
Defeating Memory Corruption Attacks via Pointer Taintedness Detection

Shuo Chen†, Jun Xu‡, Nithin Nakka†, Zbigniew Kalbarczyk†, Ravishankar K. Iyer†

Abstract
Most malicious attacks compromise system security

through memory corruption exploits. Recently proposed

techniques attempt to defeat these attacks by protecting

program control data. We have constructed a new class of

attacks that can compromise network applications without

tampering with any control data. These non-control data

attacks represent a new challenge to system security. In

this paper, we propose an architectural technique to

defeat both control data and non-control data attacks

based on the notion of pointer taintedness. A pointer is

said to be tainted if user input can be used as the pointer

value. A security attack is detected whenever a tainted

value is dereferenced during program execution. The

proposed architecture is implemented on the SimpleScalar

processor simulator and is evaluated using synthetic

programs as well as real-world network applications. Our

technique can effectively detect both control data and non-

control data attacks, and it offers better security coverage

than current methods. The proposed architecture is

transparent to existing programs.

Keywords: Security, Attack, Vulnerability, Taintedness,
Hardware Design

1. Introduction
Most malicious attacks, viruses, and worms exploit low-

level programming errors to compromise the security of
target systems. Well-known examples include the Morris

Worm that exploited a buffer overflow vulnerability in
fingerd, the Code Red Worm that exploited a buffer
overflow in Internet Information Service (IIS), and the
format string attack against the WU-FTP daemon. A wide
spectrum of programming errors allow attackers to mount
memory corruption attacks, including buffer overflow,
heap corruption (such as heap buffer overflow and double
free), integer overflow, format string, and LibC globbing
vulnerabilities. Our survey indicates that this type of
vulnerability accounts for 67% of CERT advisories in the
years 2000-2003 [8].

Several means have been proposed to defeat security
attacks. Type-safe languages, compiler analyses, and

formal methods have been adopted to prevent
programmers from writing insecure software. But despite
substantial research and investment, the state of the art is
far from perfect, and as a result, security vulnerabilities are
constantly being discovered in the field. The most direct
counter-measure against vulnerabilities in the field is
security patching. Patching, however, is reactive in nature
and can only be applied to known vulnerabilities. The long
latency between bug discovery and patching allows
attackers to compromise many unpatched systems. An
alternative to patching is runtime vulnerability masking
that can stop ongoing attacks. Compiler and library
interception techniques have been proposed to mask
security bugs, usually by terminating a vulnerable
application upon the detection of an attack. These
techniques have been successful in defeating a number of
specific types of attacks, in particular stack buffer overflow
[5][11] and format string attacks [6].

Recently, processor architecture mechanisms—no-
execute page-protection (NX) processors developed by
AMD and Intel [13], Secure Program Execution [18], and
Minos [7]—have been proposed to thwart most types of
memory corruption attacks. The key assumption made in
these proposals is that, in order to launch a successful
memory corruption attack, the attacker must either change
control data (code pointers) that are subsequently loaded
into the processor’s program counter register (PC), or
execute malicious code supplied by attackers. Examples of
control data include function pointers and return addresses.
In this paper, we refer to these techniques as control-flow
integrity based protections.

We examined a number of vulnerabilities in major
network applications, and found that these applications can
also be compromised by corrupting non-control data. Non-
control data include integers representing user identity,
server configuration strings, and pointers to user input
data. We show that many non-control data attacks result in
the same severity of security compromises as the control
data attacks, usually the possession of root privileges.
Since these attacks do not corrupt control data, existing
architectural protection mechanisms are not able to detect
the attacks. Hence, non-control data attacks represent a
challenge to defeating memory corruption attacks. In this
paper, we propose a processor architecture level technique

† Center for Reliable and High-Performance Computing,
University of Illinois at Urbana-Champaign,

1308 W. Main Street, Urbana, IL 61801
{shuochen, nakka, kalbar, iyer}@crhc.uiuc.edu

‡ Department of Computer Science
North Carolina State University

Raleigh, NC 27695
junxu@csc.ncsu.edu

that can defeat both control data and non-control data
memory corruption attacks.

The basis of our technique is the notion of pointer

taintedness, which we initially introduced in [10] to
formally reason about many types of memory
vulnerabilities in software using a static program analysis
technique.1 A pointer is said to be tainted if the pointer
value comes directly or indirectly from user input. A
tainted pointer allows the user to specify the target memory
address to read, write, or transfer control to, which can
lead to system security compromise. The attacker’s ability
to specify a malicious pointer value is crucial to the
success of memory corruption attacks.

We proposed in [10] an extended memory model in
which each memory location (and each register) is
associated with a Boolean property taintedness to indicate
whether the data in this location (and this register) are
derived from user input. The same memory model is
employed to implement the runtime defense mechanism
discussed in this paper. Any data received from external
sources are marked tainted. External data sources include
network, file system, keyboard, command line arguments,
and environmental variables. Load, store, and ALU
instructions are responsible for propagating taintedness
from register to register, memory to register, and register
to memory. Anytime a data word that has tainted bytes is
used for memory access or control flow transfer, an alert is
raised and the application process is terminated.

The proposed architecture is transparent to the
application, and thus existing applications can run without
recompilation or relinking. For example, precompiled
SPEC 2000 benchmark applications are able to run on the
simulated architecture without generating any false alerts.
This is an important advantage over compiler-based
pointer protection methods, such as PointGuard [6], that
need to statically identify all data variables that can be
used as pointers. Accurate pointer type analysis has proven
to be a hard problem in practice. The proposed architecture
requires no source code access or compile-time type
information. Our technique is prototyped as an enhanced
SimpleScalar processor simulator [20].

