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Abstract 
Most malicious attacks compromise system security 

through memory corruption exploits. Recently proposed 

techniques attempt to defeat these attacks by protecting 

program control data. We have constructed a new class of 

attacks that can compromise network applications without 

tampering with any control data. These non-control data 

attacks represent a new challenge to system security. In 

this paper, we propose an architectural technique to 

defeat both control data and non-control data attacks 

based on the notion of pointer taintedness. A pointer is 

said to be tainted if user input can be used as the pointer 

value. A security attack is detected whenever a tainted 

value is dereferenced during program execution. The 

proposed architecture is implemented on the SimpleScalar 

processor simulator and is evaluated using synthetic 

programs as well as real-world network applications. Our 

technique can effectively detect both control data and non-

control data attacks, and it offers better security coverage 

than current methods. The proposed architecture is 

transparent to existing programs. 
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1. Introduction 
Most malicious attacks, viruses, and worms exploit low-

level programming errors to compromise the security of 
target systems. Well-known examples include the Morris 

Worm that exploited a buffer overflow vulnerability in 
fingerd, the Code Red Worm that exploited a buffer 
overflow in Internet Information Service (IIS), and the 
format string attack against the WU-FTP daemon. A wide 
spectrum of programming errors allow attackers to mount 
memory corruption attacks, including buffer overflow, 
heap corruption (such as heap buffer overflow and double 
free), integer overflow, format string, and LibC globbing 
vulnerabilities. Our survey indicates that this type of 
vulnerability accounts for 67% of CERT advisories in the 
years 2000-2003 [8]. 

Several means have been proposed to defeat security 
attacks. Type-safe languages, compiler analyses, and 

formal methods have been adopted to prevent 
programmers from writing insecure software. But despite 
substantial research and investment, the state of the art is 
far from perfect, and as a result, security vulnerabilities are 
constantly being discovered in the field. The most direct 
counter-measure against vulnerabilities in the field is 
security patching.  Patching, however, is reactive in nature 
and can only be applied to known vulnerabilities. The long 
latency between bug discovery and patching allows 
attackers to compromise many unpatched systems. An 
alternative to patching is runtime vulnerability masking 
that can stop ongoing attacks. Compiler and library 
interception techniques have been proposed to mask 
security bugs, usually by terminating a vulnerable 
application upon the detection of an attack. These 
techniques have been successful in defeating a number of 
specific types of attacks, in particular stack buffer overflow 
[5][11] and format string attacks [6].  

Recently, processor architecture mechanisms—no-
execute page-protection (NX) processors developed by 
AMD and Intel [13], Secure Program Execution [18], and 
Minos [7]—have been proposed to thwart most types of 
memory corruption attacks. The key assumption made in 
these proposals is that, in order to launch a successful 
memory corruption attack, the attacker must either change 
control data (code pointers) that are subsequently loaded 
into the processor’s program counter register (PC), or 
execute malicious code supplied by attackers. Examples of 
control data include function pointers and return addresses. 
In this paper, we refer to these techniques as control-flow 
integrity based protections.   

We examined a number of vulnerabilities in major 
network applications, and found that these applications can 
also be compromised by corrupting non-control data. Non-
control data include integers representing user identity, 
server configuration strings, and pointers to user input 
data. We show that many non-control data attacks result in 
the same severity of security compromises as the control 
data attacks, usually the possession of root privileges. 
Since these attacks do not corrupt control data, existing 
architectural protection mechanisms are not able to detect 
the attacks. Hence, non-control data attacks represent a 
challenge to defeating memory corruption attacks. In this 
paper, we propose a processor architecture level technique 
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that can defeat both control data and non-control data 
memory corruption attacks.  

The basis of our technique is the notion of pointer 

taintedness, which we initially introduced in [10] to 
formally reason about many types of memory 
vulnerabilities in software using a static program analysis 
technique.1 A pointer is said to be tainted if the pointer 
value comes directly or indirectly from user input. A 
tainted pointer allows the user to specify the target memory 
address to read, write, or transfer control to, which can 
lead to system security compromise. The attacker’s ability 
to specify a malicious pointer value is crucial to the 
success of memory corruption attacks.  

We proposed in [10] an extended memory model in 
which each memory location (and each register) is 
associated with a Boolean property taintedness to indicate 
whether the data in this location (and this register) are 
derived from user input. The same memory model is 
employed to implement the runtime defense mechanism 
discussed in this paper. Any data received from external 
sources are marked tainted. External data sources include 
network, file system, keyboard, command line arguments, 
and environmental variables. Load, store, and ALU 
instructions are responsible for propagating taintedness 
from register to register, memory to register, and register 
to memory. Anytime a data word that has tainted bytes is 
used for memory access or control flow transfer, an alert is 
raised and the application process is terminated.  

The proposed architecture is transparent to the 
application, and thus existing applications can run without 
recompilation or relinking. For example, precompiled 
SPEC 2000 benchmark applications are able to run on the 
simulated architecture without generating any false alerts. 
This is an important advantage over compiler-based 
pointer protection methods, such as PointGuard [6], that 
need to statically identify all data variables that can be 
used as pointers. Accurate pointer type analysis has proven 
to be a hard problem in practice. The proposed architecture 
requires no source code access or compile-time type 
information. Our technique is prototyped as an enhanced 
SimpleScalar processor simulator [20]. 

