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Abstract. DNA self-assembly is a powerful technology for controlling
matter at the nanometre to micron scale, with potential applications in
high-precision organisation and positioning of molecular components. How-
ever, the ability to program DNA-only self-organisation beyond the mi-
croscopic scale is currently lacking. In this paper we propose a computa-
tional method for programming spatial organisation of DNA at the cen-
timetre scale, by means of DNA strand displacement reaction diffusion
systems. We use this method to analyse the spatiotemporal dynamics of
an autocatalytic system, a predator-prey oscillator and a two-species con-
sensus network. We find that both autocatalytic and oscillating systems
can support travelling waves across centimetre distances, and that con-
sensus in a spatial context results in the spontaneous formation of distinct
spatial domains, in which one species is completely eliminated. Together,
our results suggest that programmed spatial self-organisation of DNA,
through a reaction diffusion mechanism, is achievable with current DNA
strand displacement technology.
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1 Introduction

Biological systems rely on a variety of mechanisms for the organisation of mat-
ter across spatial scales. At the subcellular scale, molecular self-assembly is an
efficient way of creating shapes and structures, for example to assemble viral
capsids from protein building blocks [1]. To propagate signals over distances
beyond the cellular scale, biological systems often rely on diffusible signalling
molecules that interact with other molecular components to form reaction dif-
fusion patterns [2]. For instance, a reaction diffusion mechanism was recently
proposed to explain digit formation in mouse embryos [3].

In recent years, DNA nanotechnology has made spectacular progress in the
structural self-assembly of micron-sized objects with nanometre scale precision
[4]. Even centimetre-length DNA crystals [5] and hydrogels [6] have been ex-
perimentally realised. However, these materials have relatively simple long-
range order that is either periodic or random. To replicate the diversity and



scale of biological organisms, novel approaches are needed that extend to the
centimetre scale and beyond. A reaction diffusion mechanism based on DNA
molecules diffusing through and reacting in a hydrogel or similar matrix could
provide a promising solution.

There are several examples of chemical systems capable of pattern forma-
tion, most famously the Belousov-Zhabotinskii system [7]. One of the earliest
examples of spatial organisation in a cell-free biochemical system is the trav-
elling waves of in vitro evolving RNA observed by Bauer and co-workers [8].
More recently, Isalan et al. [9] engineered a cell-free transcription-translation
system that mimicked the pattern forming program observed in Drosophila.
Simpson et al. proposed a method for implementing amorphous computation
with in vitro transcription networks [10]. Rondelez and co-workers elegantly
demonstrated travelling wave patterns in a molecular predator prey model
created using a combination of DNA molecules, nicking enzymes and poly-
merases [11]. However, all of these approaches rely on enzymes and are thus
more sensitive to reaction conditions than an approach that uses DNA alone.

Ellington and co-workers took a first step towards demonstrating pattern
formation with enzyme-free DNA strand displacement systems by engineering
a DNA-based edge detection circuit [12, 13]. Using UV light, a target pattern
was first projected onto a gel that contained multiple DNA reactants, some of
which had photo-cleavable bases. This initial pre-patterning activated a reac-
tion pathway that led to pattern refinement. Scalise and Schulman [14] devel-
oped a modelling framework based on reaction diffusion equations for gener-
ating arbitrary shapes and patterns, starting from a small set of localised DNA
signal sources. In principle, transient wave patterns and even stable Turing pat-
terns could emerge from homogeneous inital conditions with small random
perturbations. If realised with DNA molecules, such emergent patterns could
complement existing approaches for self-assembly or diffusible signalling based
on pre-patterned information by providing a mechanism for initial symmetry
breaking. To understand if such self-organised patterns are within reach of cur-
rent DNA technology, we first investigate how information can propagate in
simple DNA strand displacement systems with a single localised input source.
Then, we investigate the behaviour of a multi-reaction network with homoge-
neous (but noisy) initial conditions.

Recent work demonstrated that it is possible, in principle, to build DNA
components that can approximate the kinetics of any well-mixed chemical re-
action network (CRN) [15–17]. CRNs were proposed as a prescriptive program-
ming language for specifying a target behaviour, which is then realised with
DNA components. Here, we propose to build on this work to go beyond well-
mixed chemistry. In particular, we demonstrate that DNA molecules can be
programmed to approximate the behaviour of chemical reaction diffusion sys-
tems that yield self-organising patterns with macroscopic dimensions.

