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Abstract

We are entering the multi-core era in computer science. Ajomhigh-performance processor manufacturers haveratesd) at
least two cores (processors) on the same chip — and it isqteeldtihat chips with many more cores will become widespredkdé near
future. As cores on the same chip share the DRAM memory systertiple programs executing on different cores can imterfwvith
each others’ memory access requests, thereby adversetyiadf one another’s performance.

In this paper, we demonstrate that current multi-core Eames are vulnerable to a new class of Denial of Service (Rtt&fks
because the memory system is “unfairly” shared among nbeltipres. An application can maliciously destroy the memretgted
performance of another application running on the same. cWip call such an application memory performance hog (MPHith
the widespread deployment of multi-core systems in comtpaldisktop and laptop computers, we expect MPHs to becomevalpnt
security issue that could affect almost all computer users.

We show that an MPH can reduce the performance of anothecapph by 2.9 times in an existing dual-core system, withiging
significantly slowed down itself; and this problem will b&ee more severe as more cores are integrated on the same cinipn&ysis
identifies the root causes of unfairness in the design of tamony system that make multi-core processors vulnerabiéRbls. As a
solution to mitigate the performance impact of MPHs, we psgpa hew memory system architecture that provides faitnedifferent
applications running on the same chip. Our evaluations shaivthis memory system architecture is able to effectiwelgtain the
negative performance impact of MPHSs in not only dual-corealteo 4-core and 8-core systems.

1 Introduction

For many decades, the performance of processors has iedrbgsardware enhancements (increases in clock
frequency and smarter structures) that improved singkath(sequential) performance. In recent years, however,
the immense complexity of processors as well as limits ongeax@nsumption has made it increasingly difficult
to further enhance single-thread performance [17]. Farisason, there has been a paradigm shift away from
implementing such additional enhancements. Insteadepsac manufacturers have moved on to integrating
multiple processors on the same chip in a tiled fashion toesme system performance power-efficiently. In
a multi-core chip different applications can be executed on different pseitey cores concurrently, thereby
improving overall system throughput (with the hope thatelkecution of an application on one core does not
interfere with an application on another core). Currenhkpgrformance general-purpose computers have at
least two processors on the same chip (e.g. Intel PentiundiCanre Duo (2 processors), Intel Core-2 Quad (4),
Intel Montecito (2), AMD Opteron (2), Sun Niagara (8), IBMWer 4/5 (2)). And, the industry trend is toward
integrating many more cores on the same chip. In fact, Ir@sldnnounced experimental designs with up to 80
cores on chip [15].

The arrival of multi-core architectures creates significarallenges in the fields of computer architecture,
software engineering for parallelizing applications, aerating systems. In this paper, we show that there
are important challenges beyond these areas. In partioutagxpose a new security problem that arises due to
the design of multi-core architectures — a Denial-of-Sa\(DoS) attack that was not possible in a traditional
single-threaded processoie identify the “security holes” in the hardware design ofliiacore systems that
make such attacks possible and propose a solution thaiateiighe problem.

IWhile this problem could also exist in SMP (symmetric sharemory multiprocessor) and SMT (simultaneous multittireg)
systems, it will become much more prevalent in multi-coh@ectures which will be widespreadly deployed in comniypdesktop and
laptop computers.



In a multi-core chip, the DRAM memory system is shared amdregthreads concurrently executing on
different processing cores. The way current DRAM memorytesys work, it is possible that a thread with a
particular memory access pattern can occupy shared resour¢che memory system, preventing other threads
from using those resources efficiently. In effect, the mgmequests of some threads can be denied service by
the memory system for long periods of time. Thus, an aggresaemory-intensive application can severely
degrade the performance of other threads with which it isdweduled (often without even being significantly
slowed down itself). We call such an aggressive applicaibtemory Performance Hog (MPHIFor example,
we found that on an existing dual-core Intel Pentium D systemaggressive application can slow down another
co-scheduled application by 2.9X while it suffers a slowdaf only 18% itself. In a simulated 16-core system,
the effect is significantly worse: the same application daw slown other co-scheduled applications by 14.6X
while it slows down by only 4.4X. This shows that, althouglreally severe today, the problem caused by MPHs
will become much more severe as processor manufacturegrété more cores on the same chip in the future.

