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Abstract—Audio signal enhancement often involves the appli-

cation of a time-varying filter, or suppression rule, to the fre-

quency-domain transform of a corrupted signal. Classic ap-

proaches use rules derived under Gaussian models and interpret 

them as spectral estimators in a Bayesian statistical framework. 

This mathematical approach provides rules that satisfy certain 

optimization criteria – maximum likelihood, mean square error, 

etc. In this paper we propose to learn the suppression rule from a 

representative training corpus and make it optimal in the sense 

of best perceived quality.  This can be measured, for example, 

with the wideband PESQ algorithm, for which we cannot derive 

an analytic estimator. The proposed suppression rule is evaluated 

in controlled environment and shows improvements in the range 

of 0.1–0.2 PESQ points on a data corpus with SNRs ranging from 

-10 to +50 dB.  

Keywords—speech enhancement; noise suppression; suppres-

sion rule;  

I. INTRODUCTION  

This paper addresses an important problem in audio signal 

processing: How do we create a filter that enhances audio (i.e. 

noisy speech) so the result is optimum for human perception? 

The conventional approach is a short-time spectral attenuator, 

where we suppress broadband noise using a time-varying filter 

applied to the frequency-domain transform of the corrupted 

signal. Designing such a filter is a difficult problem because 

we don’t have access to the original signal.  We can measure 

the statistics of the received signal, and we can often estimate 

something about the added noise, but we don’t know anything 

about the original speech. 

Typically a derivation assumes the speech and noise sig-

nals have Gaussian distributions and the suppression rule is a 

function of the a priori and a posteriori signal-to-noise ratios 

(SNR) [1]. With various approximations there are simple es-

timates for the “optimal” filter, but the resulting systems do 

not perform as well as desired. Note, there are two halves of 

the enhancement problem. One must first estimate the statis-

tics of the underlying signals, and then one can use these esti-

mates to design a suppression filter. This paper only addresses 

the second problem: how do we design suppression filters 

with high perceptual quality, when we have exact statistical 

measures of the original signals? 

In this paper we describe the speech-enhancement filter-

design problem as an optimization problem. This avoids the 

need to fully characterize the signal’s statistics, and the formal 

use of many approximations. Instead, we learn that in this 

condition the best filter has this gain. We derive a new human-

perception-friendly suppression rule by learning from a repre-

sentative corpus of noisy data. With the appropriate error met-

ric, we can improve noisy speech by a significant measure on 

a perceptual scale. 

By optimizing on real data, we address two problems. The 

first is that it is convenient to assume that the speech signal is 

well modeled by a Gaussian distribution, but this is not true in 

either the time [2] or frequency domains [3]. Several attempts 

to derive a suppression rule using a super-Gaussian distribu-

tion model for the speech signal lead to very complex deriva-

tions and marginal improvements. The second problem is that 

what we actually want is for humans, listening to the noise-

suppressor output, to perceive its quality as better. Classically, 

we approximate the desired goal of maximizing perceived 

quality with an approach that is easier to describe mathemati-

cally, such as mean squared error, maximum likelihood, or 

log-mean squared error.  

In signal processing and communications the gold standard 

for measuring the perceived quality of the speech signal uses a 

metric called the mean opinion score (MOS) [4]. The meas-

urement process consists of asking multiple people to listen to 

audio files, rank the audio quality with a number between one 

and five, and then averaging for the final result. This is a time 

consuming and expensive process. Instead the International 

Telecommunication Union standardized several algorithms for 

objective measurement of the sound quality. The most com-

monly used is the Perceptual Evaluation of the Sound Quality 

(PESQ) algorithm [5]. It exists in narrowband (8 kHz sam-

pling rate) and wideband (16 kHz sampling rate) versions and 

is a de-facto computational proxy for the MOS procedure. 

While more computationally expensive, and much harder to 

analyze, it gives an estimate that is a better fit to perception 

than conventional approaches such as MSE. 