Attacks that overwrite both control and non-control data 
against a number of real-world network applications are 
used to evaluate the effectiveness of the proposed defense 
technique. The accurate detection of all these attacks 
shows the strength of our approach and indicates a 
significant improvement in security coverage. 

2. Related Work 
Both static compiler analysis and runtime detection 

techniques have been developed to defeat memory 

                                                           
1 The notion of taintedness has been proposed in Perl and other previous 
literature such as [12] and [21]. Tainted data is defined as data coming 
from external input. The novelty of our work is to view the root cause of 
most memory corruption attacks to be tainted pointers.  

corruption attacks. Generic static techniques such as 
SPLINT [12] and Extended Static Checking [9] can check 
if the specified security properties are satisfied in program 
code. Domain-specific code analysis techniques are 
designed to uncover specific types of vulnerabilities, such 
as buffer overflow vulnerability [23] and format string 
vulnerabilities [21]. Although static code analysis 
techniques are helpful in finding security vulnerabilities, 
their scalability, analysis granularity and dependency on 
application-specific knowledge have lead to significant 
false positive and false negative rates. Runtime techniques 
defeat security attacks in the field. Earlier techniques 
provided protection against specific types of attacks. 
Representative techniques include StackGuard [11] and 
Libsafe [5] to defeat stack buffer overflow attacks, and 
FormatGuard [6] to defeat format string attacks. 
Defensive techniques which randomize process memory 
layout to defeat security attacks are proposed [2][4][24]. 
Although the principle is generic against most memory 
corruption attacks, there are still barriers in the 
implementation and deployment. Randomizing the address 
of every object, especially objects in the static data 
segment, is a challenging issue that requires further 
research. In addition, the deployment of these techniques 
on 32-bit architectures has been shown to suffer from low 
entropy2 – they cannot provide more than 16-20 bits of 
entropy, which is not sufficient to defeat brute-force 
attacks [19]. 

Advances in computer architecture research have 
resulted in a number of techniques that are considered 
generic against all types of memory corruption attacks. 
Secure Program Execution [18] and Minos [7] are 
techniques to protect control data integrity. While effective 
in defeating control data attacks, these techniques are 
unable to defeat non-control data attacks.  

The notion of taintedness was first proposed in the Perl 
programming language as a security feature. Inspired by 
this, static detection techniques SPLINT [12] and CQUAL 
[21] apply taintedness analysis to guarantee that user input 
data is never used as the format string argument in printf-
like functions. In [10], we analyzed many categories of 
security vulnerabilities and concluded that their common 
root cause is the taintedness of pointers. A memory model 
and the algorithm used to detect pointer taintedness were 
initially provided in the paper as a rewriting logic 
framework to formally reason about security vulnerabilities 
in programs. Secure Program Execution [18] and Minos 
[7] techniques, which were proposed more recently, rely 
on the definitions of spuriousness and integrity of data. We 
believe these definitions bear certain similarities to 
taintedness. Their memory models and algorithms are also 

                                                           
2 In this context, the term entropy means the randomness of the address 
of each program element. Higher entropy implies that an attacker has 
more difficulty guessing the correct memory layout.  



similar to what we proposed in [10]. However, a 
fundamental difference is that they do not detect the 
taintedness of pointers in general, but only the taintedness 
of control data. They view control data taintedness as the 
result of memory corruptions, rather than the root cause of 
memory corruptions. 

3. Pointer Taintedness Based Attacks 
We analyze the 107 CERT advisories from 2000 

through 2003. Figure 1 shows a breakdown of the leading 
programming vulnerabilities. Buffer overflow results from 
writing to an unchecked buffer; format string 
vulnerabilities result from incorrect invocations of printf-
like functions; integer overflow results from interpreting 
extremely large signed integers as negatives; heap 
corruption results from corruption of the heap structure or 
freeing a buffer twice; and globbing vulnerabilities result 
from an incorrect invocation of LibC function glob(). 
These categories collectively account for 67% of the 
advisories. Although attacks exploiting these different 
types of vulnerabilities have different appearances, we 
observe a common characteristic among them: the attack 
must first taint a pointer and then trick the victim program 
into dereferencing that pointer. The attacker’s ability to 
specify a pointer value is a crucial requirement for the 
success of a memory corruption attack.  

Figure 2 presents examples of stack buffer overflow 
attack, heap corruption attack, and format string attack, 
illustrating how pointer taintedness enables these attacks. 
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Figure 1: Breakdown of Security Vulnerability Categories 

in CERT Advisories (2000–2003) 
 

Stack buffer overflow attack. Each function frame 
consists of the return address, the frame pointer, and the 
local stack variables of the function. Function exp1() 
defines a stack buffer buf with 10 bytes, which is located a 
few words before the return address and the frame pointer. 
The subsequent scanf() call can read an arbitrarily long 
input supplied by the user. When the user input data (i.e., 
tainted data) overrun the buffer buf, the memory locations 
of the frame pointer and the return address are tainted by 
the input data (shown as the grey area). The tainted return 
address is used when function exp1() returns. The control 
flow of the program is therefore diverted to an attacker-
specified location, usually the entry of malicious code the 
attacker wants to execute. More details about stack buffer 
overflow attacks can be found in [1]. 