There are three discomforting aspects of this novel sgctimieat:

e First, an MPH can maliciously destroy the memaory-relatedigpenance of other programs that run on differ-
ent processors on the same chip. Such Denial of Service idtagote memory system can ultimately cause
significant discomfort and productivity loss to the end us@d it can have unforeseen consequences. For
instance, an MPH (perhaps written by a competitor orgaiozptould be used to fool computer users into
believing that some other applications are inherently sewen without causing easily observable effects on
system performance measures such as CPU usage. With thepwadd deployment of multi-core systems in
commodity desktop and laptop computers, we expect MPHsdorbe a much more prevalent security issue
that could affect almost all computer users.

e Second, the problem of memory performance attacks is radiddferent from other, known attacks on
shared resources in systems, because it cannot be prevesi&tivare. The operating system or the com-
piler (or any other application) has no direct control oues tvay memory requests are scheduled in the
DRAM memory system. For this reason, even carefully desigmal otherwise highly secured systems are
vulnerable to memory performance attacks, unless a saoligianplemented irmemory system hardware
itself. For example, numerous sophisticated softwaredbaslutions are known to prevent DoS and other at-
tacks involving mobile or untrusted code (e.g. [9, 24, 2&]B,but these are unsuited to prevent our memory
performance attacks.

e Third, while an MPH can be designed intentionally, a regalgplication can unintentionally behave like an
MPH and damage the memory-related performance of co-stdwdpplications, too. This is discomforting
because an existing application that runs without signifigaffecting the performance of other applications
in a single-threaded system may deny memory system sexvice-scheduled applications in a multi-core
system. Consequently, critical applications can expedesevere performance degradations if they are co-
scheduled with a non-critical but memory-intensive aggglan.

The fundamental reason why an MPH can deny memory systeritaeéovother applications lies in the “unfair-
ness” in the design of the multi-core memory system. Sthteedart DRAM memory systems service memory
requests on a First-Ready First-Come-First-Serve (FRS®GERsis to maximize memory bandwidth [29, 28, 22].
This scheduling approach is suitable when a single threaddsssing the memory system because it maximizes
the utilization of memory bandwidth and is therefore likédyensure fast progress in the single-threaded pro-
cessing core. However, when multiple threads are accesisingiemory system, servicing the requests in an
order that ignores which thread generated the request dairlyrelay some thread’s memory requests while
giving unfair preference to others. As a consequence, thgress of an application running on one core can be
significantly hindered by an application executed on arrothe

In this paper, we identify the causes of unfairness in the PRAemory system that can result in DoS attacks
by MPHs. We show how MPHs can be implemented and quantify énfopmance loss of applications due to
unfairness in the memory system. Finally, we propose a nemang system design that is based on a novel
definition of DRAM fairness This design provides memory access fairness acrossafitfthireads in multi-core
systems and thereby mitigates the impact caused by a meradormance hog.
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The major contributions we make in this paper are:

e We expose a new Denial-of-Service attack that can significalegrade application performance on multi-
core systems and we introduce the concept of Memory Perfarenidogs (MPHs). An MPH is an application
that can destroy the memory-related performance of anefhglication running on a different processing
core on the same chip.

e \We demonstrate that MPHSs are a real problem by evaluatingatfermance impact of DoS attacks on both
real and simulated multi-core systems.

o We identify the major causes in the design of the DRAM memegsgesm that result in DoS attacks: hardware
algorithms that are unfair across different threads aaog$lse memory system.

e We describe and evaluate a new memory system design thatiesdfairness across different threads and
mitigates the large negative performance impact of MPHSs.

2 Background

We begin by providing a brief background on multi-core aettures and modern DRAM memory systems.
Throughout the section, we abstract away many details ierax give just enough information necessary to
understand how the design of existing memory systems centilitself to denial-of-service attacks by explicitly-
malicious programs or real applications. Interested nesactn find more details in [29, 8, 37].