Attacks that overwrite both control and non-control data
against a number of real-world network applications are
used to evaluate the effectiveness of the proposed defense
technique. The accurate detection of all these attacks
shows the strength of our approach and indicates a
significant improvement in security coverage.

2. Related Work
Both static compiler analysis and runtime detection

techniques have been developed to defeat memory

1 The notion of taintedness has been proposed in Perl and other previous
literature such as [12] and [21]. Tainted data is defined as data coming
from external input. The novelty of our work is to view the root cause of
most memory corruption attacks to be tainted pointers.

corruption attacks. Generic static techniques such as
SPLINT [12] and Extended Static Checking [9] can check
if the specified security properties are satisfied in program
code. Domain-specific code analysis techniques are
designed to uncover specific types of vulnerabilities, such
as buffer overflow vulnerability [23] and format string
vulnerabilities [21]. Although static code analysis
techniques are helpful in finding security vulnerabilities,
their scalability, analysis granularity and dependency on
application-specific knowledge have lead to significant
false positive and false negative rates. Runtime techniques
defeat security attacks in the field. Earlier techniques
provided protection against specific types of attacks.
Representative techniques include StackGuard [11] and
Libsafe [5] to defeat stack buffer overflow attacks, and
FormatGuard [6] to defeat format string attacks.
Defensive techniques which randomize process memory
layout to defeat security attacks are proposed [2][4][24].
Although the principle is generic against most memory
corruption attacks, there are still barriers in the
implementation and deployment. Randomizing the address
of every object, especially objects in the static data
segment, is a challenging issue that requires further
research. In addition, the deployment of these techniques
on 32-bit architectures has been shown to suffer from low
entropy2 – they cannot provide more than 16-20 bits of
entropy, which is not sufficient to defeat brute-force
attacks [19].

Advances in computer architecture research have
resulted in a number of techniques that are considered
generic against all types of memory corruption attacks.
Secure Program Execution [18] and Minos [7] are
techniques to protect control data integrity. While effective
in defeating control data attacks, these techniques are
unable to defeat non-control data attacks.

The notion of taintedness was first proposed in the Perl
programming language as a security feature. Inspired by
this, static detection techniques SPLINT [12] and CQUAL
[21] apply taintedness analysis to guarantee that user input
data is never used as the format string argument in printf-
like functions. In [10], we analyzed many categories of
security vulnerabilities and concluded that their common
root cause is the taintedness of pointers. A memory model
and the algorithm used to detect pointer taintedness were
initially provided in the paper as a rewriting logic
framework to formally reason about security vulnerabilities
in programs. Secure Program Execution [18] and Minos
[7] techniques, which were proposed more recently, rely
on the definitions of spuriousness and integrity of data. We
believe these definitions bear certain similarities to
taintedness. Their memory models and algorithms are also

2 In this context, the term entropy means the randomness of the address
of each program element. Higher entropy implies that an attacker has
more difficulty guessing the correct memory layout.

similar to what we proposed in [10]. However, a
fundamental difference is that they do not detect the
taintedness of pointers in general, but only the taintedness
of control data. They view control data taintedness as the
result of memory corruptions, rather than the root cause of
memory corruptions.

3. Pointer Taintedness Based Attacks
We analyze the 107 CERT advisories from 2000

through 2003. Figure 1 shows a breakdown of the leading
programming vulnerabilities. Buffer overflow results from
writing to an unchecked buffer; format string
vulnerabilities result from incorrect invocations of printf-
like functions; integer overflow results from interpreting
extremely large signed integers as negatives; heap
corruption results from corruption of the heap structure or
freeing a buffer twice; and globbing vulnerabilities result
from an incorrect invocation of LibC function glob().
These categories collectively account for 67% of the
advisories. Although attacks exploiting these different
types of vulnerabilities have different appearances, we
observe a common characteristic among them: the attack
must first taint a pointer and then trick the victim program
into dereferencing that pointer. The attacker’s ability to
specify a pointer value is a crucial requirement for the
success of a memory corruption attack.

Figure 2 presents examples of stack buffer overflow
attack, heap corruption attack, and format string attack,
illustrating how pointer taintedness enables these attacks.

Format

String
7%

Globbing

2%

Heap

Corruption
8%

Integer

Overflow
6%

Buffer

Overflow
44%

Other

33%

Figure 1: Breakdown of Security Vulnerability Categories

in CERT Advisories (2000–2003)

Stack buffer overflow attack. Each function frame
consists of the return address, the frame pointer, and the
local stack variables of the function. Function exp1()
defines a stack buffer buf with 10 bytes, which is located a
few words before the return address and the frame pointer.
The subsequent scanf() call can read an arbitrarily long
input supplied by the user. When the user input data (i.e.,
tainted data) overrun the buffer buf, the memory locations
of the frame pointer and the return address are tainted by
the input data (shown as the grey area). The tainted return
address is used when function exp1() returns. The control
flow of the program is therefore diverted to an attacker-
specified location, usually the entry of malicious code the
attacker wants to execute. More details about stack buffer
overflow attacks can be found in [1].

Stack Buffer Overflow
void exp1() {
 char buf[10];
 scanf("%s",buf);
}

R
e

tu
rn

 a
d

d
r.