 
Stack Buffer Overflow 
void exp1() { 
  char buf[10]; 
  scanf("%s",buf); 
}    
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Heap Corruption Attack 
void exp2() { 
  char * buf; 
  buf = malloc(8);  
  scanf("%s",buffer); 
  free(p) 
} 
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Format String Attack 
void  exp3(int s) { 
  char buf[100]; 
  recv(s,buf,100,0); 
  printf(buf); 
} 
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Figure 2: Examples of Stack Buffer Overflow, Heap Corruption and Format String Attacks 



Heap corruption attack. Free memory chunks are 
organized by the heap manager as a doubly linked list. 
Programming errors, such as heap buffer overflow and 
double free, allow malicious users to corrupt the forward 
and backward links (i.e., pointers) in this list. In function 
exp2(), the buffer buf with 8 bytes is allocated on the heap, 
followed by a free memory chunk  (chunk B).  The 
beginning few bytes of each free chunk are used as the 
forward link (fd) and the backward link (bk) of the double-
linked list. In this case, since free chunks A, B, and C are 
in the list: B->fd=A, B->bk=C. The scanf() call allows an 
attacker to overflow buf, causing B->fd and B->bk to be 
tainted. When buf is to be freed later, memory chunk B is 
taken out of the doubly linked list, during which the 
assignment B->fd->bk=B->bk is executed. Since both B-

>fd and B->bk are tainted pointers, the attacker can write 
an arbitrary word to an arbitrary memory location. 
Traditionally, the attacker exploits this vulnerability to 
overwrite control data, such as return addresses, function 
pointers, and GOT entries3 in order to execute malicious 
binaries supplied by the attacker. A more detailed 
explanation of heap corruption attacks can be found in [3]. 

Format string attack. Format string attacks exploit the 
vulnerabilities caused by incorrect invocations of printf-
like functions, such as printf, sprintf, and syslog. Function 
exp3() contains such a vulnerability where the user input 
buffer buf is used as the first argument of printf, although 
the correct invocation should be printf(“%s”,buf).  
Because buf is filled in the recv() call, the data in buf are 
tainted. For example, an attacker can send a string 
abcd%x%x%x%n to overwrite the memory location 
0x64636261, corresponding to the leading four bytes of the 
input string “abcd”. The internal mechanism of the format 
string attack is as follows: vfprintf() is a child function of 
printf(), which has two pointers: fmt is the format string 
pointer to sweep over the format string (buf in our 
example), and ap is the argument pointer to scan through 
the argument list corresponding to the format directives 
(e.g., %x, %d and %n). When fmt points to the format 
directive %n, an integer count is written to the location 
pointed by *ap, i.e., *ap=count. The attacker embeds %x 
directives in order to precisely move pointers ap and fmt so 
that when fmt points to %n, ap happens to move into the 
tainted region, pointing to the word 0x64636261. 
Therefore, the statement *ap=count is effectively 
*0x64636261=count, allowing the attacker to specify an 
arbitrary location to write. The root cause of the attack, 
again, is the pointer taintedness: 0x64636261 is a tainted 
word that is dereferenced as a pointer. The format string 
attack is also explained in a publicly available article [22]. 

                                                           
3 The GOT entry is a function pointer. Usually, in position-independent 
code, e.g., shared libraries, all absolute symbols must be located in the 
GOT, leaving the code position-independent. A GOT lookup is 
performed to decide the callee’s entry when a library function is called. 

The above examples show that pointer taintedness is a 
common root cause of many memory corruption attacks. 
This suggests an opportunity for defeating such attacks: 
preventing tainted data from being dereferenced. 

4. Architectural Support for Pointer 
Taintedness Detection 

This section presents the design and implementation of 
the architecture for pointer taintedness detection. Briefly, 
we extend the existing memory system by adding an 
additional taintedness bit to each byte, in order to 
implement the memory model we proposed in [10]. The 
taintedness bit is set whenever data from input devices is 
copied into the memory. Within the processor execution 
engine, the taintedness bit is propagated when tainted data 
are used for an operation. Whenever a tainted word is used 
as an address value for memory access (data or code 
accesses), an exception is raised by the processor. The 
operating system then handles the exception and stops the 
current process to defeat the ongoing attack. 

4.1. Extended Memory Architecture 
The memory system architecture is extended to support 

the notion of taintedness. A taintedness bit is associated 
with each byte in memory. When a memory word is 
accessed by the processor, the taintedness bits are passed 
through the memory hierarchy together with the actual 
memory words. L2 and L1 caches and data storage within 
the processor (registers and buffers) are also extended with 
the additional taintedness bits.  

The detection mechanism is designed on top of the 
extended memory model. Although the underlying 
principle is general enough to be applicable to other 
architectures, the discussion is given in the context of 
SimpleScalar RISC architecture. Figure 3 gives the 
enhancements of the pointer taintedness detection 
mechanism implemented as extensions of SimpleScalar. 