Central to this work is the use of computer-aided design tools. The Visual
DSD (vDSD) software uses a textual syntax to describe an initial set of DNA
molecules, and automatically generates the corresponding strand displacement



reactions [18, 19]. It has previously been used to aid the design of several DSD
circuits [17, 20–22]. Here, we extend vDSD to enable simulations of reaction dif-
fusion DSD systems in a range of spatially heterogeneous scenarios. We design
systems that form spatial patterns and analyse their behaviour in the context of
realistic kinetic parameters. We then propose a number of scenarios that could
be tested experimentally. Specifically, we demonstrate the design of systems
that generate periodic travelling waves and stationary patterns, and analyse
the impact of leaks arising from dysfunctional DNA gates enabling us to iden-
tify key insights and constraints on our systems prior to their construction.

2 Methods

Two-domain DNA strand displacement. We consider the implementation of
high-level CRNs using DNA strand displacement, following the two-domain
approach proposed in [16]. Signal strands are single-stranded DNA (ssDNA)
molecules which combine a short toehold domain and a longer recognition do-
main. The recognition domain specifies the identity of a signal, while the toe-
hold domain can be shared among multiple signals. Accordingly, we use the
notation 〈t x〉 to represent a signal strand X. To implement the stoichiometry
of an arbitrary chemical reaction in the two-domain scheme, a nicked double-
stranded DNA (ndsDNA) join gate receives all reactant strands and produces
a translator strand, which then triggers the release of product strands from a
fork gate (see [16, 17] for a detailed description). We adopt a naming convention
for join and fork gates in which subscripts identify the reactants and products
respectively. For example, the reaction B + X → 2X is implemented by 〈t b〉
and 〈t x〉 strands binding JoinBX gates, with Fork2X gates producing two 〈t x〉
strands.

Error modes. We consider the impact of imperfections in DNA strand/gate
synthesis, as modelled in [17]. Specifically, we consider a leak parameter, which
is the fraction of ndsDNA gates that spontaneously produce their output strand
without requiring inputs.

Simulating partial differential equations (PDEs) in Visual DSD. To analyse
the spatiotemporal dynamics of DNA strand displacement circuits, and to pro-
vide the means for others to do this conveniently, we incorporated numerical
solvers for partial differential equations into the Visual DSD (vDSD) software.
Specifically, we provide numerical algorithms to solve problems of the form

∂c
∂t

= f (c) + D∇2c (1)

where c is the vector of concentrations and D is the diagonal matrix of diffusion
rates, and ∇2 represents the second spatial derivative. Solvers for both 1- and
2- dimensional domains have been implemented, using a Crank-Nicolson finite



difference approach [23]. Extensions to the DSD programming language enable
specifying PDE solver parameters, by way of directives (see Appendix A3 for
a complete list; Table S1). A screenshot of the new PDE-solving capabilities of
vDSD is shown in Fig. 1.

Fig. 1. Screenshot of the Visual DSD software during a 1d spatial simulation.

Using the defaultdiffusion directive, we applied a diffusion rate of 10−10 m2

s−1 for all ssDNA strands and dsDNA gates, as approximated in [24]. Note that
when simulating reaction-diffusion equations, modifications to a uniform D
(i.e. D 7→ αD′) can be applied by rescaling the spatial domain as x 7→

√
αx′.

Therefore, all qualitative behaviours presented here are independent of the
choice of diffusion rate.

Simulation of an invasion scenario. To determine how local signals propagate
through a reactive medium, we consider invasion scenarios. These occur when
the initial concentrations of specified molecular species are non-zero only in
some sub-region R of the full domain. In a vector of concentrations c = c(x, t),
where x is the position and t is the time, the elements cI (where I is a subset of
the species labels) have initial conditions

cI(x, 0) =

{
c0

I if x ∈ R
0 otherwise

(2)

In the case of DNA strand displacement, we supplied gates and auxiliary
strands uniformly in space. In vDSD, the species in the subset I can be ini-

3 Appendices in the online version, available from the author’s website.



tialised according to (2) withR as a central channel in 1d or a central square in
2d, by using the centralcore option of the spatialic directive (Table S1).

3 Results

To predict how DNA diffusion might enable pattern formation over macro-
scopic scales, we considered three circuits that have previously been well-studied
at the CRN level: an autocatalytic circuit, a Lotka-Volterra predator-prey oscilla-
tor and a consensus network. We implemented DNA strand displacement ver-
sions of these circuits, and analysed their spatiotemporal dynamics with vDSD.