F
ra

m
e

 p
o

in
te

r

Stack grows

…
buffer buf

10 bytes

Low address High address

…

Tainted Data

Heap Corruption Attack
void exp2() {
 char * buf;
 buf = malloc(8);
 scanf("%s",buffer);
 free(p)
}

Free

Chunk
A

B
a

c
k
w

a
rd

 lin
k

F
o

rw
a

rd
 lin

k

Free
Chunk
B

Allocated
buffer buf

8 bytes

p

B
a

c
k
w

a
rd

 lin
k

F
o

rw
a

rd
 lin

k

Free

Chunk
C

B
a

c
k
w

a
rd

 lin
k

F
o

rw
a

rd
 lin

k

… …

Low address High address

…

Tainted Data unallocated space Tainted unallocated space

Format String Attack
void exp3(int s) {
 char buf[100];
 recv(s,buf,100,0);
 printf(buf);
}

%x

0
x
6
4
6
3
6
2

6
1

Stack grows

%x %x %n

apinitial ap

fmtinitial fmt

…

Low address High address

…

Tainted Data

User input
abcd%x%x%x%n

Figure 2: Examples of Stack Buffer Overflow, Heap Corruption and Format String Attacks

Heap corruption attack. Free memory chunks are
organized by the heap manager as a doubly linked list.
Programming errors, such as heap buffer overflow and
double free, allow malicious users to corrupt the forward
and backward links (i.e., pointers) in this list. In function
exp2(), the buffer buf with 8 bytes is allocated on the heap,
followed by a free memory chunk (chunk B). The
beginning few bytes of each free chunk are used as the
forward link (fd) and the backward link (bk) of the double-
linked list. In this case, since free chunks A, B, and C are
in the list: B->fd=A, B->bk=C. The scanf() call allows an
attacker to overflow buf, causing B->fd and B->bk to be
tainted. When buf is to be freed later, memory chunk B is
taken out of the doubly linked list, during which the
assignment B->fd->bk=B->bk is executed. Since both B-

>fd and B->bk are tainted pointers, the attacker can write
an arbitrary word to an arbitrary memory location.
Traditionally, the attacker exploits this vulnerability to
overwrite control data, such as return addresses, function
pointers, and GOT entries3 in order to execute malicious
binaries supplied by the attacker. A more detailed
explanation of heap corruption attacks can be found in [3].

Format string attack. Format string attacks exploit the
vulnerabilities caused by incorrect invocations of printf-
like functions, such as printf, sprintf, and syslog. Function
exp3() contains such a vulnerability where the user input
buffer buf is used as the first argument of printf, although
the correct invocation should be printf(“%s”,buf).
Because buf is filled in the recv() call, the data in buf are
tainted. For example, an attacker can send a string
abcd%x%x%x%n to overwrite the memory location
0x64636261, corresponding to the leading four bytes of the
input string “abcd”. The internal mechanism of the format
string attack is as follows: vfprintf() is a child function of
printf(), which has two pointers: fmt is the format string
pointer to sweep over the format string (buf in our
example), and ap is the argument pointer to scan through
the argument list corresponding to the format directives
(e.g., %x, %d and %n). When fmt points to the format
directive %n, an integer count is written to the location
pointed by *ap, i.e., *ap=count. The attacker embeds %x
directives in order to precisely move pointers ap and fmt so
that when fmt points to %n, ap happens to move into the
tainted region, pointing to the word 0x64636261.
Therefore, the statement *ap=count is effectively
*0x64636261=count, allowing the attacker to specify an
arbitrary location to write. The root cause of the attack,
again, is the pointer taintedness: 0x64636261 is a tainted
word that is dereferenced as a pointer. The format string
attack is also explained in a publicly available article [22].

3 The GOT entry is a function pointer. Usually, in position-independent
code, e.g., shared libraries, all absolute symbols must be located in the
GOT, leaving the code position-independent. A GOT lookup is
performed to decide the callee’s entry when a library function is called.

The above examples show that pointer taintedness is a
common root cause of many memory corruption attacks.
This suggests an opportunity for defeating such attacks:
preventing tainted data from being dereferenced.

4. Architectural Support for Pointer
Taintedness Detection

This section presents the design and implementation of
the architecture for pointer taintedness detection. Briefly,
we extend the existing memory system by adding an
additional taintedness bit to each byte, in order to
implement the memory model we proposed in [10]. The
taintedness bit is set whenever data from input devices is
copied into the memory. Within the processor execution
engine, the taintedness bit is propagated when tainted data
are used for an operation. Whenever a tainted word is used
as an address value for memory access (data or code
accesses), an exception is raised by the processor. The
operating system then handles the exception and stops the
current process to defeat the ongoing attack.

4.1. Extended Memory Architecture
The memory system architecture is extended to support

the notion of taintedness. A taintedness bit is associated
with each byte in memory. When a memory word is
accessed by the processor, the taintedness bits are passed
through the memory hierarchy together with the actual
memory words. L2 and L1 caches and data storage within
the processor (registers and buffers) are also extended with
the additional taintedness bits.

The detection mechanism is designed on top of the
extended memory model. Although the underlying
principle is general enough to be applicable to other
architectures, the discussion is given in the context of
SimpleScalar RISC architecture. Figure 3 gives the
enhancements of the pointer taintedness detection
mechanism implemented as extensions of SimpleScalar.

4.2. Taintedness Tracking
When a program performs operations using its data

from memory, the taintedness bit should be propagated.
The processor pipeline is modified to track taintedness. In
general, any CPU operation that uses tainted data as source
should produce tainted result. This mechanism is similar to
the ones proposed in [7] and [18].

We distinguish between memory operations and ALU
operations. A memory load operation moves data from
memory to processor register, and a store operation moves
data from processor register to memory. Corresponding to
the one-bit extension to each memory byte, the processor
registers are also extended to include one taintedness bit
for each byte. For each load instruction, the data bits as
well as the taintedness bits are copied from memory to
register along the load path. Similarly, store instructions
write normal data bytes as well as taintedness bits to the
memory along the store path.