Our approach for addressing both problems above is to 

learn the suppression rule from a synthetic data corpus, for 

which we have perfect estimates of the a priori and a posteri-

ori SNRs. As a form of regularization and interpolation we 

propose a two-dimensional sigmoid function for the suppres-

sion rule. We use optimization to estimate the parameters of 

this function for three different ways of measuring perfor-

mance: magnitude and log-magnitude estimators (first issue), 

and maximum perceptual quality (second issue). We achieve 

improvements that are very audible and range from 0.1–0.2 

PESQ points better than the best known suppression rule, over 

a broad range of SNRs (–10 to +50 dB).  

II. MODELING AND SUPPRESION RULES 

There are many ways to design a suppression rule. We want to 

highlight five styles of rules, both to show how our optimiza-

tion approach can simulate the classic algorithms, and to show 



that we can do better with the proper optimization criteria. We 

compare and contrast all these algorithms in Table 1. 

A. The Data 

Let ( )
n

x x nT  represent values from a finite-duration an-

alog signal sampled at a regular interval T. We represent a 

corrupted sequence with an additive observation model 

n n n
y x d  , where yn represents the observed signal at time 

index n, xn is the original signal, and dn is additive random 

noise, uncorrelated with the original signal. The goal of signal 

enhancement is then to form an estimate ˆ
n

x of the original 

signal xn based on the observed signal yn. In many implemen-

tations where efficient on-line performance is required, the set 

of observations {yn} is filtered using the overlap-add method 

of short-time Fourier analysis and synthesis. Taking the dis-

crete Fourier transform on N windowed intervals of length 2K 

yields K frequency bins per frame: Yk = Xk + Dk, where all 

these quantities are complex. Noise reduction may be viewed 

as the application of a suppression rule, or nonnegative real-

valued gain Hk, to each bin k of the observed signal spectrum 

Yk, in order to form an estimate ˆ
k

X of the original signal spec-

trum: ˆ
k k k

X H Y  . This spectral estimate is then inverse-

transformed to obtain the time-domain signal reconstruction. 

Within such a framework, a simple Gaussian model of-

ten proves effective [1]. In this case the elements of {Xk} and 

{Dk} are modeled as independent, zero-mean, complex Gauss-

ian random variables with variances ( )
x

k and ( )
d

k , respec-

tively:  2
0, ( )

k x
X k ,  2

0, ( )
k d

D k .  

B. Minimimum Mean-Squared Error (MMSE) 

A frequent goal in signal enhancement is to minimize the 

mean-squared error of an estimator. Within the framework of 

Bayesian risk theory, this MMSE criterion may be viewed as a 

squared-error cost function. Considering the corrupted signal 

model, Bayes' rule, and the prior distributions defined above, 

the optimal suppression rule in an MMSE sense 

is x

k

x d

H


 



, which is recognizable as the well-known 

Wiener filter [6]. The estimation of the clean signal variance is 

not trivial. Using the ML estimator 
x y d

     leads to: 

 
 

2

2

max 0, ( )
k d

y d

k

y k

X k

H
X

 



   
  . (1) 

C. Spectral Subtraction 

In the widely used form of Eq. (1), the Wiener suppression 

rule requires only the noise variance 
d

 . The noise variance 

can often be estimated from periods when the speech signal is 

silent, between words, but estimating ( )
x

k is more difficult. 

This Wiener estimator introduces a distortion to the estimated 

signal that is called musical noise.  This is the audible bub-

bling heard during pauses, which is caused by the approxima-

tion in the design process. To reduce the distortions Boll [7] 

proposed the spectral subtraction rule, which is less aggressive 

and introduces less distortion but suppresses less noise.  

D. Maximum Likelihood 

Later McAulay and Malpass [8] derive a maximum-

likelihood (ML) spectral amplitude estimator under the as-

sumption of Gaussian noise and an original signal character-

ized by a deterministic waveform of unknown amplitude and 

phase. This suppression rule is always greater than 0.5, which 

completely eliminates the musical noise, but reduces the 

amount of noise it suppresses. 

