shelf DBMS can be used as the Table-
Store. Before DataGarage, we tried this option for performance
data warehousing.

2SQL Server 2008 supports at most 1024 columns per table.

3This storage overhead can be avoided with SQL Server 2008’s
Sparse Columns, which have an optimized storage for null values.
However, this introduces additional query processing overhead and
still suffers from the limitation of maximum column count.



(a) Single wide-table

(b) Single narrow-table
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Figure 2: Wide- and Narrow-tables

However, this solution has two serious side effects: large stor-
age overhead and limited computability. Since ServerID and
TimeStamp values are replicated in each row, a narrow-table has
larger storage footprint than the original binary data. For example,
assuming typical server with 200 counters and 15-second sampling
interval, the narrow-table solution takes 33MB, which is 7 x higher
than the original data size (4.53MB in binary). Then, a one-terabyte
disk can hold daily data for only 30,000 servers. Multiple servers
are required to hold daily data for 100,000 servers; this moots any
attempt to keep historical data for several months.

The narrow-table solution also limits computability. Any query
involving multiple counters needs multiple joins on the narrow-
table. For example, in Figure 2(b), a query with predicate CPU>10
AND Memory>20 would involve a join on the Time column to
link CPU and Memory attributes from the same sample time. The
number of join operations would further increase with the number
of counters in the query. This makes a query on a narrow-table sig-
nificantly longer (in number of lines) and more complicated (often
requiring an SQL expert) than an equivalent query on a wide-table.
In addition, execution time of such a query is significantly high due
to expensive join operations.

»DataGarage solution. In DataGarage, we address the short-
comings of above approaches by using many wide-tables. In par-
ticular, we store data from different servers in separate TableStores
(Figure 2(c)). Such a fine-grained data partitioning avoids the over-
head of too many columns and the storage overhead due to sparse
entries in a single wide-table. It also avoids the space overhead and
query complexity of a single narrow-table.

Using one wide-table per server requires maintaining a large
number of tables, many more than many off-the-shelf DBMS sys-
tems can handle efficiently. We address this using our second de-
sign principle of storing the individual TableStores within a dis-
tributed file system.

4.2 TableStore-FileSystem Hybrid Storage

To deal with a large number (hundreds of thousands) of Table-
Stores, we store each TableStore as a file in a format accessible by
an embedded database. In implementing DataGarage, we use SQL
Server Compact Edition (SSCE) files [14]. SSCE is an embedded
relational database that allows storing an entire database within a
single SSCE file (default extension .sdf). An SSCE file can reside
in any standard file system and can be accessed for database oper-
ations (e.g., update and query) through standard ADO or OLEDB
APIs. Accessing an SSCE file requires a lightweight library (Win-
dows DLL file) and does not require installation of any database
server application. Each SSCE file encapsulates a fully function-
ing relational database supporting indices, SQL (and a subset of T-
SQL) queries, ACID transactions, referential integrity constraints,
encryption, etc.

Storing data within many SSCE files is the key design aspect that
gives DataGarage its small storage footprint, the storage simplicity
and flexibility of a file system, and query performance of a DBMS.
Each SSCE file in DataGarage contains data collected from one
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Figure 3: DataGarage Architecture

server over the duration of one day. This allows us to naturally dis-
tribute the expensive tasks of loading data into tables and creating
appropriate indexes on them among monitored servers. Since data
from different days are stored in different files, deleting older data
simply requires deleting corresponding files. The files are named
and organized in a directory structure that naturally facilitates se-
lecting a subset of files that contain data from servers within a dat-
acenter, and/or a given owner, and/or within a range of dates using
regular expressions on file names and paths. For example, assum-
ing that files are organized in a hierarchy of server owners, datacen-
ters, and dates, all data collected from hotmail.com servers in
the datacenter DC1 in the month of October, 2009 can be expressed
ashotmail/dcl/*.10-%-2009.sdf.

Figure 3 shows the architecture of DataGarage. The Data Col-
lector is a background process that runs at every monitored server
and collects its performance counter data. The set of performance
counters and data collection interval are configured by server own-
ers. The raw data collected by collectors are saved in as SSCE
files in a distributed file system. A Summary Database maintains
hourly and daily summaries of data from each server. This enables
efficiently running frequent queries on summary data and retaining
summary data even when the corresponding raw data is discarded
due to storage limitation. The Controller takes queries, processes
it, and outputs the results in various formats, which can further be
pushed to external data analysis tools for additional analysis.

Another advantage of using independent SSCE file for each server
is that the owner of a server can independently define its schema
(i.e., the set of counters to collect data from) and tune it for appro-
priate queries (e.g., by defining appropriate indices). The column
name for a counter is the same as the counter name reported by the
data collector. It is important to note that the same data collector
is used in all monitored servers and it uses the same name for the
same (or, semantically equivalent) counter across severs. For ex-
ample, the data collector names the amount of available memory as
TotalMemoryFree, and hence database files for all servers that
have chosen to collect this specific counter will have a column with
name TotalMemoryFree. Such uniformity in column naming
is essential for processing queries over data from multiple servers.