R
eg
is
te
r
F
il
e

4 bits

4 bits

32 bits

32 bits

A

L

U

Bitwise

OR

32 bits 36 bits36 bits

4 bits

M

U
X

M

U
X

36 bits36 bits

36 bits36 bits

36 bits36 bits

36 bits36 bits

D
at
a
M
em
o
ry

36 bits36 bits

36 bits36 bits

M

U

X

36 bits

ID/EX EX/MEM MEM/WB

MUX

Opcode

C
o
m
p
ar
e
sp
ec
if
ic
 l
o
gi
c

S
h
if
t
sp
ec
if
ic
 l
o
gi
c

X
O
R
 s
p
ec
if
ic
 l
o
gi
c

ALU taintedness tracking logic

M
U

X0 alert

jr?
MUX

4 bits

0

alert

load/

store?

Jump pointer

taintedness detector

Data pointer

taintedness

detector

8-bit byte

Taintedness

bit

36 bits

store path

load path

A
N
D
 s
p
ec
if
ic
 l
o
gi
c

Figure 3: Architecture Design of Pointer Taintedness Tracking and Detection

ALU instructions are responsible for propagating
taintedness between registers. The propagation is
implemented by the ALU taintedness tracking logic
(shown as a shaded area in Figure 3). With the few
exceptions noted below, the ALU taintedness works as
follows: for operations with two source operands, the
taintedness bits of a resultant register are obtained by the
bitwise OR of the corresponding taintedness bits in the
source operand registers. For example, after executing
ADD R1,R2,R3, R1 is tainted if and only if R2 is tainted or
R3 is tainted.

The following exceptional cases require special
handling. (1) Shift instructions cause taintedness to
propagate within the operand register. If a byte in the
operand register is tainted, then the taintedness bit of its
adjacent byte along the direction of shifting is set to 1. (2)
The taintedness bits of any byte AND-ed with an untainted
zero are cleared, because the resulting byte value is
constant 0, regardless of user input. (3) The compiler
idiom XOR R1,R2,R2 is frequently used to assign constant
0 to the target register R1. The taintedness bits in R1 are
cleared as a result. This idea is borrowed from previous
techniques [7] and [18]. (4) Compare instructions are used
for data range checking. If a tainted register R1 is
compared with some untainted data in R2, the taintedness
bits in R1 are cleared after the operation. The rationale is
that programmers often write input validation code to
check certain safety properties. The validation code is in
the form of compare instructions. For application
compatibility, any data that undergoes validation is trusted

after such an operation. This could potentially lead to
missed detection (a.k.a. false negatives). For example, in
situations in which the program does check user input
values but the check algorithm is flawed. The false
negative scenarios are discussed in Section 5.3.

Table 1 summarizes the taintedness tracking logic. The
ALU taintedness tracking logic consists of a multiplexer
(MUX) selecting from four sources of input based on the
opcode of the current instruction. These multiplexer inputs
correspond to the five types of ALU instructions listed
above.

Table 1: Taintedness Propagation by ALU Instructions
ALU Instruction Type Taintedness Propagation

ALU instructions except shift,
compare, and AND, e.g., op

R1,R2,R3

Tainedness of R1 =
 (Taintedness of R2) or
 (Taintedness of R3).

Shift instruction If a byte in the operand is tainted,
the taintedness bit of its adjacent
byte along the direction of shifting is
set to 1.

AND instruction Untaint each byte AND-ed with an
untainted zero.

XOR R1,R2,R2 Taintedness of R1 = 0000.

Compare instruction Untaint every byte in the operands of
the compare instruction.

4.3. Attack Detection
In general, whenever a tainted data value is used for

memory access, an alert should be raised. The proposed
detection mechanism is described using the instruction set
architecture of the SimpleScalar processor simulator. In
SimpleScalar, only the load/store instructions and the jump
instruction JR (i.e., jump to the address in a register) can

dereference a pointer, which is stored in a register. The
jump pointer taintedness detector is placed after the ID/EX
(instruction decode/execution) stage when the jump target
register value is available. The four taintedness bits in the
target register are OR-ed. If any byte in the word is tainted,
the output of the OR-gate is 1 and the instruction is marked
as malicious. The detector of tainted pointers for load/store
instructions is placed after the EX/MEM (execute/memory)
stage; here the four taintedness bits of the address word are
inputted into an OR-gate, and the instruction is marked as
malicious if the output of the gate is 1 and the instruction
opcode is load or store. The actual security exception is
raised in the pipeline’s retirement stage. Retirement of an
instruction marked as malicious causes the pipeline to raise
a security exception. The operating system can then
terminate the process and stop the ongoing intrusion.

4.4. Taintedness Initialization
Any data received from an external device that can

potentially be controlled by a malicious user are
considered tainted, e.g., input coming from network, file
system, keyboard, command line arguments, and
environmental variables. All such data are passed from an
external source to the program buffer through operating
system calls. The system call implementations are
modified to mark every byte in the buffer as tainted when it
is returning from kernel space to user space. This can be
implemented by adding every word in the buffer to a
special register RT. The value of RT is always 0, but every
taintedness bit of RT is 1. In the current implementation,
we modify the system call module of the SimpleScalar
simulator for this purpose. In particular, all data delivered
to the application through the SYS_READ (local I/O) and
SYS_RECV (network I/O) are marked as tainted. These
two system calls are invoked by most input functions in C
library, such as scanf(), fread(), recv(), and recvfrom().

In summary, three subsystems in the SimpleScalar
simulator are modified to implement the algorithm: (1) The
memory subsystem is extended with the taintedness bits in
the memory, the cache, and the register file. (2) The
original system call implementation is modified so that
SYS_READ and SYS_RECV mark every byte in the
receiving buffer as tainted. (3) The instruction pipeline is
extended to implement taintedness calculation,
propagation, and detection.