E. Short-Time Minimum Mean-Squared Error  (ST MMSE) 

As an extension of the underlying model, Ephraim and 

Malah [9] derive a minimum mean-squared error short-time 

spectral-amplitude estimator based on the assumption that the 

Fourier expansion coefficients of the original signal and the 

noise may be modeled as statistically independent, zero-mean, 

Gaussian random variables. They introduce the a priori and a 

posteriori signal-to-noise ratios as: 

 

2

( )
  and 

( ) ( )

kx

k k

d d

Yk

k k


 

 
 (2) 

respectively. Their suppression rule is a function of these two 

SNRs: ( , )
k k k

H f   . In the ST MMSE row of Table 1 
0

I ( )  

and 
1

I ( )  denote modified Bessel functions of zero and first 

orders, and 
1

k

k k

k


 


.  This spectral magnitude estimator 

provides noise suppression while maintaining lower distor-

tions and fewer artifacts.  The shape of this suppression rule is 

shown in Figure 1. 

F. Short-Term log-MMSE (ST log-MMSE) 

Ephraim and Malah use the fact that humans hear sound 

pressure on a logarithmic scale to derive a suppression rule 

that is optimal in the MMSE log-spectral amplitude sense 

[10].  Regardless of the quite different criterion for optimality, 

the resulting suppression rule is surprisingly similar to the ST 

MMSE suppression rule. The mean of the difference between 

 
Figure 1. A typical suppression rule, in this case from ST 

MMSE, showing the “optimal” gain as a function of the prior 

and posterior SNR. 



the two gain rules is 1.12 dB, and the maximum difference is 

only 1.46 dB for  30, 30  dB
k

     and  30, 30  dB
k

    . 

The success of the Ephraim and Malah suppression rules is 

largely due to the authors’ decision-directed approach (DDA) 

for estimating the a priori SNR 
k

 . For a given audio frame n, 

the decision-directed a priori SNR estimate ˆ
k

  is given by a 

geometric weighting of the SNR in the previous and current 

frames:  

  

ˆ ( 1)
ˆ (1 ) m ax 0, ( ) 1 , [0,1)

( 1, )

k

k k

d

X n

n
n k

    




    


. (3) 

Using the suppression rule to remove more noise often 
adds more distortion to the speech enhancement output. A way 
to mitigate this is using psychoacoustic-based speech en-
hancement algorithms. They estimate the masking threshold of 
human hearing and do not remove noise, or limit its removal to 
the level which humans can’t hear. This estimation approach is 
applicable to any of the suppression rules and we are not going 
to discuss it further as it is not a suppression rule per se.  

III. MODEL-BASED SUPPRESSION RULES  

Given a corpus of synthetic training data, which is a mixture of 
noise and speech signals in known proportions, we can meas-
ure the precise a priori and a posteriori SNRs of Eq. (2) for 
each audio frame and frequency bin, k. The perfect suppression 
rule has a desired gain of:  

 

( )

( )

( )

n

kn

k n

k

X
H

Y
 . (4) 

Given a sufficiently large training corpus, we have mil-

lions of data points as triplets  , ,
i i i

H  : the a priori, a poste-

riori SNRs and desired gain.  This converts the design problem 

into modeling problem  ,H   , which we can tackle with 

large-data machine-learning techniques. 