4.2.  Taintedness Tracking 
When a program performs operations using its data 

from memory, the taintedness bit should be propagated. 
The processor pipeline is modified to track taintedness. In 
general, any CPU operation that uses tainted data as source 
should produce tainted result. This mechanism is similar to 
the ones proposed in [7] and [18]. 

We distinguish between memory operations and ALU 
operations. A memory load operation moves data from 
memory to processor register, and a store operation moves 
data from processor register to memory. Corresponding to 
the one-bit extension to each memory byte, the processor 
registers are also extended to include one taintedness bit 
for each byte. For each load instruction, the data bits as 
well as the taintedness bits are copied from memory to 
register along the load path. Similarly, store instructions 
write normal data bytes as well as taintedness bits to the 
memory along the store path.  
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Figure 3: Architecture Design of Pointer Taintedness Tracking and Detection 

ALU instructions are responsible for propagating 
taintedness between registers. The propagation is 
implemented by the ALU taintedness tracking logic 
(shown as a shaded area in Figure 3). With the few 
exceptions noted below, the ALU taintedness works as 
follows: for operations with two source operands, the 
taintedness bits of a resultant register are obtained by the 
bitwise OR of the corresponding taintedness bits in the 
source operand registers. For example, after executing 
ADD R1,R2,R3, R1 is tainted if and only if R2 is tainted or 
R3 is tainted.  

The following exceptional cases require special 
handling. (1) Shift instructions cause taintedness to 
propagate within the operand register. If a byte in the 
operand register is tainted, then the taintedness bit of its 
adjacent byte along the direction of shifting is set to 1. (2) 
The taintedness bits of any byte AND-ed with an untainted 
zero are cleared, because the resulting byte value is 
constant 0, regardless of user input. (3) The compiler 
idiom XOR R1,R2,R2 is frequently used to assign constant 
0 to the target register R1. The taintedness bits in R1 are 
cleared as a result. This idea is borrowed from previous 
techniques [7] and [18]. (4) Compare instructions are used 
for data range checking. If a tainted register R1 is 
compared with some untainted data in R2, the taintedness 
bits in R1 are cleared after the operation. The rationale is 
that programmers often write input validation code to 
check certain safety properties. The validation code is in 
the form of compare instructions. For application 
compatibility, any data that undergoes validation is trusted 

after such an operation. This could potentially lead to 
missed detection (a.k.a. false negatives). For example, in 
situations in which the program does check user input 
values but the check algorithm is flawed. The false 
negative scenarios are discussed in Section 5.3. 

Table 1 summarizes the taintedness tracking logic. The 
ALU taintedness tracking logic consists of a multiplexer 
(MUX) selecting from four sources of input based on the 
opcode of the current instruction. These multiplexer inputs 
correspond to the five types of ALU instructions listed 
above. 

Table 1: Taintedness Propagation by ALU Instructions 
ALU Instruction Type Taintedness Propagation 

ALU instructions except shift, 
compare, and AND, e.g., op 

R1,R2,R3 

Tainedness of R1 = 
       (Taintedness of R2) or 
       (Taintedness of R3). 

Shift instruction If a byte in the operand is tainted, 
the taintedness bit of its adjacent 
byte along the direction of shifting is 
set to 1. 

AND instruction Untaint each byte AND-ed with an 
untainted zero. 

XOR R1,R2,R2 Taintedness of R1 = 0000. 

Compare instruction  Untaint every byte in the operands of 
the compare instruction. 

4.3. Attack Detection 
In general, whenever a tainted data value is used for 

memory access, an alert should be raised. The proposed 
detection mechanism is described using the instruction set 
architecture of the SimpleScalar processor simulator. In 
SimpleScalar, only the load/store instructions and the jump 
instruction JR (i.e., jump to the address in a register) can 



dereference a pointer, which is stored in a register. The 
jump pointer taintedness detector is placed after the ID/EX 
(instruction decode/execution) stage when the jump target 
register value is available. The four taintedness bits in the 
target register are OR-ed. If any byte in the word is tainted, 
the output of the OR-gate is 1 and the instruction is marked 
as malicious. The detector of tainted pointers for load/store 
instructions is placed after the EX/MEM (execute/memory) 
stage; here the four taintedness bits of the address word are 
inputted into an OR-gate, and the instruction is marked as 
malicious if the output of the gate is 1 and the instruction 
opcode is load or store. The actual security exception is 
raised in the pipeline’s retirement stage. Retirement of an 
instruction marked as malicious causes the pipeline to raise 
a security exception. The operating system can then 
terminate the process and stop the ongoing intrusion. 

4.4.  Taintedness Initialization 
Any data received from an external device that can 

potentially be controlled by a malicious user are 
considered tainted, e.g., input coming from network, file 
system, keyboard, command line arguments, and 
environmental variables. All such data are passed from an 
external source to the program buffer through operating 
system calls. The system call implementations are 
modified to mark every byte in the buffer as tainted when it 
is returning from kernel space to user space. This can be 
implemented by adding every word in the buffer to a 
special register RT. The value of RT is always 0, but every 
taintedness bit of RT is 1. In the current implementation, 
we modify the system call module of the SimpleScalar 
simulator for this purpose. In particular, all data delivered 
to the application through the SYS_READ (local I/O) and 
SYS_RECV (network I/O) are marked as tainted. These 
two system calls are invoked by most input functions in C 
library, such as scanf(), fread(), recv(), and recvfrom().   