3.1 Wave propagation in an autocatalytic circuit

One of the simplest known systems for which travelling wave phenomena have
been observed is an autocatalytic reaction [25]

X + Y k−→ 2Y (3)

The distance travelled in time t by the front of a travelling wave in an autocat-
alytic reaction-diffusion system is dW ≈ 2

√
f Dt [26], where f is the intensity

of the interaction. In this case f becomes approximately equal to k[X]0, where
[X]0 is the initial concentration of X (see Appendix B for a derivation). The dif-
fusion coefficient of a single-stranded 20mer in water at 20◦C was reported to
be on the order of 10−10 m2 s−1 [24]. Furthermore, the concentrations of DNA
species in strand displacement systems are typically on the order of 10 nM –
1 µM. For a bimolecular rate constant k = 5× 10−5 M−1 s−1 and an initial con-
centration of [X]0 = 5 nM, the distance travelled by a wave front in 40 hours is
approximately 4.55 cm, which agreed with simulations (Fig. 3a,e).

Several previous works have demonstrated the implementation of autocat-
alytic behaviours using DNA strand displacement [17, 27]. However, the spa-
tiotemporal dynamics of this simple circuit has not yet been reproduced exper-
imentally. While the wave-speed of the single reaction can be analytically char-
acterised, the impact of diffusion and consumption of ndsDNA gates can only
be predicted via numerical simulation. To address this, we compared simula-
tions of the high-level autocatalytic reaction (3) in one spatial dimension with
equivalent simulations of strand displacement implementations. Here we use a
model of the autocatalytic B + X → 2X circuit that is identical to the model in
[17] (Fig. 2).

We analysed spatiotemporal dynamics of the autocatalytic circuit from [17].
In an ideal parameterisation, in which all rates of toehold-mediated strand dis-
placement are equal, we observed a very similar pattern to the CRN model
(Fig. 3a,b,e). When using the experimentally calibrated rates from [17], we also
found a similar pattern in the absence of leaks (Fig. 3c,e). However, approxi-
mately 1% leak from the JoinBX gate completely disrupted the travelling wave
(Fig. 3d). The strong impact of leaks on spatiotemporal dynamics is analogous
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Fig. 2. DNA strand displacement implementation of an autocatalytic reaction. Two-
domain signals and gates were used to implement the formal reaction B + X → 2X,
where B is the 〈t b〉 strand, and X is the 〈t x〉 strand. (a) The initial molecules are
shown, including products of fast leak reactions, which are assumed to immediately
produce gate outputs. (b) Complete reaction list. The reaction rates are quantified in
[17], in which each rate was inferred from experimental data.

to its impact on purely temporal dynamics of autocatalytic circuits, observed
in [17, 27], in which the presence of a small concentration of reactant kick-starts
autocatalysis and eventually consumes all available gates. Here, as there are
gates across the whole spatial domain, the presence of leaks means that diffu-
sion from neighbouring locations is not required to kick-start autocatalysis, and
so a travelling wave is not observed.

3.2 Periodic travelling waves in Lotka-Volterra predator-prey oscillators

To analyse more complex spatiotemporal dynamics in an equivalent experi-
mental setup, we considered designs for generating periodic travelling waves.
Mathematical theory dictates that periodic travelling waves can be produced
in spatially heterogeneous settings (i.e. with diffusion) when the corresponding
spatially homogeneous dynamics show oscillations [2]. A range of CRN oscilla-
tors have been studied, providing an extensive set of examples to test. Among
them, the Lotka-Volterra system is a canonical example of nonlinear dynamics,
which has also been studied in the context of DNA strand displacement [15]. A
Lotka-Volterra network can be described by

X
k1−→ 2X X + Y

k2−→ 2Y Y
k3−→ ∅ (4)



Fig. 3. Wave propagation in autocatalytic circuits. Simulations were carried out using
vDSD for autocatalytic circuits. (a) CRN model with k = 5× 10−5 nM−1 s−1. (b) Ideal
strand displacement implementation, in which all toehold-mediated strand displace-
ment reactions occur at rate 10−4 nM−1 s−1. (c,d) Strand displacement implementation
of B + X → 2X in [17], where rates of toehold-mediated strand displacement were set
to values inferred from experimental data. Leak parameters were either equal to zero
(c), or at inferred quantities (d). In all cases, simulations were initialised with 1 nM of X
in a central channel of width 0.01 m, and 5 nM of Y across the whole 0.1 m domain. In
strand displacement models, 200 nM of gates and auxiliary strands were also supplied
homogeneously. The concentration of X is indicated by the colour bar in the upper right,
in nM units. (e) Wave propagation was characterised by determining the time at which
the concentration of X reached 3 nM, half of the maximal level in the ideal system, for
each point in space.

