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ABSTRACT

Many developing countries are suffering from air pollution,
especially the Particulate Matter with diameter of 2.5
micrometers or less (PM2.5). While quite a few air quality
monitoring stations have been built by governments in a
city’s public areas, the indoor PM2.5 has not yet been
monitored and dealt with effectively. Though many office
buildings have an HVAC (heating, ventilation, and air
conditioning) system, PM2.5 is not considered as a factor
when the system circulates fresh air from outdoors. This
paper introduces a real system that we have deployed in the
offices of four Microsoft campuses in China. This system
instantly monitors indoor air quality on different floors of a
building (including office areas, gyms, garages, and
restaurants), enabling Microsoft employees to enquire the
air quality of a place by using a mobile phone or checking a
website. The information can guide a user’s decision
making, e.g., finding the right time to work out in the gym
or turn on individual air filters in her own office. Through
analyzing the indoor and outdoor air quality data collected
over a long period, our system can even offer actionable
and energy-efficient suggestion to HVAC systems, e.g.,
automatically turning on the system only a few hours earlier
than usual if it is a heavily polluted day, or identifying the
filters in HVAC system that should be renewed.
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INTRODUCTION

Many developing countries, such as China, India, Mexico,
and Brazil, are struggling with air pollution, especially
PM2.5. To protect people’s health from the damage by air
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pollution, many cities have built on-ground air quality
monitoring stations that inform people the concentration of
air pollutants in (outdoor) public areas [10]. While people
stay indoors much longer than outdoors, the indoor PM2.5
has not yet been monitored effectively. As a result, people
working in offices have no idea about the air quality around
them, let alone taking actions to tackle PM2.5 down indoors.

In contrast to outdoor air pollutions that are difficult to
tackle [3][12], the indoor PM2.5 can be handled to some
extent if we manipulate HVAC systems or individual air
filtering systems timely and correctly. Unfortunately,
PM2.5 is not considered as a factor when HVAC systems
circulate fresh air from outdoors. Some research projects
[5]1[11] monitor the indoor concentration of CO; however,
they do not provide actionable suggestions that can handle
air quality problems. Additionally, sensing CO; is different
from PM2.5, which needs a bigger sensor and a longer
sensing period.

To address this issue, we deployed a cloud-based indoor air
quality monitoring system in the office buildings of four
Microsoft campuses in China [16] (consisting of Beijing,
Shanghai, Wuxi, and Suzhou), as illustrated in Figure 1.
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Figure 1. The architecture of our System

We collect the concentration of PM2.5 and PM10 on
different floors of a building, including office areas, gyms,
garages, and restaurants, etc. On a floor, we set up a
monitor (Dylos DC1700) which is connected to a local
server via a Com-to-USB port. The server receives the air
quality readings from the monitor every minute and submits
an average of air quality in every 10 minutes to the cloud.
The cloud stores the air quality data received from different
monitors in a cloud database, which will be enquired by end



users through a mobile client and a website. The real-time
air quality information can inform a user’s decision making
on when to work out in a gym or whether turning on an
additional air filter in her own office.

The cloud also collects the outdoor air quality of each
building and corresponding meteorological data from public
websites every hour. The information will be displayed on
the mobile client and website together with the indoor air
quality. By mining the air quality and meteorological data
over a long period, we build a model based on artificial
neural network to suggest the number of hours that an
HVAC system should be turned on ahead of its original
schedule. The model considers the current outdoor and
indoor air quality as well as meteorological data to make an
inference. The model can also identify the floor where
HVAC no longer works well, indicating that the air filter
sheets of this floor should be replaced.

INDOOR PM2.5 MONITORING

Sensing

To detect the indoor concentration of PM2.5, we deploy an
aerosol particle counter (Dylos DC1700) on each floor, as
demonstrated in Figure 2 A). The particle counter measures
the number of particles with a size bigger than 0.5um but
smaller than 2.5um in each cube centimeter by using X-ray
laser. The particle counter is connected to a local server via
an USB-to-Com port adapter, streaming out the humber of
particles every minute, as illustrated in Figure 2 B). The
local server then converts the received number into a
concentration of PM2.5 (ug/m3) through an empirical
formula and submits the average concentration of every 10
minutes to the cloud.
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Figure 2. Mobile User Interface

On the cloud, we run a web crawler to collect the outdoor
concentration of PM2.5 and meteorological data, consisting
of humidity, wind speed, temperature, and barometer
pressure, from public websites every hour. The information
is used to measure the effectiveness of an HVAC system in
filtering the PM2.5 absorbed from outside and also
employed as features in our model to infer the number of
hours to turn on an HVAC ahead of its original schedule.