2.1 Multi-Core Architectures

Figure 1 shows the high-level architecture of a processystem with one core (single-core), two cores (dual-
core) and N cores (N-core). In our terminology, a “core” ud#s the instruction processing pipelines (integer
and floating-point), instruction execution units, and tHeihstruction and data caches. Many general-purpose
computers manufactured today look like the dual-core sydtethat they have two separate but identical cores.
In some systems (AMD Athlon/Turion/Opteron, Intel Pentilryy each core has its own private L2 cache, while
in others (Intel Core Duo, IBM Power 4/5) the L2 cache is stdretween different cores. The choice of a shared
vs. non-shared L2 cache affects the performance of thersy{4® and a shared cache can be a possible source
of vulnerability to DoS attacks. However, this is not theds®f our paper because DoS attacks at the L2 cache
level can be easily prevented by providing a private L2 cdoheach core (as already employed by some current
systems) or by providing “quotas” for each core in a shareddche [27].
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Figure 1: High-level architecture of an example singleecsystem (left), a dual-core system (middle), and an
N-core system (right)The chip is shaded. The DRAM memory system, part of which il off chip, is encircled.

Regardless of whether or not the L2 cache is shared, the DRANh®y System of current multi-core
systems is shared among all cores. In contrast to the L2 casbigning a private DRAM memory system to each
core would significantly change the programming model ofsthamemory multiprocessing, which is commonly
used in commercial applications. Furthermore, in a mutecsystem, partitioning the DRAM memory system
across cores (while still maintaining a shared-memory inogning model) is also undesirable because:

1. DRAM memory is still a very expensive resource in modersteays. Partitioning it requires more DRAM

chips along with a separate memory controller for each owmtech significantly increases the cost of a
commaodity general-purpose system, especially in futuséesys that will incorporate tens of cores on chip.



2. In a partitioned DRAM system, a processor accessing a mehooation needs to issue a request to the
DRAM partition that contains the data for that location. §icurs additional latency and a communication
network to access another processor's DRAM if the accesdeess happens to reside in that partition.

For these reasons, we assume in this paper that each corgtieata L2 cache but all cores share the DRAM
memory system. We now describe the design of the DRAM memg@tem in current multi-core processors.

2.2 DRAM Memory Systems

A DRAM memory system consists of three major componentsti@) DRAM banks that store the actual data,
(2) the DRAM controller (scheduler) that schedules commsdandead/write data from/to the DRAM banks, and
(3) DRAM address/data/command buses that connect the DRa#&Mdand the DRAM controller.

2.2.1 DRAM Banks

A DRAM memory system is organized into multiple banks sucht tmemory requests to different banks can
be serviced in parallel. As shown in Figure 2, each DRAM baak & two-dimensional structure, consisting of
multiple rows and columns. Consecutive addresses in mearerjocated in consecutive columns in the same
row.? The size of a row varies, but it is usually between 1-32Kbjytesmmodity DRAMSs. In other words, in a
system with 32-byte L2 cache blocks, a row contains 32-1024ddche blocks.
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Each bank has ormew-bufferand data can only be read from this buffer. The row-buffeta@iois at most a single
row at any given time. Due to the existence of the row-buffesdern DRAMs are not truly random access (equal
access time to all locations in the memory array). Insteadedding on the access pattern to a bank, a DRAM
access can fall into one of the three following categories:

1. Row hit: The access is to the row that is already in the row-buffee fEguested column can simply be read
from or written into the row-buffer (called@lumn accegs This case results in the lowest latency (typically
40-50ns in commodity DRAM, including data transfer time,igthtranslates into 120-150 processor cycles
for a core running at 3GHz clock frequency). Note that sejaéstreaming memory access patterns (e.g.
accessesto cache blocks A, A+1, A+2, ...) resultin row hitsesthe accessed cache blocks are in consecutive
columns in a row. Such requests can therefore be handldvedyaquickly.

2. Row conflict: The access is to a row different from the one that is currantthe row-buffer. In this case,
the row in the row-buffer first needs to be written back inte themory array (called @w-clos¢ because
the row access had destroyed the row’s data in the memory. arteen, arow accesss performed to load
the requested row into the row-buffer. Finally, a columnesscis performed. Note that this case has much
higher latency than a row hit (typically 80-100ns or 240-@00cessor cycles at 3GHz).

2Note that consecutive memory rows are located in differankb.