DSD implementation of a Lotka-Volterra predator-prey system. To assess ex-
perimentally feasible designs for Lotka-Volterra oscillators, we translated the
reactions (4) into a two-domain DNA strand displacement system (Fig. 4). In
this design, the majority of toeholds are the same (domain t), though a second
toehold sequence (domain u) specifically distinguishes translator strands from
other single-stranded DNA strands in the system. A single toehold scheme is
presented in Appendix C, where it is noted that auxiliary strand reuse (crosstalk)
between gates complicates the selection of their initial concentrations.

Not all auxiliary strand crosstalk is removed in this design, as the 〈x t〉
strand required to release the second output on the Fork2X gate is also a reverse
strand on JoinXY gates. Thus, the effective rate constrant for X + Y → 2Y may
increase as Fork2X gates are consumed. An optimisation of this design would
therefore be to remove this crosstalk.
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Fig. 4. Candidate DNA strand displacement implementation of a Lotka-Volterra os-
cillator. Two-domain signals and gates were used to implement the reaction system (4),
where X is the 〈t x〉 strand and Y is the 〈t y〉 strand. (a) The initial molecules required.
(b) Complete reaction list. The reaction rates are all set as k except for the binding of the
first input strands to Join gates, which include a coefficient representing possible manip-
ulations to the degree of complementarity. Specifically, kJoinX = c1*k, kJoinXY = c2*k,
and kJoinY = c3*k.

Generating oscillatory behaviours by modulating external toehold binding
rates. In order to generate periodic travelling waves, we sought conditions
under which DSD versions of the Lotka-Volterra reactions gave oscillatory be-
haviours. Despite the potential for modulating effective rate constants by vary-
ing concentrations of auxiliary strands, we found no regime in which more than
a single oscillation could be observed (simulations not shown). Instead, we con-
sidered modifications to the binding sites of inputs on the join gates, in order
to obtain direct control over the effective rate constant. By shortening the se-
quence of the exposed toehold and thus the degree of complementarity, strand
displacement reactions can be slowed down by several orders of magnitude
[28]. Manipulating the rate constants in this way is equivalent to the approach
in [15], in which the first step of the implementation of the bimolecular reaction
is 3 orders of magnitude slower than the unimolecular reactions.



To determine an appropriate parameter regime for oscillatory behaviours,
we simulated combinations of (kJoinX, kJoinXY, kJoinY), where kG is the binding of
the input to gate G ∈ {JoinX, JoinXY, JoinY}, and analysed the resulting traces
for the number of turning points within 96 h. A fixed duration was important
to rule out slow yet persistent oscillations, which would be challenging to ob-
serve experimentally. Also, as gates are consumed, both the amplitude and fre-
quency of oscillations will diminish over time, meaning it was important to
use a methodology suitable for damped oscillations. Reducing binding rates to
JoinX and JoinY gates led to a dramatic improvement in oscillatory behaviours
(Fig. 5). A reduction of approximately 2 orders of magnitude was optimal (see
leftmost panels of Fig. 5a,b), and produced up to 10 turning points in the 96 h
window. Reducing kJoinXY led to fewer turning points in both 〈t x〉 and 〈t y〉
traces (Fig. 5c,d). The strong dependency of oscillatory behaviours on specific
values of the parameters emphasises the importance of accurate quantification
of these rates.

Fig. 5. Parameter analysis for the proposed DSD implementation of a Lotka-Volterra
oscillator. Simulations were performed over different combinations of rates for inputs
binding join gates. The simulations of (a) 〈t x〉 and (b) 〈t y〉were analysed for the num-
ber of turning points in 96 h. (c,d) Example simulations corresponding to the black cross-
hairs in the leftmost panels of a and b. Here, kJoinXY = 10−4 nM−1s−1, the values for both
kJoinX and kJoinY are as indicated in the legend, and all other rates of toehold-mediated
strand displacement were assumed to be 10−4 nM−1s−1. All gates and auxiliary strands
were initialised at 200 nM, and 〈t x〉 and 〈t y〉 were initialised at 10 nM.