Considering the shape of the known suppression rules, 
which largely varies between 0 and 1, we model the suppres-
sion rule with a logistic function [11] and define the following 
two-dimensional sigmoid function with 9 parameters: 

 

 
  

 

1 2 3
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7 8 9

1 2 9
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1 exp

, , ,

P
H R

Q

P p p p

Q p p p

R p p p

p p p

 

 

 

 


 

 

 

 



p

p

 (5) 

The equations for P, Q, and R include linear terms of the prior 
and posterior probabilities to allow simple rotations/skews. The 
design problem then becomes one of finding the values of the 
parameters vector  p  that give a model with the closest fit to 

the desired suppression gain over all the training data. This 
optimization can be done in the linear domain: 

  
2

ˆarg min ( ) ,

n

x nT x nT
 

    
 


p

p p , (6) 

or in the logarithmic domain: 

      
2

ˆarg min log log ,

n

x nT x nT
 

  
 


p

p p . (7) 

These two amplitude estimators are optimal in the same sense 
as the ST MMSE and ST log-MMSE suppression rules respec-
tively. Note that the minimization process is naturally self-
weighted – we weight those regions where we have more tri-

plets  , ,
i i i

H   more heavily than the regions with less data.  

In prior work [12] the suppression rule is represented as a 
10x10 matrix and the values of the matrix elements are opti-
mized directly using the recognition rate of a speech recogniz-
er. This effort brought minimal improvements. The reason for 
this is the large number of optimization parameters and the fact 
that we may try to optimize points for which we not have suffi-
cient data in the training corpus. The suppression model in Eq. 
(5) conveniently solves these problems – it has a small parame-
ter space and the parameters are the same for the entire region 
of useful prior and posterior SNRs. For each vector of parame-
ters we can process the entire training corpus and compute the 

values of the objective sound quality 
l

PESQ , for each of the L 

files in the data corpus. Then the optimization problem is de-
fined as:  

 
1

arg m ax
l

l

PESQ
L

 
  

 


p

p . (8) 

By defining the problem in such a way we are able to tailor the 
suppression rule for specific set of input data (SNRs, type of 
noise), stressing more or less different regions of the enhance-
ment space. In all of these cases we find a suppression rule 
optimal for the specific problem. We have the flexibility to 
include additional components in the optimization criterion, 
such as MSE and/or log-MSE. The full optimization in this 
case looks like: 

     1 2 3

1
arg max

l l l

l

w PESQ w M SE w logM SE
L

 
   

 


p

p . (9) 

With this additional flexibility we can change the weights of 

the different components of the optimization criterion. Theo-

retically  0,1, 0w  should be equivalent to the ST MSE 

suppression rule, and  0, 0,1w  should be equivalent to the 

ST log-MSE suppression rule. In practice the MSE error (6) 

has a large effect where the speech signal has higher ampli-

tudes, while log-MSE (7) gives more weight to the regions 

with lower amplitudes. This allows fine tuning of the received 

result, still keeping PESQ as the component with the highest 

weight. 

IV. EXPERIMENTAL RESULTS 

Table 1 summarizes the two types of experiments we per-

formed to evaluate our approach.  The first experiments meas-

ure the ability of our parameterized model to fit the existing 

suppression  rules,  and  measure  their performance. A second 



set of evaluations uses the full optimization criteria. But first 

we describe our experimental setup. 

A. Data 

We created a data corpus that consists of two parts, train-
ing and testing, created from the corresponding parts of the 
TIMIT database [13]. Each data file contains ten randomly 
selected utterances from different speakers. To the clean 
speech files we added stationary Hoth noise [14] (standardized 
model of the noise spectrum in living rooms and office spaces) 
with the right levels to achieve SNRs ranging from 10  to 

50  dB with step size of 5 dB, i.e. 10, 5, 0,   etc. Having the 

clean speech, the noise, and the mixture allowed us to calculate 
the exact prior and posterior SNRs, used for optimization and 
evaluation of the suppression rules:  

 

2 2
( ) ( )

( ) ( )
  and 

( ) ( )

n n

k kn n

k k

d d

X Y

k k
 

 
. (10) 

To avoid glitches, we limited the measured prior and posterior 

SNRs to fall between  0.001,1000 . In addition, we limited all 

of the estimated values of the suppression rules to fall between

 0.001,10 . We optimized all of the suppression rules using the 

training-data corpus and we evaluated using the testing-data 
corpus. We used PESQ as the main evaluation parameter, but 
we also computed the average MSE and LSD as follows: 

    
21

ˆ

n

M SE x n x n
N

 
   (11) 

 

2
( )

10 ( )

ˆ1
10 log

n

k

n

n k k

X
LSD

NK X

 
 
 
 

  . (12) 

The process of conversion to the frequency domain and back 
was performed using the scripts provided in Tashev’s book 
[15]. The first row of Table 1, the “Do Nothing” row, shows 
the measured speech degradation for the noisy test files without 
processing.  