4.3 Reducing Storage Footprint with
Compression

As mentioned before, the most important design goal of Data-
Garage is to reduce the storage footprint and network bandwidth to
store performance data (or to increase the amount of performance
data within available storage). Our design principle of using many
wide-tables already reduces storage footprint compared to alterna-
tive approaches. We use data compression to further reduce stor-
age footprint. However, lossless compression techniques available
in off-the-shelf DBMSs do not work very well for floating-point
performance data. For example, our experiments with real dataset
show a compression factor of only two by using the compression
techniques in SQL Server 2008. Such a small compression ratio is
not sufficient for DataGarage.

To address this, we have developed a suite of compression al-
gorithms that work well for performance data. Since data in Data-
Garage is stored as individual files, we can use our custom algo-
rithms to compress these files (and automatically decompress them
before query processing). To compress each SSCE file, we first
extract all its metadata describing its schema, indices, stored pro-
cedures, etc., and compress them using standard lossless compres-
sion techniques such as Lempel-Ziv. The bulk part of each file is
its tables, and they are compressed using the following techniques.

4.3.1 Column-oriented Organization

Following observations from previous works [1, 9], we employ
a column-oriented storage in DataGarage: inside each compressed
file, we store data from the same table and column together. Since
performance data comes from temporally correlated processes, such
a column-oriented organization increases data locality and com-
pression factor. This also improves query processing time as only
the columns that are accessed by a query can be read off the disk.

4.3.2  Lossless Compression

A typical performance data table contains few timestamp and
integer columns and many floating point columns. The effective
compression scheme for a column depends on its data type. For
example, timestamp data is most effectively compressed with delta
encoding followed by a run-length encoding (RLE) of the deltas.
Delta encoding is effective due to small sampling periods. More-
over, since a single file contains data from a single server and sam-
pling period (or, delta) is a constant for each server, RLE is very
effective to compress such deltas. Integer data is compressed with
variable-byte encoding. Specifically, we allow integer values to use
a variable number of bytes and encode the number of bytes needed
to store each value in the first byte of the representation. This al-
lows small integer values to be encoded in a small number of bytes.

Standard lossless compression techniques, however, are not ef-
fective for floating point data due to its unique binary representa-
tion. For example, consider the IEEE-754 single precision floating
point encoding, the widely used standard for floating point arith-
metic. It stores a number in 32 bits: 1 sign bit, 8 exponent bits, and
23 fraction bits. Then, a number has value v = s X 2¢7127 » m,
where s is +1 if the sign bit is 0 and -1 otherwise, e is the 8-bit
number given by the exponent bits, and m = 1.fraction in bi-
nary. Since a 32-bit representation can encode only a finite number
of values, a given floating point value is mapped to the nearest value
representable by the above encoding.

Since floating point data coming from a performance counter
changes almost at every sample, techniques such as RLE do not
work. Moreover, due to unique binary representation of floating
point values, techniques such as delta encoding or dictionary-based
compression are not very effective. Finally, a small change in the

decimal values can result in a big change in the underlying bi-
nary representation. For example, the hexadecimal representations
of IEEE-754 encoding of the decimal values 80.89 and 80.9 are
0x42A1CT7AE and 0x42A1CCCC, respectively. Even though the
two numbers are within 0.01% of each other, their binary repre-
sentations differ in the 37.5% least significant bits. Lossless com-
pression schemes that do not understand the semantics of binary
representations of numbers cannot exploit the relative similarity of
the two numbers just by looking at their binary representations.

»Byte-interleaving. To address the above problem, we observe
that a small change in values results in changes in the lower-order
fraction bits only; the sign bit, the exponent bits, higher-order frac-
tion bits remain the same. Since data in a column represents tem-
porally correlated data from the same server collected relatively
frequently, subsequent values show small changes. To exploit this,
we use byte-interleaving as follows. Given a column of floating
point values, we first store the first bytes of all values together, then
we store their second bytes together, and so on. Since higher order
bytes do not change for small changes, such an organization signifi-
cantly improves compression factor, even with simple compression
techniques such as RLE or dictionary-based compression. In some
sense, byte-interleaving is an extreme case of column-oriented or-
ganization, where each byte of the binary representation of a float-
ing point value is treated as a separate column.

4.3.3 Lossy Compression

DataGarage supports an optional lossy compression technique.
Performance data warehouse can typically tolerate some small (e.g.,
< 0.1%) loss in accuracy of archived data for following reasons.
First, due to their cheap, sampling-based data acquisition process,
data collectors often introduce small noise and hence the data is
not treated as precise. Second, most of the time the data is ana-
lyzed in aggregation and hence a small error in raw data does not
significantly affect the accuracy of outputs. On the other hand, tol-
erating a very small decompression error can result in a very high
compression factor, as we show in our evaluation.