Spatiotemporal dynamics for strand displacement oscillators Having estab-
lished parameter regimes for DNA strand displacement implementations in
which oscillatory behaviour persists over 96 hours, we sought to determine
whether periodic travelling wave phenomena could be produced. In addition
to the consumption of gates diminishing oscillatory behaviour, we would ex-
pect the diffusion of all DNA molecules to spatially homogenise behaviours
that are more heterogeneous in the CRN version. We simulated invasions of 〈t
x〉 and 〈t y〉 strands in media containing the gates and auxiliary strands. We
selected a parameterisation in which non-spatial simulations predicted robust
cycling with minimal amplitude decay (Fig. 6a). In 1d, we observed periodic
travelling waves, though the waves both decayed in amplitude and decoupled
from cycles in the centre (Fig. 6b). In 2d, we observed a similar pattern, with the
emergence of several travelling waves with decaying amplitude (Fig. 6c). Simi-

Fig. 6. Spatiotemporal dynamics of the proposed DSD implementation of a Lotka-
Volterra oscillator. This DSD implementation was simulated in vDSD using parame-
ter values identified in Fig. 5 as leading to oscillatory dynamics. Specifically, kJoinX =

kJoinY = 2× 10−6 nM−1 s−1, and all other toehold-mediated strand displacement rates
at k = 10−4 nM−1 s−1. (a) Simulation of the spatially inhomogeneous problem. (b) Sim-
ulation of spatiotemporal dynamics in 1d. (c) Simulation of spatiotemporal dynamics in
2d. In b,c, the domain was 0.1 m wide, and the solver used 101 grid-points. A central
core of relative width 0.1 was applied to 〈t x〉 and 〈t y〉, 1 nM internally and 0 nM ex-
ternally. All gates and auxiliary strands were supplied uniformly at 200 nM. In b and c,
the concentration of 〈t x〉 is indicated by the colour bar in the upper right, in nM units.



lar analysis applied to the single toehold DSD implementation revealed greater
amplitude loss in non-spatial simulations, and equivalently weaker travelling
waves in both 1d and 2d simulations (Fig. S3).

3.3 Emergence of stationary patterns from a consensus network

In previous sections, we predicted that non-stationary spatial patterns could
be generated from invasion scenarios. However, owing to technical challenges
in producing such initialisations in an experiment, here we considered pattern
formation that only relies on inherent random spatial heterogeneity. We consid-
ered circuits with bistable dynamics, which might give rise to spatial bistabil-
ity, and thus stationary patterns. Consensus algorithms use bistability to enable
distributed agents holding a mixture of beliefs to reach consensus. For a binary
belief, X or Y say, it is possible for a population of N agents to reach consensus
on the initial majority in O(N log N) steps [29]. There are several ways to de-
scribe the algorithm in terms of chemical reaction networks (CRNs). Here, we
consider the three reaction scheme

X + Y k−→ 2B B + X k−→ 2X B + Y k−→ 2Y, (5)

as previously implemented using two-domain strand displacement [17]. This
scheme was also used in a recent analysis of consensus algorithms in a spatial
context [30].

Simulation of spatiotemporal dynamics for the consensus network. To gain
insight into how diffusion of DNA molecules might modulate consensus dy-
namics in a spatially heterogeneous experimental system, we simulated con-
sensus networks in vDSD. As with the autocatalytic circuits in Section 3.1, we
compared the spatiotemporal dynamics of the CRN level model with those
from strand displacement-level models. To encode the more realistically achiev-
able experimental setting of providing a target concentration uniformly in space,
but subject to spatial variations, we used the random option of the spatial initial
condition directive (see Table S1).

We found that consensus networks routinely produced spatial patterns in
1d within 2 days (Fig. 7). As predicted from theory [31, 32], the CRN model
produced a variety of patterns that depended on the random initial configura-
tion of the concentrations of X and Y molecules, and were demonstrably stable
in time (Fig. 7a). Furthermore, these patterns were reasonably robust to devi-
ations from a zero majority, as seen by varying [X] both above and below the
value of [Y] (Fig. 8). We next simulated the DSD version of the consensus net-
work, described in [17]. This network has a majority threshold that is not 1:1,
owing to differences in the effective rate constants of the two autocatalytic re-
actions. Simulations of random perturbations to [X] = 7.5 nM and [Y] = 5 nM
led to the emergence of patterns that persisted in excess of 10 days, similar to
the CRN model, both in the absence (Fig. 7b) and presence (Fig. 7c) of fast leaks
arising from dysfunctional dsDNA gates or ssDNA strands. The presence of



Fig. 7. Pattern formation in 1d for diffusive consensus networks. Simulations were
carried out using vDSD for 1d domains. (a) The CRN version of the consensus net-
work (5) was simulated with [X] and [Y] initialised with random perturbations to 5 nM
of strength 0.2 (see Appendix A) at each grid-point. (b) DSD version of the consensus
network assuming no leaks. (c) DSD version of the consensus network assuming leak
parameters as quantified in [17]. The concentration of X is indicated by the colour bars
on the right, in nM units.