B. Comparison to Existing Suppression Rules 

Our first group of experiments verified how well the pa-
rameterized suppression model fits the existing approaches 
(described in Section II), and evaluates their enhancement per-
formance on our database. For each suppression rule, we found 
the model parameters, p, that minimize the mean-squared dif-
ference in the log domain between the desired (classic) sup-
pression rule and the parameterized suppression model (Eq. 
(5): 

     
2

arg min log , , log ,
i i rule i i

i

H H   
 

    
 


p

p p . (13) 

The prior and posterior SNRs varied over the range of 

 60  dB, 60  dB  . The column “Interp. Error” in Table 1 

shows the difference between the rule-based suppression func-
tion and the parameterized models. The errors are small and 
this shows that our suppression model (Eq. 5) can adequately 
represent the known suppression rules.  

In terms of the speech enhancement results, the ML sup-
pression rule has the lowest performance, as expected, and the 
Spectral Subtraction and Wiener suppression rules perform 

TABLE I.  EXPERIMENTAL RESULTS  

Rule Ref./ 
Eq. 

Formula PESQ LSD MSE 
 

Interp. 
Error, dB 

Do nothing  1
k

H   2.332 12.45 1.89E-03 0.000 

MMSE with DDA [6], [9] 

1

k

k

k

H






 

3.393 9.64 2.75E-05 0.871 

Maximum Likelihood [8] 
1 1

2 2 1

k

k

k

H



 


 

2.558 11.04 5.37E-04 0.013 

Spectral Subtraction [7] 

1

k

k

k

H






 

3.310 7.28 3.64E-05 0.436 

Short Term MMSE [9] 

  0 1
1 I I exp

2 2 2 2

k k k k

k k k

k

H
   

 


      
        

      

 

3.468 7.02 3.16E-05 1.050 

Short Term  

log-MMSE 

[10] 
1 exp( )

1 2
k

k

k

k

t
H dt

t






  
  

   
  

3.508 6.93 3.00E-05 1.140 

Optimal MSE  

(Eq. 6, eq. 9) 

w = [0,1,0] 

(5) p=[0.4095, 0.0274, -0.0642, 

-9.2203, -0.4936, 0.7046, 

2.7159, -0.0343, -0.0198] 

3.667 6.95 2.42E-05  

Optimal log-MSE  

(Eq. 7, eq. 9) 

w = [0,0,1] 

(5) p=[-0.6886, 0.05656, -0.05879 

-10.0, -0.4723, 0.7856 

4.571, -0.07352, -0.03235] 

3.600 6.65 3.98E-05  

Optimal Quality 

(Eq. 8, eq. 9) 

w = [1,1,0.01] 

(5) p=[2.2136, 0.0427, -0.0558, 

-4.9285, -0.5288, 0.6952, 

2.7026, -0.0368, -0.0210] 

3.722 6.70 1.27E-03  

 



substantially better. The best performing rules from the stand-
ard set are ST MMSE and ST log-MMSE.  

C. Optimized Suppression Rules 

We can improve our enhancement ability using the parame-
terized model and the optimization criteria proposed in Section 
III. The rows “Optimal MSE” and “Optimal log-MSE” show 
the results from the optimization criteria in equations (6) and 
(7). As expected, the performance is close to ST MSE and ST 
log-MSE suppression rules. The main benefit from this model-
based approach is that the calculation of equation (5) is much 
faster than calculation of either of these two suppression rules. 
Figure 2 shows the shape of the “Optimal log-MSE” suppres-
sion rule. It keeps the shape of ST log-MSE rule show in Fig-
ure 1. Furthermore, Figure 3 shows the number of points we 
have in each 1x1 dB square of the prior and posterior SNRs. 
While we have data to cover most of the SNR space, we note 
that there are areas for which we do not have sufficient infor-
mation – this justifies using the parameterized model.  