An important design decision is to choose the appropriate lossy
compression algorithm. Each column in a table is essentially a
time-series, and prior work has shown many different lossy com-
pression techniques including DFT, DCT, Wavelet transform, ran-
dom projection, etc. [13]. Most of these techniques guarantee or
minimize average reconstruction error (or, L2 norm). Such tech-
niques are not suitable for DataGarage since they can lose local
spikes in the time series, which are extremely important in appli-
cations intended for local anomaly detection. Techniques such as
Piecewise Linear/Constant Approximation guarantees worst-case
(L) reconstruction error, but there effectiveness in compression
comes from smoothness of data [3]. Performance data (e.g., CPU
or memory utilization) is rarely smooth and is dominated by fre-
quent jitters and spikes. Our experiments show that using PLA or
PCA gives very small compression factor for performance data, and
in some cases data cannot be compressed at all.

»Bit Truncation. We use a novel IEEE-754 floating point com-
pression algorithm for compressing noisy floating point data with

worst-case decompression error. The algorithm is called bit-truncation,

and is based on the observation that removing a small number of
fraction bits from the IEEE-754 representation introduces a small
and bounded relative error* in the reconstructed value. More specif-
ically, we claim that

“If a value v is reconstructed as v’, the relative reconstruction error
is given by |v — v'| /v.
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Figure 4: Bit-truncation and byte-interleaving of floating point
representations.

CLAIM 1. Replacing k least significant fraction bits of a IEEE-
754 32-bit single precision (or 64-bit double precision) floating
point representation with zero bits introduces an relative error of
<SR 217 (or < SUFT 121792 respectively).

We omit the proof of the claim for brevity. Quantitatively, re-
moving 8 and 16 lowest order bits of a 32-bit single precision repre-
sentation result in relative errors of only < 6.1 X 1075 and < 0.16
respectively. For 64-bit double precision representation, the effect
is even more negligible. For example, even after removing the 32
least-significant bits, the relative reconstruction error is guaranteed
tobe < 1.3 x 107°,

Figure 4 shows how a column of floating point numbers is com-
pressed using truncation and interleaving. First, depending on the
maximum tolerable relative error, least significant bits of each num-
ber of the column are truncated. This step is done only if a lossy
compression is allowed. If the number of truncated bits is not a
multiple of 8, remaining bits are packed together into the minimum
number of bytes. After truncation, individual bytes are interleaved
into stripes. Finally, different stripes are compressed using lossless
compression (e.g., RLE or Lempel-Ziv).

4.4 Data Thinning

DataGarage periodically needs to discard existing data from its
storage. Such data thinning discards high-fidelity raw data; the cor-
responding aggregate summaries may still be left in the summary
database. Data thinning is operationally important as it allows grad-
ual reduction of the size of archived data, and it can happen in many
scenarios including the following.

1. Operational restrictions such as storage limitations of the sys-
tem and privacy considerations of the data can force dropping
data older than a certain date.

2. Many servers have days when they are not used much. For
such days, it is sufficient to keep only aggregate (hourly) data
in the summary database and drop the raw data.

3. Even in heavily used servers, some counters are less im-
portant than others—especially after the data is older than
a week or a month.

The design choices we have made for DataGarage makes data
thinning simple and efficient. Since typical data thinning granu-
larity is multiple of a day and data from one server over a day is
stored in a separate file, data thinning in DataGarage does not in-
volve any database operations—it involves simply selecting the tar-
get files using regular expression on file names and deleting them.
Data thinning by dropping less important columns involves opera-
tions inside files; but due to our column oriented organization of the
compressed database files, such operations can be done efficiently
within compressed files. In contrast, if data were stored in a single

parallel DBMS, data thinning could be very expensive as it might
involve bulk deletion, index update, and even schema change.

4.5 Schema optimization

In our original design of DataGarage, each database file con-
tained one wide-table called RawData, containing data from all
counters of a server. However, based on operational experience,
we realized that certain queries cannot be efficiently supported on
this simple schema. So, we added two additional elements into the
schema to facilitate those queries.

Separate tables for multiple-instance counters. = We remove
all counters with multiple instances from the RawData table and
put them in separate tables in the same SSCE file. For exam-
ple servers typically have multiple instances of physical disks, and
each physical disk has a set of counters. Therefore, we create a
separate table for physical disks with one disk instance per row
and one disk-related counter per column. This simplifies certain
types of queries. For example, consider the query of computing
total disk space in all non-system disks (i.e., disks with instance
number higher than 0) in each server. With a separate disk table,
this can be expressed simply as SELECT Sum(AvailableSpace)
FROM DiskTable WHERE InstanceID>0. This would not have
been so simple if all disk instances were stored in the RawData
table as column names Disk0OBytes, Disk1Bytes, etc., and
different servers have different numbers of physical disks (e.g., the
Disk5Bytes column may be available in some disk tables and
unavailable in others). Like physical disks, logical disks, proces-
sors, network cards are also kept in separate tables.

Separate instance tables have two additional benefits. First, this
helps keeping the number of columns in the RawData table less
than 1024, the maximum number of columns possible in a table
inside SSCE file. Second, queries over instance tables run faster
as they need to access tables significantly smaller than the main
RawData table.