Fig. 8. Robustness of stationary patterns to initial conditions. The reaction-diffusion
equations were solved for the CRN version on a 0.1 m 1d grid of 101 points, analogous to
Fig. 7. Using the random option for the spatialic directive, initial conditions were random
perturbations from [Y] = 10 nM and [X] as indiciated on the horizontal axes. Simula-
tions were conducted 10 times each with [X] initialised over 0.1 nM increments between
8 nM and 12 nM. After 20 days of simulation, the mean average of concentrations for
(a) X, (b) Y and (c) B was computed over the domain. When the mean concentration of
X is 0, this indicates that no stationary pattern was observed, and similarly when the
mean of [X] is equal to 10 + X0. Mean concentrations in between these values indicate
the presence of stationary patterns. This illustrates how robustly deviations from the
unstable coexistence state can be stabilised by diffusion.

leaks increased the maximum concentration of [X] considerably as compared
with the CRN or DSD system without leaks, though gave qualitatively similar
patterns in the same spatial domain.

Spatial patterns were also observable in 2d domains (Fig. 9). Starting from
a random initial configuration of the concentrations of X and Y molecules, pat-
terns with high amplitude emerged within 1 day of simulated time in CRN (Fig.



Fig. 9. Pattern formation in 2d for diffusive consensus networks. Simulations were
carried out using vDSD for 2d domains. (a) The CRN version of the consensus network
(5) was simulated with [X] and [Y] initialised with random perturbations to 5 nM at
each grid-point. (b) DSD version assuming no leaks. (c) DSD version assuming leak
parameters as described and quantified in [17]. The concentration of X is indicated by
the colour bars on the right, in nM units.

Fig. 10. Stationary pattern for the consensus network in a 2d domain. The CRN version
of the consensus network (5) was simulated using vDSD, using the CRN tab, on a 0.05 m
x 0.05 m grid with 101 points in each dimension. The initial conditions were set to [Y] =
10 nM uniformly, and [X] = 100 nM in a central square of size 0.025 m x 0.025 m. (a) The
time-evolution of [Y] at times specified above each panel. (b) The horizontal position
at which [Y] = 5 nM at each time-slice, at the middle of the vertical axes (indicated by
dashed lines in a).



9a), and DNA strand displacement (Figs. 9b,c) models. As for 1-dimensional
simulations, leaks did not change the qualitative behaviour of the patterns,
though increased the maximum concentration of X strands throughout. How-
ever, in contrast to 1d, we found that the patterns gradually disappeared over
time (up to 10 days from the start of the simulated experiment). This might be
due to an increased directional effect of diffusion in 2d, though could not be
corrected for by reducing the rate of diffusion (simulations not shown). How-
ever, we found that stationary patterns could arise in 2d problems in invasion
scenarios, in which invading species X were placed at the centre of a spatially
homogeneous concentration of Y (Fig. 10). In simulations of the CRN model, a
wave separating regions of high [X] from high [Y] transiently moved position,
though became spatially stable by 2 days of simulated time (Fig. 10). These con-
trasting behaviours emphasise the importance of initial conditions on pattern
formation in an experimental setting.

4 Discussion

In this article, we have shown that purely DNA-based circuits have great po-
tential for producing spatial patterns. By using an experimentally demonstra-
ble strategy for mapping CRNs to DNA strand displacement circuits, we pro-
vide realistic analysis of emergent spatiotemporal dynamics in the presence of
isothermal diffusion. Specifically, we find that strand displacement realisations
of autocatalytic circuits are particularly sensitive to leaks, which completely
disrupt wave propagation. Additionally, diffusion degrades periodic travelling
waves emanating from a strand displacement realisation of the Lotka-Volterra
predator-prey network. However, we find that the consensus network in [17]
produces stationary and travelling waves in different scenarios, both of which
are robust to the presence of leaks. More generally, our simulations demonstrate
that it is possible to exploit chemical diffusion to produce emergent pattern for-
mation at the centimetre scale. The formation of patterns at this scale could
open up new opportunities for programmed self-assembly.