3. Row closed:There is no row in the row-buffer. Due to various reasons (@.gave energy), DRAM memory
controllers sometimes close an open row in the row-buféayihg the row-buffer empty. In this case, the
required row needs to be first loaded into the row-bufferl¢cabrow accesy Then, a column access is
performed. We mention this third case for the sake of corapkts because in the paper, we focus primarily
on row hits and row conflicts, which have the largest impaawnresults.

Due to the nature of DRAM bank organization, sequential seegto the same row in the bank have low latency
and can be serviced at a faster rate. However, sequentegsesto different rows in the same bank result in high
latency. Therefore, to maximize bandwidth, current DRAMtrollers schedule accesses to the same row in a
bank before scheduling the accesses to a different row é#eosie were generated earlier in time. We will later
show how this policy causes unfairness in the DRAM systemnaakks the system vulnerable to DoS attacks.

2.2.2 DRAM Controller

The DRAM controller is the mediator between the on-chip escand the off-chip DRAM memory. It receives
read/write requests from L2 caches. The addresses of thggegdts are at the granularity of the L2 cache block.
Figure 3 shows the architecture of the DRAM controller. Tremtomponents of the controller are tmemory
request buffeand thememory access scheduler

The memory request buffer buffers the requests receiveddadn bank. It consists of separasmk request
buffers Each entry in a bank request buffer contains the addressgnd column), the type (read or write), the
timestamp, and the state of the request along with storagbhdalata associated with the request.

The memory access scheduler is the brain of the memory dlentribs main function is to select a memory
request from the memory request buffer to be sent to DRAM nmgnlichas a two-level hierarchical organization
as shown in Figure 3. The first level consists of separatdapk-schedulers. Each bank scheduler keeps track
of the state of the bank and selects the highest-priorityesgfrom its bank request buffer. The second level
consists of an across-bank scheduler that selects thedtigtierity request among all the requests selected by
the bank schedulers. When a request is scheduled by the memoess scheduler, its state is updated in the
bank request buffer, and it is removed from the buffer whenrdguest is served by the bank (For simplicity,
these control paths are not shown in Figure 3).

2.2.3 Memory Access Scheduling Algorithm

Current memory access schedulers are designed to maxineizandwidth obtained from the DRAM memory.
As shown in [29], a simple request scheduling algorithm Heaves requests based on a first-come-first-serve
policy is prohibitive, because it incurs a large number aflbeonflicts. Instead, current memory access sched-
ulers usually employ what is called a First-Ready First-E@drirst-Serve (FR-FCFS) algorithm to select which
request should be scheduled next [29, 22]. This algorithoripees requests in the following order in a bank:

1. Row-hit-first: A bank scheduler gives higher priority to the requests Waatld be serviced faster. In other
words, a request that would result imaav hitis prioritized over one that would causecav conflict
2. Oldest-within-bank-first: A bank scheduler gives higher priority to the request thaved earliest.

Selection from the requests chosen by the bank scheduldosésas follows:

Oldest-across-banks-first The across-bank DRAM bus scheduler selects the requédstivéitearliest arrival
time among all the requests selected by individual bankdidies.
In summary, this algorithm strives to maximize DRAM bandilithy scheduling accesses that cause row hits
first (regardless of when these requests have arrived)métiank. Hence, streaming memory access patterns
are prioritized within the memory system. The oldest rowrbguest has the highest priority in the memory
access scheduler. In contrast, the youngest row-confticiest has the lowest priority.



2.3 \Vulnerability of the Multi-Core DRAM Memory System to Do S Attacks

As described above, current DRAM memory systems do notgjgish between the requests of different threads
(i.e. coresy. Therefore, multi-core systems are vulnerable to DoS lkdtttat exploit unfairness in the memory
system. Requests from a thread with a particular accesrpatin get prioritized by the memory access sched-
uler over requests from other threads, thereby causingtties threads to experience very long delays. We find
that there are two major reasons why one thread can dengedovanother in current DRAM memory systems:

1. Unfairness of row-hit-first scheduling: A thread whose accesses result in row hits gets higherityrior
compared to a thread whose accesses result in row confligggallVan access pattern that mainly results in
row hits as a pattern withigh row-buffer locality Thus, an application that has a high row-buffer locality
(e.g. one that is streaming through memaory) can signifigatglay another application with low row-buffer
locality if they happen to be accessing the same DRAM banks.