5. Evaluation
The proposed architecture has the following properties:

(1) high coverage in detecting attacks tampering with both
control and non-control data; (2) transparency to
applications, i.e., the detection does not rely on any
internal knowledge on the applications, e.g., buffer sizes,
variable upper bounds, or program semantics; (3) no
known false positives; and (4) very small space overhead
and performance overhead. These properties are evaluated

by running synthetic programs, real network applications,
and SPEC benchmarks on the proposed architecture.

5.1. Security Protection Coverage
The pointer taintedness detection technique provides a

significant improvement in security coverage by protecting
applications from both control data attacks and non-control
data attacks. The security coverage of existing control-flow
integrity based protections was evaluated against control
data attacks only. This section shows that non-control data
attacks do exist and can cause the same level of security
compromise in many real applications. For a fair
comparison, we employ several applications that were
previously used to assess the existing techniques.

5.1.1. Synthetic Vulnerable Programs
The effectiveness of the proposed approach is first

demonstrated on a number of synthetic functions that are
vulnerable to stack buffer overflow, heap corruption, and
format string attacks respectively. These functions and
attacks were illustrated earlier in Figure 2.

Detection of stack buffer overflow. When a string of
“a” characters of 24 bytes is passed to exp1() running on
our architecture, an alert is raised at the return instruction
(i.e., JR $31 on SimpleScalar) of exp1(), which indicates
that the return address is tainted as 0x61616161,
corresponding to four “a” characters in the input.

Detection of heap corruption. Function exp2()
contains a heap overflow vulnerability. An attack is
launched by inputting 12 “a” characters to the 8-byte
buffer. When the buffer is freed, a load-word instruction
LW $3,0($3), which is in function free(), raises an alert. As
described in Section 3, a statement executed in free() is B-

>fd->bk=B->bk. When the alert is generated, register $3
equals B->fd, which is a tainted word 0x61616161 due to
the buffer overflow condition. Because the detected
instruction attempts to dereference register $3 (i.e., the
0($3) indirect addressing mode) when its value is tainted,
the alert is raised.

Detection of format string attack. The effectiveness
of detecting format string attacks is demonstrated by
function exp3(). The function receives the string
abcd%x%x%x%n from the socket. When printf() is called,
a store-word instruction SW $21,0($3) in vfprintf() raises
an alert. This store instruction is compiled from the
statement *ap=count described in Section 3, where the
value of ap is in register $3 and the value of count is in
register $21. When the alert is raised, the value of register
$3 in 0($3) dereference is 0x64636261, corresponding to
the first four bytes of the input string, “abcd”.

5.1.2. Real-World Network Applications
The three examples discussed in the previous section

demonstrate that pointer taintedness detection can defeat
many types of memory corruption attacks. This section
presents results from testing real-world attacks against

network applications running on the SimpleScalar
augmented with pointer taintedness detection capability. In
addition, the SimpleScalar processor simulator is extended
to support network socket applications. The enhancement
allows us to run many real-world network server
applications. Both control data attacks and non-control
data attacks are used for the evaluations. The pointer
taintedness detection technique succeeds in defeating both
types of attacks.

WU-FTPD format string attack. Washington
University FTP Daemon (WU-FTPD) is one of the most
widely used FTP servers. The Site Exec Command Format
String Vulnerability [14] is a vulnerability in WU-FTPD
allowing attackers to overwrite an arbitrary memory
location.4 We constructed a non-control data attack, in
which the format string vulnerability is exploited to
overwrite an integer word representing the ID of the login
user. This is sufficient to escalate the attacker’s privilege to
the root privilege, offering the attacker a full control on the
file /etc/passwd so that he/she can upload a different
version of this file. After writing a malicious entry such as
“alice:x:0:0::/home/root:/bin/bash” in the new version, the
attacker leaves a backdoor to login later as Alice, who
possesses root privileges. Since the attack does not corrupt
any control data, it is not detectable by existing techniques.

 WU-FTPD runs on the proposed architecture. Table 2
shows the attack/detection steps. When the FTP server is
ready to accept user input, the attacker (the FTP client)
first authenticates to the server using USER and PASS
commands, then issues a SITE EXEC command to exploit
the vulnerability. The target integer word representing the
user ID is located in the address 0x1002bc20, so the
command used to overwrite this word is:

site exec \x20\xbc\x02\x10%x%x%x%x%x%x%n

Immediately after the attack sends the malicious SITE

EXEC command, the pointer taintedness detector raises an
alert indicating that the instruction SW $21,0($3)
dereferences a tainted value in register $3. The value of the
register is 0x1002bc20, the same as the one specified by
the attacker as the target address to overwrite. The FTP
server is stopped when the alert is raised, which effectively
prevents the attack from succeeding.

Table 2: Attacking WU-FTPD on the Proposed
Architecture

FTP Server 220 FTP server (Version wu-2.6.0(60) Mon Nov 29
10:37:55 CST 2004) ready.

FTP Client user user1

FTP Server 331 Password required for user1 .

FTP Client pass xxxxxxx (the correct password of user1)

FTP Client site exec \x20\xbc\x02\x10%x%x%x%x%x%x%n

Alert 44d7b0: sw $21,0($3) $3=0x1002bc20

4 This vulnerability (with this application) was also chosen in assessing
Secure Program Execution and Minos, where the control data attack
published in [14] was used to test the security coverage.

NULL HTTPD heap corruption attack. Null HTTPD
is a multithreaded web server for Linux. A heap overflow
vulnerability has been reported in this application [14].
This vulnerability is triggered when an attacker sends a
POST command with a negative Content-Length field in
its HTTP header. Due to misinterpretation of the negative
number, the size of a heap buffer is incorrectly calculated,
resulting in the possibility of a buffer overflow attack.5
Known attack programs overwrite control data when the
overflowed heap buffer is freed, hijacking the control flow
of the HTTP server. We found an effective non-control
data attack that only corrupts the CGI-BIN path
configuration. In HTTP servers with CGI (Common
Gateway Interface) support, a CGI-BIN path specifies the
root directory of executables that are allowed to be run
through HTTP requests. The attack overwrites this path
configuration to “/bin” so that the command shell
executable /bin/sh can be started by the attacker with root
privileges on the server. Thus, the attacker gets a
completely unrestricted command shell. This attack is
undetectable by the control data protection techniques
because only CGI-BIN is a plain-text string.