The ability to design robust DNA-based circuits in the presence of unplanned
interactions is a fundamental problem in molecular programming. While we
expect DNA synthesis methods to improve over time, there will likely always
be some imperfections. Therefore, the ability to both experimentally charac-
terise and model leaks will continue to be important for fine-tuning DNA cir-
cuits. We found that leaks had varying impacts on emergent pattern formation.
Autocatalytic circuits were particularly sensitive (Fig. 3a), while the consensus
network was qualitatively robust (Figs. 7 & 9).

To experimentally observe the spatial patterns presented here, we note sev-
eral challenges. To reproduce the scenarios in Figs. 3 and 6b,c, input DNA
strands will need to be applied in a specific sub-region of the media. However,
pipetting will likely result in a disturbance that will produce a travelling wave
in the fluid, which might disrupt the diffusion of the DNA molecules within
the solution. Therefore, pattern formation arising from more spatially uniform



initial conditions is likely to be easier to achieve. In Figs. 7 and 9, initial condi-
tions were set to be random perturbations from a target concentration, which
models the inevitable spatial heterogeneity in a mixture.

Our approach to analysing DNA strand displacement circuits in the pres-
ence of diffusion has involved the extension of the Visual DSD software to de-
scribe and simulate reaction-diffusion equations. This has allowed us to conve-
niently analyse the dependence of spatiotemporal dynamics on different DNA
gate designs, unplanned DNA interactions, fluctuations in initial conditions
and kinetic rates. Future extensions could include the specification of irregu-
lar domains and a range of boundary conditions, which could be important for
applications of DNA-based patterning or for describing experimental systems
such as microchemostats, which involve measuring molecular interactions in
chambers subjected to fluxes of reactants.

It is hoped that our methodology and corresponding software implemen-
tation will provide the means to design strand displacement circuits that both
acknowledge and take advantage of the inherent spatial heterogeneity in phys-
ical systems.
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A Supporting information for modelling in Visual DSD

Programming CRN and DSD models. Both CRN and DSD models are anal-
ysed in this article. Simulation of DSD models uses the main code window in
vDSD, as described previously [19]. For simulating CRN models, a new CRN
code window is available in vDSD. The CRN window interprets code that is
based on the LBS language, which is also used in Visual GEC. The same direc-
tives described above may be used to shape spatial simulations from the CRN
window. Code for all models presented in this article is available from the au-
thors on request.

Directives for spatial simulator. The directives relevant to spatial simulations
are summarised in Table S1.

Table S1. Directives for specifying properties of spatial simulations in Visual DSD.

Directive Arguments Description Default

diffusion [species] [rate] Diffusion rate of a specified species 0
defaultdiffusion [rate] Default diffusion rate of all species

(unless otherwise specified)
0

dt [value] Time-step for Crank-Nicolson finite
difference method

0.1

xmax [value] Width of domain 1.0
nx [value] Number of points in discretisation

of space
11

spatialplot [species] Species to be plotted Unpred-
ictable

spatialic Variable
(see above)

Spatially heterogeneous initial con-
ditions

None

spatialbc periodic/zeroflux Boundary conditions periodic

Initial conditions for spatial simulations are specified using spatialic with the
following arguments:

– directive random [strength]. Here, we use perturbations to a nominal
concentration according to

x = x0 (1 + σ(u− 0.5)) ,

where u ∼ U(0, 1) and σ is the strength of the perturbation, specified in the
directive. Here, we use σ = 0.2 throughout.

– directive centralcore [width] [species] [internal] [external].
Here, we initialise specified molecules to have an internal concentration
in a central channel of a specified relative width, and an external concen-
tration elsewhere.



The selection of boundary conditions is specified via the spatialbc directive,
which can be specified as either periodic or zeroflux (Neumann). Here, we
used Neumann boundaries for all 1d simulations and periodic for all 2d simu-
lations.