Identification of ’previous’ sample time. DataGarage sometimes
needs to compare data in temporal order of their collection times-
tamps. For example, often data analysts are not interested in the
absolute value of a counter, but in the change of its values—e.g.,
How did processor utilization grew from the last time? How many
times was CPU utilization over a threshold, excluding the isolated
spikes between two low utilization samples? This pattern of com-
paring data in temporal order occurs in many classes of analysis.
Unfortunately, relational databases are inefficient in handling such
pattern. To address this, we make the data collector to report the
’previous timestamp’ with each sample and store this value with
each record in the main table. This allows us to retrieve previous
sample of a server by using self-join on timestamp and ’previous
timestamp’ columns (see an example in Section 5).

S. QUERY PROCESSING

Since data in DataGarage is stored in many small files in a dis-
tributed file system, a MapReduce-style query processing system
seems natural for DataGarage. We have developed such a system,
which is optimized for typical queries in DataGarage.

5.1 DataGarage Queries

A DataGarage query (or, DGQuery in short) runs over a collec-
tion of SSCE files and outputs a single SSCE, or Excel, or CSV
file containing the result. Encapsulating the output as an SSCE file
enables us to pipeline a sequence of DGQueries and to easily use
the output in external data processing applications that can directly
load SSCE files. A DGQuery has the following general syntax:



APPLY <apply-script>
ON <source>
COMBINE <combine_script>

The query has three components.

1. The <apply-script> is applied to a set of input SSCE
files to produce a set of output files (in SSCE, CSV or Ex-
cel format). The script is applied to multiple input files in
parallel.

2. The ON statement of a DGQuery specifies a set of input SSCE
files for the query to operate on. The set of files can be ex-
pressed with a regular expression on filesystem path or with a
text file containing an explicit list of files. The source can
also be another DGQuery, in which case, output of one query
acts as input for another. This enables hierarchical data ag-
gregation by recursively applying one DGQuery on the out-
put of another DGQuery.

3. The <combine_script> is applied to a set of SSCE files
(outputs of the Apply scripts) to produce a single output file
(SSCE, CSV, or Excel format).

Note that the same <apply_script> is applied to many SSCE
files with potentially different schemas. With a global catalog of
what counters are monitored at which server, DataGarage can per-
form compile-time validation of whether the counters mentioned in
the <apply_script> are present in all input SSCE files. During
run time, DataGarage ignores the input SSCE files that do not con-
tain all counters in the <apply_script> and includes the count
of such ignored SSCE files with query results as a completeness
indication.

To illustrate, we here give a few simple example queries in Data-
Garage. In practice, DataGarage queries are more complicated as
they involve more counters and predicates.

e Queryl. Find 10 servers with maximum average memory us-
age among all hotmail.com servers in the datacenter DC1 in
the month of October 2009. Consider only samples with nontriv-
ial cpu and disk utilization (CPUUsage < 0.2 and DiskIdle
<0.02).

APPLY "Select ServerID, Avg(MemUsage) as AvgMem
From RawData
Where CPUUsage<0.2 AND DiskIdle<0.02
Group by ServerID"

ON //hotmail/dcl/x.10-%-2009.sdf

COMBINE "Select Top 10 ServerID, AvgMem
from ApplyResult
Order by AvgMem Desc"

The Apply script above computes average memory usage of all
servers. The ON statement scopes the query to the appropriate set of
SSCE files. The example shows how DataGarage uses file system
hierarchy to define hierarchical scope of a query. Finally, the Com-
bine script computes the top 10 servers based on average memory
usage. (The table ApplyResult in the Combine script above is
a virtual table that contains all data output by the Apply script.)

o Query 2. Compute sequences of 15-minute average CPU usage
of all servers. The Apply script is as follows (we omit the Combine
script as it simply concatenates outputs of the Apply script).

Select ServerID, _Minsl5Time; as Minsl5,
Avg (CPUUsage) as AvgCPUUsage
From RawData

Group by -Minsl5Time; order by _-Minsl5Time;

The keyword __Mins15Time; denotes a predefined macro that
produces the 15-minute interval of a sample time.

e Query 3. Compute disk response time for non-trivial situa-
tions in the system. Computing this accurately is tricky since disk
response time is affected by disk paging and frequently we ob-
serve isolated peaks of counter values. For example, the time se-
ries from the ”% Disk Busy” counter (pctDiskBusy) may look
like: ...,0,0,6,0,0,...,0,3,8,7,2,0,0,.... We must be care-
ful not to include the response time for utilization 6, as it is a mo-
mentary aberration. So, to obtain better estimate of disk response
time, we want compute the response times only in situations when
(i) pctDiskBusy really nontrivial, e.g. > 5%, (ii) the previous
sample had nontrivial pctDiskBusy, e.g., > 1%, and (iii) there
is no significant paging. This can be expressed using the following
Apply script.

Select r.serverID, r.sampleTime,
r.pctDiskBusy, r.diskResponseTime
From RawData as r
Join RawData as rprev
on r.prevSampleTime = rprev.sampleTime
Where r.pctDiskBusy > 5 and rprev.pctDiskBusy >
and r.paging < 10 and rprev.paging < 10

Note that our wide-table approach makes the above queries com-
pact and relatively simple. All of them would be significantly longer
and complicated if data were organized as a narrow-table.