In summary, three subsystems in the SimpleScalar 
simulator are modified to implement the algorithm: (1) The 
memory subsystem is extended with the taintedness bits in 
the memory, the cache, and the register file. (2) The 
original system call implementation is modified so that 
SYS_READ and SYS_RECV mark every byte in the 
receiving buffer as tainted. (3) The instruction pipeline is 
extended to implement taintedness calculation, 
propagation, and detection. 

5. Evaluation 
The proposed architecture has the following properties: 

(1) high coverage in detecting attacks tampering with both 
control and non-control data; (2) transparency to 
applications, i.e., the detection does not rely on any 
internal knowledge on the applications, e.g., buffer sizes, 
variable upper bounds, or program semantics; (3) no 
known false positives; and (4) very small space overhead 
and performance overhead. These properties are evaluated 

by running synthetic programs, real network applications, 
and SPEC benchmarks on the proposed architecture. 

5.1.  Security Protection Coverage 
The pointer taintedness detection technique provides a 

significant improvement in security coverage by protecting 
applications from both control data attacks and non-control 
data attacks. The security coverage of existing control-flow 
integrity based protections was evaluated against control 
data attacks only. This section shows that non-control data 
attacks do exist and can cause the same level of security 
compromise in many real applications. For a fair 
comparison, we employ several applications that were 
previously used to assess the existing techniques. 

5.1.1. Synthetic Vulnerable Programs 
The effectiveness of the proposed approach is first 

demonstrated on a number of synthetic functions that are 
vulnerable to stack buffer overflow, heap corruption, and 
format string attacks respectively. These functions and 
attacks were illustrated earlier in Figure 2. 

Detection of stack buffer overflow. When a string of 
“a” characters of 24 bytes is passed to exp1() running on 
our architecture, an alert is raised at the return instruction 
(i.e., JR $31 on SimpleScalar) of exp1(), which indicates 
that the return address is tainted as 0x61616161, 
corresponding to four “a” characters in the input. 

Detection of heap corruption. Function exp2() 
contains a heap overflow vulnerability. An attack is 
launched by inputting 12 “a” characters to the 8-byte 
buffer. When the buffer is freed, a load-word instruction 
LW $3,0($3), which is in function free(), raises an alert. As 
described in Section 3, a statement executed in free() is B-

>fd->bk=B->bk. When the alert is generated, register $3 
equals B->fd, which is a tainted word 0x61616161 due to 
the buffer overflow condition. Because the detected 
instruction attempts to dereference register $3 (i.e., the 
0($3) indirect addressing mode) when its value is tainted, 
the alert is raised. 

Detection of format string attack. The effectiveness 
of detecting format string attacks is demonstrated by 
function exp3(). The function receives the string 
abcd%x%x%x%n from the socket. When printf() is called, 
a store-word instruction SW $21,0($3) in vfprintf() raises 
an alert. This store instruction is compiled from the 
statement *ap=count described in Section 3, where the 
value of ap is in register $3 and the value of count is in 
register $21. When the alert is raised, the value of register 
$3 in 0($3) dereference is 0x64636261, corresponding to 
the first four bytes of the input string, “abcd”.  

5.1.2. Real-World Network Applications 
The three examples discussed in the previous section 

demonstrate that pointer taintedness detection can defeat 
many types of memory corruption attacks. This section 
presents results from testing real-world attacks against 



network applications running on the SimpleScalar 
augmented with pointer taintedness detection capability. In 
addition, the SimpleScalar processor simulator is extended 
to support network socket applications. The enhancement 
allows us to run many real-world network server 
applications. Both control data attacks and non-control 
data attacks are used for the evaluations. The pointer 
taintedness detection technique succeeds in defeating both 
types of attacks.   

WU-FTPD format string attack. Washington 
University FTP Daemon (WU-FTPD) is one of the most 
widely used FTP servers. The Site Exec Command Format 
String Vulnerability [14] is a vulnerability in WU-FTPD 
allowing attackers to overwrite an arbitrary memory 
location.4  We constructed a non-control data attack, in 
which the format string vulnerability is exploited to 
overwrite an integer word representing the ID of the login 
user. This is sufficient to escalate the attacker’s privilege to 
the root privilege, offering the attacker a full control on the 
file /etc/passwd so that he/she can upload a different 
version of this file. After writing a malicious entry such as 
“alice:x:0:0::/home/root:/bin/bash” in the new version, the 
attacker leaves a backdoor to login later as Alice, who 
possesses root privileges. Since the attack does not corrupt 
any control data, it is not detectable by existing techniques. 