Displaying

Figure 3 A) visualizes the 2D map of Microsoft campus in
Beijing, where 8 sensors have been deployed on different
floors of the two towers (four sensors in each tower). The
figure on each floor represents the location ID of a
deployed sensor, with a color representing its AQI (Air
Quality Index) level, e.g. “green” means “good” and

“yellow” denotes “moderate” in Chinese AQI standard [14].
The color of block “T1” stands for the average AQI
reported by the four sensors deployed in Tower 1. So does
the color of “T2”. The color of block “MS BJW” shows the
average AQI level reported by all the 8 sensors in the two
towers. Additionally, users can add the location they are
concerned with into a location list demonstrated in Figure 3
B), by clicking on the floor shown on the 2D map. In Figure
3 B), each banner represents a location, e.g. Engineering
Office and Gym. The two numbers associated with each
banner denote the AQIs of PM2.5 and PM10, respectively.
The color of a banner is determined according to its AQI
levels. The outdoor weather information is also exhibited at
the top. After clicking a specific banner, a user can check
the trend of indoor and outdoor air quality, as shown in
Figure 3 C). The effectiveness of the HVAC in filtering
PM2.5 (or PM10) can be evaluated through the gap
between outdoor and indoor AQIs at the same timestamp.
In order to facilitate PC users, we also deploy a website
showing same information available on the mobile client.
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SMART SUGGESTION TO HVAC

Energy-Efficient Control on HVAC

In recent years, buildings have become one of the major
energy consumers which account for almost 40 percent of
energy consumption in the whole society [9]. The HVAC
system as one of the major energy consumers in a building
is usually turned off (or partially turned down) in the
evening and turned on in the morning shortly before people
start working in the building. In order to provide a healthy
working environment to employees while saving energy,
we predict the purification time (PT), i.e. a time period
needed for an HVAC system to reduce indoor PM2.5 to an
ideal situation, and turn on the HVAC at least PT hours
before people’s arrival. Figure 4 shows the definition of the
PT in two scenarios. In scenario 1, the PT is defined as the
time period (t; — t,) to reduce the concentration of PM2.5
to below 35ug/m3, which is regarded as “good” in Chinese
AQI standard. In scenario 2, an HVAC system cannot
reduce the indoor PM2.5 concentration below that threshold,
given a certain high concentration of outdoor air quality and
the limitation of the HVAC system. In this scenario, we
regard the start point of a stable period like t, (i.e. the
indoor PM2.5 concentration no longer decreases in the



following 30 minutes) as the ending of the purification time.
In the example shown in Figure 4, the PT ist, — t,= 40
minutes in scenario 1 and t, — t,= 60 minutes in scenario 2.
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Figure 4. Purification time

An example: Suppose the majority of people start working
in a building at 8am. The original schedule of turning on the
HVAC system is 7am. There is a day with the concentration
of outdoor PM2.5 much higher than usual. According to the
prediction, the HVAC could need 1.5 hours to reduce the
concentration to under 35ug/m3. To provide people with a
healthy working environment on their arrivals, we need to
turn on the HVAC at 6:30am, half hour earlier than the
original schedule. Note that we do not change the operating
strategy of an HVAC system, which considers multiple fac-
tors, such as the concentration of CO, and O. Turning on
an HVAC system a few minutes ahead of its schedule is a
safe action that does not break other environmental criteria.
Features

By analyzing the data (12/23/2013-5/9/2013), we notice
that the purification time is influenced by multiple factors,
such as the indoor and outdoor air quality, humidity, and
barometer pressure, as illustrated in Figure 5, where each
row and column denote one factor. Each plot in the figure
stands for a PT we observed from the historical data, and
different symbols represent different lengths of PT, e.g. a
circle means 40-80minuts. For instance, the vertical axis of
the box standing in the third row and the fifth column
denotes outdoor humidity and its horizontal axis represents
outdoor wind speed. It can be observed that high humidity
and low wind speed cause a long purification time.
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Figure 5. Correlation between purification time and features

Purification Time Inference (PTI)
We propose a Purification Time Inference (PTI) model
based on artificial neural network (ANN), as illustrated in
Figure 6. Specifically, PTI model is a three-layer network,
with six nodes on the input layer, 16 nodes on the hidden
layer, and 12 nodes on the output layer. Each node on the
output layer denotes a certain length of PT, ranging from 10
—120 minutes (the maximum PT is 120 minutes in the
historical data). The output value for the ith node is the
probability that PT isi x10 minutes. We then choose the
most likely purification time C among the 12 values as our
final result, which is defined as Equation 1:

C = max (¢(Xj%, wjo(Xe-, wijF; + b)) + b)), (1)

1<k<12

where ¢ is a sigmoid function; F; is the ith feature; b; and
b, are the biases associated with the nodes in hidden layer
and output layer respectively; w;; is the weight between
input layer and hidden layer while w;, denotes the weight
between hidden layer and output layer. All the parameters
are trained with a Back-Propagation algorithm. The system
performs the PTI model every 10 minutes, and notifies a
building’s operation team if the gap between the current
time and people’s arrival time is close to the inferred PT.
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Figure 6. Framework of PTI

Renew HVAC’s Air Filter Sheets

The inferred PT can also be used to identify the floor where
the HVAC no longer works well, which could trigger an
inspection on the floor’s filter sheets. The assumption is
that the real PT should be close to the inference in a normal
situation. Specifically, if the real PT of a particular floor is
longer than the inference by a threshold in consecutive days,
our system sends an alarm. Figure 7 shows the real and
inferred PTs of a floor in Beijing campus from 1/10/2014 to
3/10/2014. There was a significant gap between the real and
inferred PTs around 2/21/2014. An inspection on the floor’s
HVAC found the filter sheets were very dirty and needed to
be replaced. After the replacement, the gap is disappeared.
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EVALUATIONS

Datasets
In the evaluation, we use a real dataset of 150 workdays
from 12/23/2013 to 5/9/2014 generated in Beijing campus:

1) Indoor air quality records: We collect indoor PM2.5

concentration every 10 minutes from our monitoring system.