5.2 Query Execution

A DGQuery is executed in two phases: an Apply phase when
the <apply-script> is applied on input files and a Combine
phase when the <combine_script> is applied on the outputs of
the apply phase. The Controller module of DataGarage performs
the necessary synchronization between these two phases. At a high
level, the Apply and the Combine phase resemble the Map and the
Reduce phase of the MapReduce framework.

To see how a DGQuery is executed, consider a simple scenario
where the input files are given as a regular expression on filesystem
path and the query is run on a single machine. The Controller first
enumerates all the input files (using the filesystem directory struc-
ture). Then it starts the Apply phase, where it invokes multiple par-
allel Apply threads, each of which processes the sequence of input
files and serializes the results to temporary SSCE files. To process a
compressed SSCE file, the Apply thread decompresses the relevant
columns from the file and applies the <apply_script> inside an
embedded database. After all the apply threads terminate, multiple
temporary SSCE files, each containing the intermediate results of
applying the <apply_script> to one input database file, reside
in the file system. Since the same <apply_script> runs on all
input files, the intermediate files are in fact horizontal partitions of
a larger database tables. Finally, the Controller starts the combine
phase, where it constructs a single SSCE file, with a virtual table
called ApplyResult by concatenating data from all intermediate
files and applies the <combine_script> on the combined file to
produce the final result.

A DGQuery can also run on multiple machines, as shown in
Figure 5. In that case, the Controller is configured with a list of
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Figure 5: Query Execution in DataGarage

execution nodes, each of which has access to the filesystem stor-
ing DataGarage data. To run a query, the Dissemination mod-
ule of the Controller partitions the input database file names and
sends the partitions to available execution nodes. If explicit lo-
cations of input files are known, execution nodes are chosen as
close as possible to the file sources. Each execution node then
runs the <apply_script> on its portion of the database files.
The outputs of the apply phase are written to temporary SSCE
files in the distributed filesystem. Finally, the controller runs the
<combine_script> on the intermediate results.

In principle, the combine phase with decomposable functions
can be made parallel as well, e.g., by running the combine function
along a tree hierarchy. However, we have found that the combine
phase in a typical DataGarage query, such as aggregation, filter-
ing, anomaly detection, etc. needs to deal with a relatively small
amount of data and hence running the combine phase in a single
execution node is sufficient.

5.3 Robustness

DataGarage uses several techniques to deal with faulty or slow
nodes. The underlying file system uses replication, and hence data
is available during query processing even if a small number of stor-
age nodes are down. To cope with faulty execution nodes during
query processing, the Controller monitors liveness and progress of
each execution node. Liveness is monitored by periodic heartbeat
messages, while progress of each node is monitored by examin-
ing the number of temporary intermediate files it has produced so
far. If a node fails during the Apply phase, the controller deter-
mines the list of input files yet to be processed by the node and
distributes the processing of these remaining files among other live
execution nodes (by simply sending them additional lists of files
to process). Thus a query does not need to be restarted from the
beginning due to the failure of an execution node. Moreover, only
the unfinished portion of the task at the faulty node needs to be
redistributed, thanks to the small granularity of inputs to each task.

DataGarage copes with heterogenous nodes by using two tech-
niques. First, during query dissemination, the Controller assigns
less work (i.e., fewer input files to process) to nodes that are known
to be slower. However, seemingly homogenous machines with sim-
ilar tasks can perform very differently in practice. For example, two
similar machines can process the same query in different speeds
if they have different degrees of disk fragmentations or if one ac-
cesses data from its own physical rack in the datacenter but the
other accesses data from a far away rack. To avoid a slow node
from becoming the bottleneck, whenever a fast node completes its
share of the Apply task, it starts working on the remaining task of

the slowest node. To make this happen, the Controller node creates
a list of the input files the slow node is yet to process and sends
the second half of the list to the faster node. Thus, some tasks
of slower nodes may be replicated in faster nodes, and the Apply
phase finishes when all the files have been processed by at least one
execution node.

Like many MapReduce systems, the Controller remains the sin-
gle point of failures. However, by using a node with good hardware
and software configuration as the Controller, the probability of its
failure during processing of a query can be made very small. If
further reliability of the Controller is desired, two (or more) Con-
troller nodes can be used where the secondary Controller can take
the control after the primary one fails. Note that since the results
of the Apply phase are persisted to the file system, failure of one
Controller does not require running the Apply phase again—the
new Controller can simply start with the intermediate results in the
filesystem.

6. EXPERIMENTS

In this section, we evaluate DataGarage with a real workload and
a shared-nothing cluster.

Dataset. We use performance data collected over one day from
34,946 servers in several Microsoft datacenters. Thus, the data is
archived as 34,946 SSCE files in a distributed file system. The to-
tal size of the dataset is around 220GB. The minimum, maximum,
average, std. deviation, and median of the file sizes are 20KB,
11.2MB, 6.4MB, 5.4MB, and 2.1MB respectively. The high stan-
dard deviation of file sizes implies high heterogeneity of counter
data sets collected from different servers.