 WU-FTPD runs on the proposed architecture. Table 2 
shows the attack/detection steps. When the FTP server is 
ready to accept user input, the attacker (the FTP client) 
first authenticates to the server using USER and PASS 
commands, then issues a SITE EXEC command to exploit 
the vulnerability. The target integer word representing the 
user ID is located in the address 0x1002bc20, so the 
command used to overwrite this word is: 

site exec \x20\xbc\x02\x10%x%x%x%x%x%x%n 

Immediately after the attack sends the malicious SITE 

EXEC command, the pointer taintedness detector raises an 
alert indicating that the instruction SW $21,0($3) 
dereferences a tainted value in register $3. The value of the 
register is 0x1002bc20, the same as the one specified by 
the attacker as the target address to overwrite. The FTP 
server is stopped when the alert is raised, which effectively 
prevents the attack from succeeding. 

Table 2: Attacking WU-FTPD on the Proposed 
Architecture 

FTP Server 220  FTP server (Version wu-2.6.0(60) Mon Nov 29 
10:37:55 CST 2004) ready. 

FTP Client user user1 

FTP Server 331 Password required for user1 . 

FTP Client pass xxxxxxx    (the correct password of user1) 

FTP Client  site exec \x20\xbc\x02\x10%x%x%x%x%x%x%n 

Alert 44d7b0: sw $21,0($3)           $3=0x1002bc20 

                                                           
4 This vulnerability (with this application) was also chosen in assessing 
Secure Program Execution and Minos, where the control data attack 
published in [14] was used to test the security coverage. 

NULL HTTPD heap corruption attack. Null HTTPD 
is a multithreaded web server for Linux. A heap overflow 
vulnerability has been reported in this application [14]. 
This vulnerability is triggered when an attacker sends a 
POST command with a negative Content-Length field in 
its HTTP header. Due to misinterpretation of the negative 
number, the size of a heap buffer is incorrectly calculated, 
resulting in the possibility of a buffer overflow attack.5  
Known attack programs overwrite control data when the 
overflowed heap buffer is freed, hijacking the control flow 
of the HTTP server. We found an effective non-control 
data attack that only corrupts the CGI-BIN path 
configuration. In HTTP servers with CGI (Common 
Gateway Interface) support, a CGI-BIN path specifies the 
root directory of executables that are allowed to be run 
through HTTP requests. The attack overwrites this path 
configuration to “/bin” so that the command shell 
executable /bin/sh can be started by the attacker with root 
privileges on the server. Thus, the attacker gets a 
completely unrestricted command shell. This attack is 
undetectable by the control data protection techniques 
because only CGI-BIN is a plain-text string. 

In our experiment, the server runs on the proposed 
architecture. A hypothetical attacker attempts to overwrite 
CGI-BIN configuration by tainting the heap doubly linked 
list. Our architecture raises an alert when function free() is 
being invoked, because register $3 is tainted when an 
instruction LW $3,0($3) inside free() is about to run.  

GHTTPD stack overflow attack. Another HTTP 
server, GHTTPD, has a stack buffer overflow vulnerability 
in its logging function [16]. The vulnerable function 
contains a 200-byte stack buffer, which is used to 
accommodate the HTTP request received from the client. 
A traditional way to attack is to send an HTTP request 
longer than 200 bytes, overwriting the return address 
following the buffer in order to run malicious code 
embedded in the HTTP request.  

We constructed a non-control data attack by corrupting 
a pointer to the URL in the HTTP request. A security 
policy of the HTTP protocol requires any URL containing 
a substring “/..” be rejected, to prevent users from 
accessing files outside the predefined HTML and CGI root 
directories. We exploit the vulnerability to change the 
URL pointer to point to an illegitimate URL string 
containing “/..” after the policy is checked. 

GHTTPD runs on the proposed architecture while the 
devised attack is launched. When the server is ready, a 
malicious request GET AAAAAAA….AAAAAAAA 

\x94\x3e\xff\x7f↵↵/cgi-bin/../../../../bin/sh is sent to the 
server. The first part of the request AAAAAAA…AAAAAA 
\x94\x3e\xff\x7f is parsed as a URL. However, due to the 

                                                           
5 This vulnerability (with this application) was chosen in assessing the 
Secure Program Execution technique. 



buffer overflow vulnerability, the last four bytes overwrite 
the pointer of the URL to 0x7fff3e94, which is the address 
of the second part of the string, /cgi-bin/../../../../bin/sh. 
Without the protection provided by our architecture, this 
would force the server to run /bin/sh with root privileges. 
Our mechanism effectively stops the attack when the 
tainted URL pointer is dereferenced in a load-byte 
instruction (i.e., LB).  

Traceroute double free attack. Certain versions of 
LBNL traceroute are vulnerable to an attack involving 
free()-ing of a heap buffer not allocated by malloc() [17]. 
When traceroute is executed with the arguments "-g x -g 
y", savestr() is called twice to parse arguments “-g x” and 
“-g y”. Savestr() reduces calls to malloc() by preallocating 
heap space and performs self buffer management when it is 
invoked subsequently. After "-g x" is parsed and savestr() 
is called, the pointer to the block used by savestr() is 
released using free(). When “–g y” is interpreted, savestr() 
is called again, and the result is written to the block of 
already freed memory. Like for “-g x”, free() is called, but 
this time on a region that has already been released in the 
first free() call. Traceroute crashes because free() is using 
an invalid pointer in an invalid malloc() header. A 
malicious user can take over traceroute using the double 
free attack method: it corrupts pointers used by 
malloc/free, then forces traceroute to overwrite critical 
program data or execute malicious code.  