B Travelling wave speed using Fisher’s equation

The reaction-diffusion equations for the autocatalytic reaction (3) are

∂[X]

∂t
= −k[X][Y] + D

∂2[X]

∂x2

∂[Y]
∂t

= k[X][Y] + D
∂2[Y]
∂x2

In the scenario simulated in Fig. 3, there is an initial concentration of [X](0, x) =
X0 = 5 nM applied homogeneously in space (∀x ∈ [0, L] where L is the width of
the domain). As such, the effect of X diffusion is negligible, and the travelling
wave will be approximately determined by the diffusion of Y alone. Also, as Y
molecules diffuse away from the central region, they will convert X into them-
selves, meaning that a first-order approximation for [X](t, x) is X0 − [Y](t, x).
Therefore, we can describe the evolution of the travelling wave in terms of the
single reaction-diffusion equation

∂[Y]
∂t

= k(X0 − [Y])[Y] + D
∂2[Y]
∂x2

Applying the rescaling [Y] = X0.θ leads to Fisher’s equation

∂θ

∂t
= f θ(1− θ) + D

∂2θ

∂x2

with f = kX0. Fisher’s equation gives travelling waves with speed c = 2
√

f D,
as is noted in the main text.



C Implementation of the Lotka-Volterra predator-prey
network using two domain DNA strand displacement with
a single toehold.

Initially, we considered a design in which a single toehold sequence was used,
with signal identities based on differences in the recognition domain sequence
(Fig. S1). An immediate consequence of using a single toehold throughout is a
diminished opportunity for engineering slower/faster reactions with variable
length toeholds. Note that this does not preclude there being context-specific
variation in the rates of strand displacement. In particular, binding of a signal
strand to exposed toeholds that are not flanked either side by duplexes is no-
ticeably slower [17]
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Fig. S1. Realisation of the Lotka-Volterra CRN using two-domain gates with a single
uniform toehold sequence.

The single toehold design exhibits considerable crosstalk between gates.
A series of auxiliary helper strands are required to release output/translator
strands in the general CRN implementation approach. In this case, many of



the helpers required for the join gate are released from the fork gates as by-
products, and vice-versa. The JoinX gate receives 〈t x〉 (X) strands, displacing
〈x t〉 strands to reveal a toehold for 〈t rx〉 helper strand binding, which dis-
places the translator 〈rx t〉. Binding of the 〈rx t〉 strand to the Fork2X gate
releases a 〈t rx〉 strand and exposes a toehold for 〈x t〉 binding. In this way,
the 〈x t〉 strand is both a by-product of the JoinX (and JoinXY) gate and a helper
on the Fork2X gate. Similarly, the 〈t rx〉 strand is a helper on the JoinX gate and
a by-product of the Fork2X gate. After displacement of the first 〈t x〉 strand on
the Fork2X gate, the 〈x t〉 also acts as a helper for the next stage, which dis-
places a second 〈t x〉 strand.

The consequences of auxiliary strand crosstalk are both positive and nega-
tive. Crosstalk adversely affects the ability to control the effective rate constrant
of a high-level reaction, as demonstrated in [17]. However, since helper strands
are released from other gates, their consumption is effectively slower. These
factors illustrate ideosyncracies in using generalised gate designs for imple-
menting arbitrary CRNs using DSD systems.

Fig. S2. Parameter analysis for the single-toehold DSD implementation of a Lotka-
Volterra oscillator. Simulations were run for the single-toehold Lotka DSD system, with
variations in the rate of binding of input strands to Join gates. The simulations of (a) 〈t
x〉 and (b) 〈t y〉 were analysed for the number of turning points in 96 h. c,d. Example
simulations corresponding to the black cross-hairs in the leftmost panels of a and b.
Here, kJoinXY = 10−4 nM−1s−1, the values for both kJoinX and kJoinY are as indicated in
the legend, and all other rates of toehold-mediated strand displacement were assumed
to be 10−4 nM−1s−1. All gates and auxiliary strands were initialised at 200 nM, and 〈t
x〉 and 〈t y〉 were initialised at 10 nM.



Fig. S3. Spatiotemporal dynamics of the single toehold DSD implementation of a
Lotka-Volterra oscillator. This DSD implementation was simulated in vDSD using pa-
rameter values identified in Fig. S2 as leading to oscillatory dynamics. Specifically,
kJoinX = kJoinY = 2× 10−6 nM−1 s−1, and all other toehold-mediated strand displace-
ment rates at k = 10−4 nM−1 s−1. (a) Simulation of the spatially inhomogeneous prob-
lem. (b) Simulation of spatiotemporal dynamics in 1d. (c) Simulation of spatiotemporal
dynamics in 2d. In b,c, the domain was 0.1 m wide, and the solver used 101 grid-points.
The initial conditions were centralcore of relative width 0.1, applied to 〈t x〉 and 〈t
y〉 at concentration 1 nM internally and 0 nM externally. All dsDNA gates and ssDNA
auxiliary strands were initialised uniformly at 200 nM.