Computing nodes. We use a Windows High Performance Com-
puting (HPC) cluster of 32 2.5GHz nodes, each having 8 cores and
16GB RAM. The execution granularity in the cluster is a core, and
hence the cluster allows us to use up to 248 cores in parallel in 31
nodes (except the head node of the cluster). The head node of the
cluster is used as the DataGarage Controller node, which schedules
Apply tasks on other nodes. The Combine tasks are executed at the
Controller node.

Queries. We use the three queries mentioned in Section 5 in our
evaluation. The queries exercise different aspects of query execu-
tion. Queryl has a nontrivial Combine script (Combine phases in
other queries simply concatenate outputs of Apply scripts). Query2
has more I/O overhead than Queryl, as its Apply script produces
and writes to disk a larger output. Query3, in addition to having a
large intermediate results, involves a self join and hence is compu-
tationally more expensive than the other queries.

6.1 Compression

We first evaluate the most important aspect of DataGarage: its
storage efficiency. The storage efficiency comes from two factors.
The first one is its organizing data in many wide-tables. On our
dataset, this approach reduces storage footprint by 7x compared
to the narrow-table approach mentioned in Section 3. The second
factor contributing to DataGarage’s storage efficiency is its data
compression techniques. To show the benefit, we compare Data-
Garage’s compression and decompression algorithms, which we
denote as DGZip and DGUnzip respectively, with popular Zip
and Unzip algorithms.

Figure 6 and Table 1 show the distribution of compression factors
achieved by different algorithms. We use DGZ1ip with three config-

urations: DGZ ip denotes lossless compression, while DGZ1ip (0.16)

and DGZip (0.00006) denote lossy compression with maximum
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Figure 6: Cumulative distribution of compression factors

Table 1: Compression factor

Compression Compression factor
Scheme Min | Max | Average | Std. Dev
DGZip 4.03 | 21.7 5.9 1.99

DGZip (0.00006) | 5.1 | 28.25 7.6 2.5
DGZip (0.16) 6.8 | 41.74 10.8 3.6
Zip 2.1 4.7 2.5 0.4

relative decompression error of 0.16 and 0.00006 respectively. As
shown, Zip provides very little compression for our dataset (the
average compression factor is 2.5).° In contrast, DGZip achieves
an average compression factor of 5.9, more than 2x higher than
Z1ip’s compression factor. The high compression factor comes
from column-oriented organization and byte-stripping technique
used by DGZip. The compression factor further increases with
lossy compression. As shown, even with a very small relative de-
compression error of 0.00006, DGZip can provide a compression
factor of 7.6, a 3 improvement over Zip.

The high compression factor of DGZip comes at the cost
of its higher compression/decompression time compared to
Zip/UnZip. Figure 7 and Table 2 show the distribution of com-
pression and decompression times of different algorithms. The
compression time of DGZip is independent of the decompression
error, and hence we report the time of lossless compression only.
However, since DGUnzip allows efficiently decompressing only
few selected columns from a table, its decompression time de-
pends on the number of columns to decompress. In Figure 7 and
Table 2, we consider two configurations: DGUnzip that decom-
presses the entire database, and DGUnzip (5) that decompresses
only 5 columns (corresponding to 5 performance counters) from
a table. The results show that DGZip and DGUnzip are ~ 2-
3% slower than Zip and UnZip. High latency of DGZ1ip is tol-
erable, as data is compressed only once, during collection. With
an average compression time of 1.3 seconds, DGZip on a 8-core
machine can compress data from 100,000 servers in less than 6
hours. However, reducing decompression latency is important as
data is decompressed on the fly during query processing. Fortu-
nately, even though DGUnzip is expensive, most queries are run
over a relatively small number of columns, and using DGUnzip
to decompress only the relevant columns from a compressed SSCE
file is very fast. As shown in the figures, DGUnzip (5) is 60%
faster than UnZip, which decompresses the entire file even if only
a few columns are required for query processing. Another advan-
tage of DGUnzip’s column-oriented decompression is that the de-
compression time is independent of the total number of columns in

SWith SQL Server 2008’s row- and page-compression techniques,
we found a compression factor of ~ 2 for our dataset.
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Figure 7: Cumulative distribution of compression and decom-
pression time

Table 2: Compression/decompression time

Compression Time (sec)
Scheme Min | Max | Avg. | Std. Dev.
Zip 0.11 | 3.32 | 0.67 0.2
Unzip 0.08 | 1.98 | 0.25 0.12
DGZip 0.09 | 5.03 | 1.3 0.8
DGUnzip 0.27 | 1.97 | 0.72 0.22
DGUnzip (5) | 0.05 | 0.19 | 0.1 0.014

the table, as shown by the very small variance of decompression
times of DGUnzip (5).

6.2 Query processing

» Scalability of different queries. = To understand how data
analysis on DataGarage scales with the number of query execution
nodes, we run all three queries on our 32-node, 256-core Windows
HPC cluster. All queries run on the entire dataset, and we vary the
number of query execution cores. The cores are evenly distributed
among 31 non-head nodes of the cluster. We report average com-
pletion time of five executions of the queries.