In our experiment, we use the command line traceroute 

–g 123 –g 5.6.7.8. Without our detection mechanism, this 
results in a successful takeover. Due to our detection 
mechanism, an alert is generated at a store-word 
instruction inside free() because 0x333231 is a tainted 
value when it is dereferenced as a pointer. 

5.2. Evaluation of False Positives 
Along with system security, a crucial criterion of 

defensive systems is the false positive rate, i.e., the 
likelihood that the system raises an alert when there is no 
attack.  

The network applications discussed in Section 5.1 run 
smoothly on the proposed architecture without generating 
any alert when there is no attack. In order to more 
thoroughly evaluate the false positive rate of the 
architecture on real applications, we run six integer 
applications from SPEC 2000, of which only their binary 
executables are available. These applications are BZIP2, 
GCC, GZIP, MCF, PARSER and VPR, and the default test 
cases are provided by SPEC 2000. Since none of the test 
cases is a malicious attack, no alert should be generated 

during the execution of these programs. Table 3 shows the 
results of this test: the total size of these programs is 
6586KB, the total number of input bytes during the 
execution of the benchmarks is 2186KB, and the total 
number of instructions executed is 15,139 million. During 
the execution of these programs, not a single alert is raised. 
This experiment is a good indicators that one can expect 
very few (or even no) false positive when the proposed 
technique is deployed in real systems. 

5.3. False Negative Scenarios 
False negative scenarios of a defensive technique are 

the situations where an attack escapes detection. Although 
pointer taintedness architecture detects a larger set of 
memory corruption attacks than existing control-flow 
integrity based protections, it does not provide 100% 
security coverage. This section shows some synthetic cases 
where certain degree of damage can be done to the system 
running on top of the proposed architecture.  

Integer overflow attacks resulting in an out-of-
boundary array index. Integer overflow is often due to a 
programmer’s misinterpretations of signed, unsigned, long 
and short integers. When a programmer converts integers 
between these types, the resulting values can be 
inconsistent with the programmer’s expectations. Table 
4(A) shows a vulnerable function where an unsigned 
integer ui is assigned to a signed integer i. Lines 2 and 3 
perform an array index boundary check to ensure that i 
does not exceed the array size. This comparison statement 
untaints i because it has been boundary checked. However, 
an attacker can input a very large unsigned integer ui to the 
function. When ui is assigned to the signed integer i, i 
becomes negative. Line 4 uses i as the array index, 
allowing the attacker to overwrite any memory address 
lower than the address of array. Neither our technique nor 
the existing control data protection techniques stop integer 
overflow attacks from corrupting memory. The integer 
overflow vulnerability differs from other memory 
corruption vulnerabilities because the integer value is 
intended to be the array index, while in other 
vulnerabilities, the values being dereferenced are not 
supposed to be pointer values: they can be embedded in 
FTP command, HTTP request, and IP address. To defeat 
the attack, the bound check must be implemented 
correctly. Unfortunately, it is very difficult, if not 
impossible, on the hardware level, to transparently perform 
the check without knowledge of application semantics. 

Table 3: Test False Positive Rate Using SPEC 2000 Benchmark Programs 
 BZIP2 GCC GZIP MCF PARSER VPR Total 

Program size 321KB 4184KB 485KB 304KB 595KB 697KB 6586KB 

Total number of input bytes  1048KB 77.7K 282KB 39.2KB 743.0KB 6.4KB 2186KB 

Total number of instructions 5,951M 110M 6,926M 1,653M 389M 108M 15,139M 

Alert generated? No No No No No No No 



Buffer overflow attacks corrupting critical flags. 
Table 4(B) depicts user authentication functionality, where 
a flag auth is defined to indicate whether a user is 
authenticated. After Line 3 sets this flag by calling 
do_auth(), the buffer overflow vulnerability in Line 4 can 
be exploited to overwrite the authenticated flag to 1. Line 5 
grants access to the user according to the auth flag, and 
therefore an attacker can get the access without successful 
authentication. This attack cannot be detected by our 
technique, as the attack simply overflows a buffer to 
corrupt an integer following it, and no pointer tainted 
during the attack.  

Table 4: False Negative Scenarios 

Format string attacks causing information leaks. 
Although our technique prevents the attacker from 
overwriting data through a format string attack, Table 4(C) 
shows that such a vulnerability could allow the attacker to 
get private information from memory data regions such as 
the stack. Function leak() defines an integer secret_key on 
the stack. A user input buffer buf is passed to printf() as the 
format argument. We have shown that if the attacker sends 
abcd%x%x%x%n to the buffer, an alert is raised because 
the %n directive attempts to dereference a tainted pointer. 
However, if the input is %x%x%x%x, the attacker can read 
the top four words on the stack, including the secret_key. 
Such an information leak attack can be used for future 
security compromises not based on memory corruptions, 
for example, attacks to steal user passwords and secret 
random seeds. 