In our experiment, the server runs on the proposed
architecture. A hypothetical attacker attempts to overwrite
CGI-BIN configuration by tainting the heap doubly linked
list. Our architecture raises an alert when function free() is
being invoked, because register $3 is tainted when an
instruction LW $3,0($3) inside free() is about to run.

GHTTPD stack overflow attack. Another HTTP
server, GHTTPD, has a stack buffer overflow vulnerability
in its logging function [16]. The vulnerable function
contains a 200-byte stack buffer, which is used to
accommodate the HTTP request received from the client.
A traditional way to attack is to send an HTTP request
longer than 200 bytes, overwriting the return address
following the buffer in order to run malicious code
embedded in the HTTP request.

We constructed a non-control data attack by corrupting
a pointer to the URL in the HTTP request. A security
policy of the HTTP protocol requires any URL containing
a substring “/..” be rejected, to prevent users from
accessing files outside the predefined HTML and CGI root
directories. We exploit the vulnerability to change the
URL pointer to point to an illegitimate URL string
containing “/..” after the policy is checked.

GHTTPD runs on the proposed architecture while the
devised attack is launched. When the server is ready, a
malicious request GET AAAAAAA….AAAAAAAA

\x94\x3e\xff\x7f↵↵/cgi-bin/../../../../bin/sh is sent to the
server. The first part of the request AAAAAAA…AAAAAA
\x94\x3e\xff\x7f is parsed as a URL. However, due to the

5 This vulnerability (with this application) was chosen in assessing the
Secure Program Execution technique.

buffer overflow vulnerability, the last four bytes overwrite
the pointer of the URL to 0x7fff3e94, which is the address
of the second part of the string, /cgi-bin/../../../../bin/sh.
Without the protection provided by our architecture, this
would force the server to run /bin/sh with root privileges.
Our mechanism effectively stops the attack when the
tainted URL pointer is dereferenced in a load-byte
instruction (i.e., LB).

Traceroute double free attack. Certain versions of
LBNL traceroute are vulnerable to an attack involving
free()-ing of a heap buffer not allocated by malloc() [17].
When traceroute is executed with the arguments "-g x -g
y", savestr() is called twice to parse arguments “-g x” and
“-g y”. Savestr() reduces calls to malloc() by preallocating
heap space and performs self buffer management when it is
invoked subsequently. After "-g x" is parsed and savestr()
is called, the pointer to the block used by savestr() is
released using free(). When “–g y” is interpreted, savestr()
is called again, and the result is written to the block of
already freed memory. Like for “-g x”, free() is called, but
this time on a region that has already been released in the
first free() call. Traceroute crashes because free() is using
an invalid pointer in an invalid malloc() header. A
malicious user can take over traceroute using the double
free attack method: it corrupts pointers used by
malloc/free, then forces traceroute to overwrite critical
program data or execute malicious code.

In our experiment, we use the command line traceroute

–g 123 –g 5.6.7.8. Without our detection mechanism, this
results in a successful takeover. Due to our detection
mechanism, an alert is generated at a store-word
instruction inside free() because 0x333231 is a tainted
value when it is dereferenced as a pointer.

5.2. Evaluation of False Positives
Along with system security, a crucial criterion of

defensive systems is the false positive rate, i.e., the
likelihood that the system raises an alert when there is no
attack.

The network applications discussed in Section 5.1 run
smoothly on the proposed architecture without generating
any alert when there is no attack. In order to more
thoroughly evaluate the false positive rate of the
architecture on real applications, we run six integer
applications from SPEC 2000, of which only their binary
executables are available. These applications are BZIP2,
GCC, GZIP, MCF, PARSER and VPR, and the default test
cases are provided by SPEC 2000. Since none of the test
cases is a malicious attack, no alert should be generated

during the execution of these programs. Table 3 shows the
results of this test: the total size of these programs is
6586KB, the total number of input bytes during the
execution of the benchmarks is 2186KB, and the total
number of instructions executed is 15,139 million. During
the execution of these programs, not a single alert is raised.
This experiment is a good indicators that one can expect
very few (or even no) false positive when the proposed
technique is deployed in real systems.

5.3. False Negative Scenarios
False negative scenarios of a defensive technique are

the situations where an attack escapes detection. Although
pointer taintedness architecture detects a larger set of
memory corruption attacks than existing control-flow
integrity based protections, it does not provide 100%
security coverage. This section shows some synthetic cases
where certain degree of damage can be done to the system
running on top of the proposed architecture.

Integer overflow attacks resulting in an out-of-
boundary array index. Integer overflow is often due to a
programmer’s misinterpretations of signed, unsigned, long
and short integers. When a programmer converts integers
between these types, the resulting values can be
inconsistent with the programmer’s expectations. Table
4(A) shows a vulnerable function where an unsigned
integer ui is assigned to a signed integer i. Lines 2 and 3
perform an array index boundary check to ensure that i
does not exceed the array size. This comparison statement
untaints i because it has been boundary checked. However,
an attacker can input a very large unsigned integer ui to the
function. When ui is assigned to the signed integer i, i
becomes negative. Line 4 uses i as the array index,
allowing the attacker to overwrite any memory address
lower than the address of array. Neither our technique nor
the existing control data protection techniques stop integer
overflow attacks from corrupting memory. The integer
overflow vulnerability differs from other memory
corruption vulnerabilities because the integer value is
intended to be the array index, while in other
vulnerabilities, the values being dereferenced are not
supposed to be pointer values: they can be embedded in
FTP command, HTTP request, and IP address. To defeat
the attack, the bound check must be implemented
correctly. Unfortunately, it is very difficult, if not
impossible, on the hardware level, to transparently perform
the check without knowledge of application semantics.