Figure 8 shows the total execution time of different queries as
a function of the number of execution cores. Even though the ab-
solute execution time depends of processing power and I/O band-
width of execution nodes, the figure makes a few general points.
First, Queryl is the fastest. Query2 is slower due to its addi-
tional I/O overhead for writing larger intermediate results. Query3
is the slowest as it involves, in addition to its high I/O overhead
for writing larger intermediate results, an expensive join operation.
This also highlights a performance problem with a narrow-table
approach, where every query having multiple performance coun-
ters (even Queryl and Query2) would involve multiple join oper-
ations, making the queries run extremely slow. In contrast, most
common aggregation queries can be expressed without any join in
our wide-table approach, making the performance of Queryl and
Query2 representative of typical DataGarage queries.

Second, for all queries, the execution latency decreases almost
linearly with the number of execution cores. For Queryl and Query2,
the scaling becomes sublinear after 62 cores as I/O becomes the
bottleneck when multiple parallel instances of a query run on the
same node. In contrast, Query3 does not see such behavior, as
CPU is the bottleneck for the query. In general, the overall exe-
cution time of a typical non-join query is dominated by I/O cost.
In the above experiments, each node had a peak disk bandwidth of
only 6MB/sec. In our experiments, both Queryl and Query2 con-
sumed < 5% CPU time per core and disk idle time approached zero
when more than two cores per node were running queries (which
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Figure 8: Query completion time

explains the sub-linear scaling in Figure 8 after 62 cores). In a sep-
arate experiment with nodes configured with much faster disks (up
to 92MB/sec peak bandwidth), we observed a linear decrease in
execution time even with 8 cores per node.

Finally, Query1 has a smaller slope that other two queries. This
is due to a higher overhead of Queryl’s Combine phase, which
cannot be parallelized.

» Comparison with a FileStore. We also compared DataGarage
with a pure FileStore-based solution. We consider a hypothetical
MapReduce-style execution, where input data is read from a binary
file and the Apply script (i.e., the Map function) parses and loads
the data during query time. Figure 9 shows the execution times for
these two approaches for Query2. As shown, the query runs almost
2x faster than on TableStore than in FileStore. This highlights the
benefits of preloading data into tables and pushing queries inside
databases

6.3 Heterogeneity and fault tolerance

Heterogeneity Tolerance.  Even though we used a cluster of
nodes with similar hardware and software configurations and al-
located similar amount of tasks (in terms of the number of database
files to process) to each node, surprisingly, we observed that some
nodes finished execution of their tasks much faster than others. To
illustrate, consider an experiment where we executed Queryl in
31 cores in 31 nodes. Figure 10 shows the number of nodes still
executing their assigned tasks over the entire duration of the execu-
tion of the Apply phase of Queryl. As shown, two nodes finished
execution within the first 45 minutes, all of the remaining but four
finished execution within 85 minutes, and 2 nodes took more than
100 minutes to finish execution. After closer examination of the
slower nodes (that took more than 85 minutes to execute), we iden-
tified two reasons behind their running slow. First, even though
all nodes were given the same number of input files, slower nodes
had larger average file sizes than faster nodes. This is possible
since our input files have a large variance in size as the number
of performance counters monitored in different servers vary a lot.
Second, the slower nodes had slower disk operations due to disk
fragmentation. More specifically, slower nodes and faster nodes
had > 40% and < 5% of their files fragmented, respectively. This
caused slower nodes to have 15% less disk throughput than faster
nodes. Since the Combine phase starts after all Apply tasks (includ-
ing the ones in the slowest node) finish, this considerably increases
the overall query execution time.

As mentioned in Section 5.3, DataGarage schedules unfinished
portion of a slower node’s task in a faster node after the faster node
has finished execution of its own tasks. For example, in the above
scenario, after the fastest node finishes executing its own task, the
Controller examines the progress of remaining nodes (by looking
at how many output files they have generated). Then, it assigns half
the input files of the slowest node to the fastest node. In addition,
it writes in a file the list of input files the fastest node has started

# Cores

Figure 9: Query2 completion time
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Figure 10: Effect of stragglers

working on, so that the slowest node can ignore them. This simple
technique significantly improves the overall execution time. When
running Queryl on 31 nodes, we observed a reduction of 25% in
the overall execution time (from /~ 112 minutes to ~ 82 minutes).

Fault Tolerance. To test fault tolerance of DataGarage’s query
execution, we executed Queryl on 10 nodes, with one Apply task
on each node. Then we terminated one node after it has completed
50% of its task. As mentioned in Section 5.3, when the Controller
node detects failure of a node due to absence of periodic heartbeat
messages, it redistributes the remaining task of the failed node to
other available nodes. Since the other nodes now have more to do,
the overall execution time increases.

We observed that, as a result of the above failure, the overall exe-
cution time increased by 7.6%. Note that since DataGarage assigns
tasks at the granularity of a file, only the unfinished portion of the
faulty node’s task need to redistribute. Therefore, the overall slow-
down depends on when a node fails. The more a node processes
before it fails, the less is the additional tasks for other nodes. Our
experiments show that if a node fails after 75% and 90% comple-
tion of its task, the overall slowdown becomes 4.8% and 3.1%. We
also simulated a HadoopDB-like policy of distributing the whole
task of the faulty node to other nodes, and observed a slowdown of
13.2%. This again highlights the advantage of small input granu-
larity of DataGarage.