The final row of Table 1 (“Optimal quality”) contains the 
result optimized using Eq. (9). In this particular case we used 

weight vector  1.0,1 .0, 0 .01w  which, considering the values 

range of each parameter, gives most of the weight to PESQ. 
This is why this suppression rule performs best in PESQ terms, 
while the performance in MSE and LSD terms is lower com-
pared to the other suppression rules.  

Figure 4 shows the PESQ as function of the input SNR for 
this and some of the other suppression rules from Table 1. It 
shows the expected trend of having higher PESQ when the 
input SNR is higher, and the different performance of the clas-
sic suppression rules. The “Optimal quality” suppression rule 
outperforms all suppression rules for the entire range of the 
input SNRs. Informal blind listening tests with several audio 
professionals confirmed that the signals processed with this 
suppression rule sound audibly better than any other suppres-
sion rule.  

V. DISCUSSION AND CONCLUSIONS 

In this paper we propose to learn, from training data, suppres-
sion rules for speech enhancement algorithms. This approach 
addresses two issues. The first is the classic assumption that the 
magnitude of the speech signal follows a Gaussian distribution. 
Using a training corpus we take advantage of the statistical 
properties of the signal and noise, and how they combine, to 
find the parameters of a suppression function that optimizes 
any one of several criteria. An interesting question is why do 
two of the rules we learn perform similar to their equivalents – 
ST MMSE and ST log-MMSE suppression rules.  A potential 
reason is the different way the prior SNR is defined and esti-
mated. In Eq. (2) the SNRs are defined as a long term statisti-
cal parameter – the ratio of the variations of the speech and 
noise signals. In reality they are estimated as instantaneous 
SNRs as in Eqs. (3) and (10). A computationally-efficient way 
to estimate these suppression rules is the primary benefit from 
this effort. 

The second issue we address is the optimality of the sup-
pression rule. Conventional suppression rules are optimal in the 
MSE sense, the ML sense, the log-MSE sense, etc. What we 

actually want is for humans to perceive the quality of the out-
put signal as better, compared to the non-processed signal. In 
Section III we propose a methodology to find a suppression 
rule, for specific data corpus, that is optimal in an objective 
sound quality measure – PESQ. The new suppression rule fits 
in the existing speech enhancement framework and can easily 
replace any of the other suppression rules.  

 
Figure 4. PESQ as function of the input SNR for various 

rules. 
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Figure 3. Number of points for each pair  ,  . 

 
Figure 2. Optimal log-MSE suppression rule 



Overall, with direct optimization of the suppression rule us-
ing a perceptual quality measurement, we believe that the abili-
ties of the existing speech enhancement framework to provide 
better sound quality are pretty much exhausted. To further im-
prove the capabilities for speech enhancement we should uti-
lize additional properties of the speech and noise signals. For 
example, the assumption that the frequency bins are statistical-
ly independent allows us to process the bins independently, but 
this is also not quite true. The speech signals in neighboring 
frequency bins are highly correlated, as are frequency bins con-
taining the harmonics of the pitch signal. By assuming inde-
pendence of the consecutive audio frames, we can process 
them efficiently, but the consecutive audio frames of the 
speech signal are also highly correlated. The existing frame-
work only benefits from the temporal correlation when estimat-
ing the prior SNR (Eq. 3). Processing all frequency bins and 
several consecutive audio frames together to estimate the out-
put audio frame provides a lot of opportunities for better quali-
ty enhancement. As modeling this process analytically is very 
complex, we believe that it can and should be approached us-
ing the science of machine learning from a large data corpus.  
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