Despite these false negative scenarios, the technique 
proposed in this paper substantially improves security 
coverage because (1) we can effectively defeat most 
attacks corrupting both control data and non-control data, 
(2) the false negative scenarios are in general not 
defeatable by any generic runtime detection technique that 
we are aware of, and (3) the false negative scenarios are 
rare in the real world. 

Effectively exploiting buffer overflow vulnerabilities 
without corrupting any pointer is also challenging for 
attackers, because only a limited number of words 
following the buffer can be overwritten. For stack 
overflow, the critical flag must be in the same frame as the 
buffer being overrun. For heap overflow, this limit is 
guarded by the locations of the free-chunk links following 
the buffer. Once the overflowed data exceeds the limit, our 

technique raises an alert because the return address or the 
links are tainted. Our technique cannot prevent information 
leak damage in format string attacks, but we expect their 
severity to be much lower than for memory corruptions.  

One direction that can potentially reduce the false 
negative rate is to sacrifice the transparency of the 
proposed taintedness detection architecture. We can ask 
the programmer to annotate important data structures that 
should never be tainted. The annotated data can then be 
monitored by our architecture. Then, whenever an 
annotated structure becomes tainted, an alert is raised.  

5.4.  Architectural Overhead 
Area overhead. The proposed method will incur some 

area overhead in a microprocessor and in the overall 
memory system. Within the processor, the data path 
between pipeline stages needs to be expanded to 
accommodate the taintedness bit for each byte of data. The 
internal physical registers, buffers, and other data 
structures should be expanded, as should the data bus 
between the processor, caches, and physical memory 
banks. Physical memory banks should also increase in 
width to accommodate the taintedness bit. 

Performance overhead. The proposed detection 
mechanism should not cause slowdown or longer cycle 
time in the pipeline of a modern processor. This is because 
the propagation of the taintedness bits through load, store, 
and ALU operations are not on the critical path of these 
operations. For example, in executing add r1, r2, r3, the 
taintedness tracking algorithm need only perform a logic 
OR operation, which can be carried out in parallel with the 
add operation. In fact, the logic OR operation takes less 
time than the add operation to complete, so the taintedness 
tracking algorithm will not increase clock cycle time for 
the ALU pipeline stage. For load and store operations, the 
taintedness bit is directly copied from source to destination 
and therefore can be performed at wire speed. At the 
retirement stage, the processor checks whether a memory 
access (load/store or control flow transfer instructions) 
uses tainted address values, which is a single bit operation. 
Again, the checking is simpler than the normal operations 
required for instruction retirement. Based this analysis, we 
believe that the operations for the pointer taintedness 
algorithm do not add pipeline stages or increase cycle time.  

Software processing overhead. The operating system 
kernel requires changes. In particular, the kernel should 
mark data originating from input system calls as tainted. 
This can be done before the operating system passes such 
data back to user space. If we assume that tainting a byte 
requires an additional instruction, the percentage of 
additional instructions executed by a SPEC benchmark 
program is between 0.002% and 0.2% based on the data in 
Table 3. Since our current prototype is based on a 
processor simulator, the discussed operating system 
enhancement is implemented via system call interception. 

(A) Integer overflow 
causing array index out 
of boundary 

(B) Buffer overflow 
causing critical flags 
to be corrupted 

(C)Format string 
attack causing 
information leak  

void foo( 
       unsigned int ui) { 
1:  int i = ui; 
2:  if (i >= ArraySize) 
3:     i = ArraySize – 1; 
4:  array[i] = 1; 
} 

void bar () { 
1:  int auth; 
2:  char buf[100]; 
3:  auth =  do_auth (); 
4:  scanf(“%s”,buf); 
5:  if (auth) 
          grant_access(); 
}  

void leak() { 
1:  int secret_key; 
2:  char buf[12]; 
3:  recv(s,buf,12,0); 
4:  printf(buf); 
} 



Actual modification of the operating system requires 
further investigation.  

6. Conclusions 
The majority of security vulnerabilities are due to low-

level programming errors that allow attackers to corrupt 
memory. Protections based on control-flow integrity have 
recently been developed to defeat most memory corruption 
attacks. These techniques are based on the assumption that 
a successful memory corruption attack usually requires 
corrupting control data. We found a number of non-control 
data attacks that can compromise the security of major 
network applications. These attacks cannot be detected by 
existing techniques.  

This paper proposes a protection technique to defeat 
both control data and non-control data attacks. We observe 
that tainting a pointer is a critical step in memory 
corruption attacks. Accordingly, we have developed a 
pointer taintedness detection architecture to defeat most 
memory corruption attacks. We present the hardware 
design of the proposed technique, and implement a 
prototype in the SimpleScalar processor simulator. Based 
on an extensive evaluation using both synthetic and real-
world network applications, and the SPEC benchmarks, we 
conclude the following: The proposed architecture 
provides a substantial improvement in security coverage; a 
near-zero false positive rate can be expected when the 
architecture is deployed; despite some synthetic false 
negative scenarios, running programs on the proposed 
architecture minimizes the chances of a successful attack; 
the incurred architectural overhead is likely to be low; and 
the approach is transparent to existing applications, i.e., 
applications can run without recompilation. 
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