7. OPERATIONAL EXPERIENCE

We have been using a production prototype of DataGarage for
last one year to archive data collected from many tens of thousands
of servers in Microsoft datacenters. We here discuss some of the
lessons we have learnt over this time.

Performance data warehousing is mostly about storage and com-
putability and our compressed, wide-table storage has been a key
to DataGarage’s success. Before designing DataGarage, we made
an attempt to use narrow-tables. The decision was natural because
it supports heterogeneous sets of counters and can be stored inside
any off-the-shelf DBMS. However, we soon realized that such a
design severely limits the amount of data we can archive as well as
the type of computations we can perform. As mentioned before, a
narrow-table has a high storage overhead. Compression algorithms
perform poorly too as data loses locality in a narrow-table. As a
specific example, with narrow-table, we could store 30,000 server-
days worth of data in a single 1TB disk. In contrast, with our com-
pressed wide-table scheme, DataGarage can archive 1,000,000 to
3,000,000 server-days worth of data on the same amount of storage.
In many situations, a significant portion of all DataGarage data can
be stored in one or two storage servers, which significantly reduces
operational overhead of the system.

Narrow-tables also limit computability. A typical query on mul-
tiple counters involves multiple self-joins on the table, making the
query long and error-prone and extremely slow to run. For exam-
ple, a narrow-table equivalent of the example Query3 in Section 5



requires tens of lines in SQL and runs orders of magnitude slower
than the same query on a wide-table. Moving to wide-table gave
DataGarage a significant benefit in terms of storage footprint and
computability.

We also experienced several unanticipated benefits of storing
data as SSCE files in a file system. First, we could easily scav-
enge available storage from additional machines that were origi-
nally not intended for DataGarage warehousing. Whenever we dis-
cover some available storage in a machine, possibly used for some
other purpose, we use it for storing our SSCE files (the Controller
node remembers the name of the new machine). Had we used a
pure DBMS approach for data archival, this wouldn’t have been
such easy since we had to statically allocate space on these new
machines and to connect them to the main database server. Second,
SSCE files simplify the data backup problem as a backed-up SSCE
file can be accessed in the same way the original SSCE file is ac-
cessed. In contrast, to access backup data from a DBMS, the data
must first be loaded into a DBMS, which can be extremely slow for
a large dataset.

A practical lesson we learnt from DataGarage is that it is im-
portant to keep the system as simple as possible and to use as
many existing proven tools as possible. The DataGarage system
is extremely simple—it uses existing file systems, scripting shell,
SSCE files, Windows SQL Server Compact Edition runtime library,
and a several thousand lines of custom code to glue everything to-
gether. The outputs of a DGQuery can be a SSCE file, a SQL Server
database files, a Microsoft Excel file, or a CSV file—so that the
output can be used by another DGQuery or be loaded into SQL
Server, Excel, MatLab or R. We also found that having visibility
of query execution is extremely useful to detect and identify effects
of node failure. For example, since our Apply phase writes output
results as separate files, just by looking at the number of output
files at different execution nodes help us to easily deal with faulty
or slow nodes. Another lesson we learnt is that it is important to
delay adding new features until it is clear how the new features will
be used. For example, even though, in principle, it is possible to
parallelize Combine phase for certain functions, we delayed such
implementation and later found that the Combine phase typically
deals with a small amount of data and hence running it on a single
node is sufficient.

There appears to be a natural fit between DataGarage and cloud
computing, and we can use DataGarage at various stages in a cloud
computing platform for its attractive pay-as-you-go model. For ex-
ample, we can use the cloud (e.g., Microsoft Azure or Amazon
EC2) to store data only (e.g., SSCE files). Data can then be down-
loaded on demand for processing. To execute expensive queries
or to avoid expensive data transfer, we can use the cloud for exe-
cuting our MapReduce-style query engine as well. Thus, we can
seamlessly move DataGarage to a cloud computing platform with-
out any significant change in our design and implementation. Our
design decision of storing data as files, rather than as tables inside
a DBMS, again shows its worth: DataGarage on the cloud will
use a file storage service only, which is much cheaper than a cloud
DBMS service. For example, Windows Azure (which supports file
storage and program execution) is 100x cheaper than Microsoft
SQL Azure (which provides a relational database solution) for the
same storage capacity.

8. CONCLUSION

We described the design and implementation of DataGarage, a
performance data warehousing system that we have developed at

Microsoft. DataGarage is a hybrid solution that combines bene-

fits of DBMSs, file-systems, and MapReduce systems to address
the unique requirements of warehousing performance data. We de-

scribed how DataGarage allows efficient storage and analysis of
years of historical performance data collected from many tens of
thousands of servers—on commodity servers. Our experience of
using DataGarage at Microsoft for the last one year shows signif-
icant performance and operational advantage over alternative ap-
proaches.
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