Table 3: Test False Positive Rate Using SPEC 2000 Benchmark Programs
 BZIP2 GCC GZIP MCF PARSER VPR Total

Program size 321KB 4184KB 485KB 304KB 595KB 697KB 6586KB

Total number of input bytes 1048KB 77.7K 282KB 39.2KB 743.0KB 6.4KB 2186KB

Total number of instructions 5,951M 110M 6,926M 1,653M 389M 108M 15,139M

Alert generated? No No No No No No No

Buffer overflow attacks corrupting critical flags.
Table 4(B) depicts user authentication functionality, where
a flag auth is defined to indicate whether a user is
authenticated. After Line 3 sets this flag by calling
do_auth(), the buffer overflow vulnerability in Line 4 can
be exploited to overwrite the authenticated flag to 1. Line 5
grants access to the user according to the auth flag, and
therefore an attacker can get the access without successful
authentication. This attack cannot be detected by our
technique, as the attack simply overflows a buffer to
corrupt an integer following it, and no pointer tainted
during the attack.

Table 4: False Negative Scenarios

Format string attacks causing information leaks.
Although our technique prevents the attacker from
overwriting data through a format string attack, Table 4(C)
shows that such a vulnerability could allow the attacker to
get private information from memory data regions such as
the stack. Function leak() defines an integer secret_key on
the stack. A user input buffer buf is passed to printf() as the
format argument. We have shown that if the attacker sends
abcd%x%x%x%n to the buffer, an alert is raised because
the %n directive attempts to dereference a tainted pointer.
However, if the input is %x%x%x%x, the attacker can read
the top four words on the stack, including the secret_key.
Such an information leak attack can be used for future
security compromises not based on memory corruptions,
for example, attacks to steal user passwords and secret
random seeds.

Despite these false negative scenarios, the technique
proposed in this paper substantially improves security
coverage because (1) we can effectively defeat most
attacks corrupting both control data and non-control data,
(2) the false negative scenarios are in general not
defeatable by any generic runtime detection technique that
we are aware of, and (3) the false negative scenarios are
rare in the real world.

Effectively exploiting buffer overflow vulnerabilities
without corrupting any pointer is also challenging for
attackers, because only a limited number of words
following the buffer can be overwritten. For stack
overflow, the critical flag must be in the same frame as the
buffer being overrun. For heap overflow, this limit is
guarded by the locations of the free-chunk links following
the buffer. Once the overflowed data exceeds the limit, our

technique raises an alert because the return address or the
links are tainted. Our technique cannot prevent information
leak damage in format string attacks, but we expect their
severity to be much lower than for memory corruptions.

One direction that can potentially reduce the false
negative rate is to sacrifice the transparency of the
proposed taintedness detection architecture. We can ask
the programmer to annotate important data structures that
should never be tainted. The annotated data can then be
monitored by our architecture. Then, whenever an
annotated structure becomes tainted, an alert is raised.

5.4. Architectural Overhead
Area overhead. The proposed method will incur some

area overhead in a microprocessor and in the overall
memory system. Within the processor, the data path
between pipeline stages needs to be expanded to
accommodate the taintedness bit for each byte of data. The
internal physical registers, buffers, and other data
structures should be expanded, as should the data bus
between the processor, caches, and physical memory
banks. Physical memory banks should also increase in
width to accommodate the taintedness bit.

Performance overhead. The proposed detection
mechanism should not cause slowdown or longer cycle
time in the pipeline of a modern processor. This is because
the propagation of the taintedness bits through load, store,
and ALU operations are not on the critical path of these
operations. For example, in executing add r1, r2, r3, the
taintedness tracking algorithm need only perform a logic
OR operation, which can be carried out in parallel with the
add operation. In fact, the logic OR operation takes less
time than the add operation to complete, so the taintedness
tracking algorithm will not increase clock cycle time for
the ALU pipeline stage. For load and store operations, the
taintedness bit is directly copied from source to destination
and therefore can be performed at wire speed. At the
retirement stage, the processor checks whether a memory
access (load/store or control flow transfer instructions)
uses tainted address values, which is a single bit operation.
Again, the checking is simpler than the normal operations
required for instruction retirement. Based this analysis, we
believe that the operations for the pointer taintedness
algorithm do not add pipeline stages or increase cycle time.

Software processing overhead. The operating system
kernel requires changes. In particular, the kernel should
mark data originating from input system calls as tainted.
This can be done before the operating system passes such
data back to user space. If we assume that tainting a byte
requires an additional instruction, the percentage of
additional instructions executed by a SPEC benchmark
program is between 0.002% and 0.2% based on the data in
Table 3. Since our current prototype is based on a
processor simulator, the discussed operating system
enhancement is implemented via system call interception.

(A) Integer overflow
causing array index out
of boundary

(B) Buffer overflow
causing critical flags
to be corrupted

(C)Format string
attack causing
information leak

void foo(
 unsigned int ui) {
1: int i = ui;
2: if (i >= ArraySize)
3: i = ArraySize – 1;
4: array[i] = 1;
}

void bar () {
1: int auth;
2: char buf[100];
3: auth = do_auth ();
4: scanf(“%s”,buf);
5: if (auth)
 grant_access();
}

void leak() {
1: int secret_key;
2: char buf[12];
3: recv(s,buf,12,0);
4: printf(buf);
}

Actual modification of the operating system requires
further investigation.