2) Outdoor air quality record: We collect hourly outdoor
PM2.5 concentration reported by the nearest air quality
monitor station built by governments.

3) Meteorological data: We collect hourly fine-grained
meteorological data from official websites, consisting of
temperature, humidity, barometer pressure, and wind speed.

Baselines and Ground Truth
We compare our approach with four baselines:

1) Default: We choose the longest purification time (2
hours) in history as a default period.

2) Average: We set the average time of the historical PTs to
reduce indoor PM2.5 concentration to a safe range.

3) Regression: A linear regression is employed to estimate
the purification time, considering outdoor/indoor PM2.5
concentrations and meteorological data.

4) ANN: We only consider indoor and outdoor PM2.5
concentrations as the input of the PTI model.

Ground Truth: The data of the first two hours after turning
on the HVAC, i.e., b5am-7am, is used in our experiments.
Each two-hour time slot contains 12 records (one per 10
minutes). Regarding each of the record as a hypothetical
beginning time, we obtain 12 instances of real purification
time in a two-hour slot. We select data in the workdays (the
HVAC is usually shot down in weekends), containing 733
instances from the 150-day dataset (we lost the data of
some hours due to the failure of data collection). A 10-fold
cross validation was employed to test the PTI model.

Results

We compare PTI with the four aforementioned baselines in
Figure 8. Note that the inference is considered correct if the
inferred PT equals to or is longer than the ground truth. As
shown in Figure 8 A), the default period (2 hour) achieves a
perfect accuracy, however, resulting in an over long PT,
which wastes unnecessary energy. With a minor decrease in
accuracy, our PTI model infers a much shorter purification
time than the Default, therefore saving energy significantly,
as depicted in Figure 8 B). PTI also has a shorter PT than
Regression and Average and a similar PT as ANN. But, PTI
outperforms these three baselines in term of accuracy.
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Figure 8. Overall results of different methods

RELATED WORK

There is a series of research on detecting indoor air quality.
[5] described a personalized mobile sensing system MAQS
to monitor CO2 concentration in a single room. [11]
proposed a hybrid sensor network which contains both
stationary sensors and mobile sensors to minimize the
prediction error of the indoor CO2 concentration. However,
actionable suggestion is not given in these research works.

Future indoor air quality can be predicted based on the
sensed data. [4] presented an approach to predict indoor air
pollution generated by cookstove emissions using a Monte
Carlo model. Other mathematical models [8] are proposed
for predicting indoor air quality based on smoking activity.
Different from these methods, our approach considers more
information, such as meteorological features and outdoor
air quality, for a better prediction of purification time.

Various HVAC control strategies of smart buildings have
been investigated in [1][2][6][7]. [1] presented a control
architecture using sensing to guide operation of HVAC. [2]
proposed a methodology with four phases to understand the
energy performance and develop HVAC control scenarios
to minimize energy usage. [6] used simulation models to
verify against the effect of their strategies. [7] developed a
multi-objective genetic algorithm which is validated using
mathematic and simplified HVAC system problems. Differ-
ent from these projects that focus on operating HVAC
systems in an energy-effective way, we emphasize more on
the integration of multiple data sources for a better
prediction of PT. The latter is a typical approach in urban
computing [13], which aims to solve the challenges in cities
by using big data. In addition, we do not intervene the
operating process after an HVAC system starts working.
We just calculate the most energy-effective time to turn on
an HVAC system ahead of its original schedule.

CONCLUSION

In this paper, we introduce an indoor air quality monitoring
system deployed in four Microsoft campuses in China. The
information of indoor air quality provided by the system
can inform people’s decision making in office areas. The
gap between indoor and outdoor air quality can be used to
measure the effectiveness of an HVAC in filtering air
pollutants. The system also integrates outdoor air quality
information with indoor measurements to adaptively control
HVAC settings with a view on optimizing runtimes w.r.t.
the energy efficiency and air quality conservation. Using a
neural network-based approach, the time period that an
HVAC needs to reduce the concentration of indoor PM2.5
into a healthy range is predicted based on six factors, such
as the concentration of outdoor PM2.5 and humidity.
Extensive experiments using 150-day data demonstrate the
advantage of our approach beyond baseline methods, e.g.,
linear regression and average time. In addition, the
meteorological features improves the accuracy of the
prediction. With a minor decrease in accuracy, PTI infers a
shorter purification time, thus saving energy significantly.
We have released the data and execution file at [15].
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