6. Conclusions
The majority of security vulnerabilities are due to low-

level programming errors that allow attackers to corrupt
memory. Protections based on control-flow integrity have
recently been developed to defeat most memory corruption
attacks. These techniques are based on the assumption that
a successful memory corruption attack usually requires
corrupting control data. We found a number of non-control
data attacks that can compromise the security of major
network applications. These attacks cannot be detected by
existing techniques.

This paper proposes a protection technique to defeat
both control data and non-control data attacks. We observe
that tainting a pointer is a critical step in memory
corruption attacks. Accordingly, we have developed a
pointer taintedness detection architecture to defeat most
memory corruption attacks. We present the hardware
design of the proposed technique, and implement a
prototype in the SimpleScalar processor simulator. Based
on an extensive evaluation using both synthetic and real-
world network applications, and the SPEC benchmarks, we
conclude the following: The proposed architecture
provides a substantial improvement in security coverage; a
near-zero false positive rate can be expected when the
architecture is deployed; despite some synthetic false
negative scenarios, running programs on the proposed
architecture minimizes the chances of a successful attack;
the incurred architectural overhead is likely to be low; and
the approach is transparent to existing applications, i.e.,
applications can run without recompilation.

Acknowledgments

This work is supported in part by a grant from Motorola
Inc. as part of Motorola Center for Communications, in
part by NSF ACI CNS-0406351, and in part by MURI
Grant N00014-01-1-0576. We thank Fran Baker for her
careful reading of an early draft of this manuscript.

References:
[1] Aleph One. “Smashing the Stack for Fun and Profit.” Phrack

Magazine, 49(7), Nov. 1996.

[2] “PaX Address Space Layout Randomization (ASLR).”

http://pax.grsecurity.net/docs/aslr.txt.

[3] Anonymous. “Once upon a free().” Phrack Magazine, 57(9),

Aug. 2001.

[4] S. Bhatkar, D. DuVarney, and R. Sekar. “Address Obfuscation:

An Efficient Approach to Combat a Broad Range of Memory

Error Exploits.” 12th USENIX Security Symposium.

Washington, DC, August 2003.

[5] A. Baratloo, T. Tsai, N. Singh. “Transparent Run-Time Defense

Against Stack Smashing Attacks.” Proc. USENIX Annual

Technical Conference, June 2000.

[6] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, et al.

“FormatGuard: Automatic Protection From printf Format String

Vulnerabilities.” 10th USENIX Security Symposium,

Washington, DC, August 2001.

[7] J. R. Crandall and F. T. Chong. Minos. “Control Data Attack

Prevention Orthogonal to Memory Model.” To appear in the

37th International Symposium on Microarchitecture. Portland,

Oregon. December 2004.

[8] CERT CC. http://www.cert.org.

[9] B. Chess. “Improving Computer Security Using Extended Static

Checking.” IEEE Symposium on Security and Privacy, 2002.

[10] S. Chen, K. Pattabiraman, Z. Kalbarczyk, R. K. Iyer. “Formal

Reasoning of Various Categories of Widely Exploited Security

Vulnerabilities Using Pointer Taintedness Semantics.” 19th

IFIP International Information Security Conference

(SEC2004), Toulouse, France, August 23-26, 2004.

[11] C. Cowan, C. Pu, D. Maier, et al. “Automatic Detection and

Prevention of Buffer-Overflow Attacks.” 7th USENIX Security

Symposium, San Antonio, TX, January 1998.

[12] D. Evans and D. Larochelle. “Improving Security Using

Extensible Lightweight Static Analysis.” In IEEE Software,

Jan/Feb 2002.

[13] Microsoft TechNet. “Changes to Functionality in Microsoft

Windows XP Service Pack 2 (Part 3: Memory Protection

Technologies).”

http://www.microsoft.com/technet/prodtechnol/ winxppro/

maintain/sp2mempr.mspx.

[14] “Wu-Ftpd Remote Format String Stack Overwrite

Vulnerability.” http://www.securityfocus.com/bid/1387

[15] “Null HTTPd Remote Heap Overflow Vulnerability.”

http://www.securityfocus.com/bid/5774.

[16] “Ghttpd Log() Function Buffer Overflow Vulnerability.”

http://www.securityfocus.com/bid/5960.

[17] “LBNL Traceroute Heap Corruption Vulnerability.”

http://www.securityfocus.com/bid/1739,

[18] G. Suh, J. Lee, and S. Devadas. “Secure Program Execution via

Dynamic Information Flow Tracking.” 11th International

Conference on Architectural Support for Programming

Languages and Operating Systems. Boston, Massachusetts.

October 2004.

[19] H. Shacham, M. Page, B. Pfaff, et al. “On the Effectiveness of

Address Space Randomization.” ACM Computer and

Communications Security (CCS). Washington, DC. Oct. 2004.

[20] D. Burger and T. Austin. The SimpleScalar Tool Set, Version

2.0.

[21] U. Shankar, K. Talwar, J. Foster, and D. Wagner. “Detecting

Format String Vulnerabilities with Type Qualifiers.” 10th

USENIX Security Symposium, 2001.

[22] Tim Newsham. “Format String Attacks.”

http://muse.linuxmafia.org/lost+found/format-string-

attacks.pdf.

[23] D. Wagner, J. Foster, E. Brewer, and A. Aiken. “A First Step

Towards Automated Detection of Buffer Overrun

Vulnerabilities.” Network and Distributed System Security

Symposium (NDSS2000).

[24] J. Xu, Z. Kalbarczyk and R. K. Iyer. “Transparent Runtime

Randomization for Security.” Proc. of 22nd Symposium on

Reliable and Distributed Systems (SRDS), Florence, Italy, Oct.

6-8, 2003.