2. Unfairness of oldest-first scheduling Oldest-first scheduling implicitly gives higher prioriiy those threads
that can generate memory requests at a faster rate thas.dfueh aggressive threads can flood the memory
system with requests at a faster rate than the memory systeisecvice. As such, aggressive threads can fill
the memory system’s buffers with their requests, while lassnory-intensive threads are blocked from the
memory system until all the earlier-arriving requests frihim aggressive threads are serviced.

Based on this understanding, it is possible to develop a mepasformance hog that effectively denies service to
other threads. In the next section, we describe such an dgaviifH and show its impact on another application.

3 Motivation: Examples of Denial of Memory Service in Existng Multi-Cores

In this section, we present measurements from real systedesonstrate that Denial of Memory Service attacks
are possible in existing multi-core systems.

3.1 Applications

We consider two applications to motivate the problem. Oreensodified version of the populatreambench-
mark [19], an application that streams through memory amibpas operations on two one-dimensional arrays.
The arrays irstreamare sized such that they are much larger than the L2 cacheam akéach array consists of
2.5M 128-byte elementsStream(Figure 4(a)) has very high row-buffer locality since cons#ve cache misses
almost always access the same row (limited only by the sitleeofow-buffer). Even though we cannot directly
measure the row-buffer hit rate in our real experimentalesygbecause hardware does not directly provide this
information), our simulations show that 96% of all memorguests irstreamresult in row-hits.

/1l initialize arrays a, b I/l initialize arrays a, b
for (j=0; j<N, j++) for (j=0; j<N j++)

index[j] =j; /1 streaning index index[j] =rand(); // random# in [0, N
for (j=0; j<N j++) for (j=0; j<N; j++)

a[index[j]] = b[index[j]]; a[index[j]] = b[index[j]];
for (j=0; j<N, j++) for (j=0; j<N, j++)

b[index[j]] = scalar * a[index[j]]; b[index[j]] = scalar * a[index[j]];

(a) STREAM (b) RDARRAY

Figure 4: Major loops of thetream(a) andrdarray (b) programs

The other application, callediarray, is almost the exact opposite sfreamin terms of its row-buffer locality.

Its pseudo-code is shown in Figure 4(b). Although it perferime same operations on two very large arrays
(each consisting of 2.5M 128-byte elementdgrray accesses the arrays in a pseudo-random fashion. The array
indices accessed in each iteration of the benchmark’s roamare determined using a pseudo-random number

3We assume, without loss of generality, one core can exec@é¢mead.
“Even though the elements are 128-byte, each iteration ahttie loop operates on only one 4-byte integer in the 128-bigment.
We use 128-byte elements to ensure that consecutive asgassein the cache and exercise the DRAM memory system.



generator. Consequently, this benchmark has very low affeddocality; the likelihood that any two outstanding
L2 cache misses in the memory request buffer are to the sam#ra bank is low due to the pseudo-random
generation of array indices. Our simulations show that 97#l eequests indarray result in row-conflicts.

3.2 Measurements

We ran the two applications alone and together on two exgjstinlti-core systems and one simulated future
multi-core system.

3.2.1 A Dual-core System

The first system we examine is an Intel Pentium D 930 [16] basedicore system with 2GB SDRAM. In this
system each core has an L2 cache size of 2MB. Only the DRAM mesystem is shared between the two cores.
The operating system is Windows XP ProfessionAll the experiments were performed when the systems were
unloaded as much as possible. To account for possible #siaue to system state, each run was repeated 10
times and the execution time results were averaged (errersb@w the variance across the repeated runs). Each
application’s main loops consist of = 2.5 - 10° iterations and were repeated 1000 times in the measurements

Figure 5(a) shows the normalized execution timstafamwhen run (1) alone, (2) concurrently with another
copy ofstream and (3) concurrently witlhdarray. Figure 5(b) shows the normalized execution timedafrray
when run (1) alone, (2) concurrently with another copydafrray, and (3) concurrently witlstream

Whenstreamandrdarray execute concurrently on the two different corsseamis slowed down by only
18%. In contrastidarray experiences a dramatic slowdown: its execution time irsge&y up to 190% (it takes
2.9X longer to complete compared to when it is run alone). ddestreameffectively denies memory service to
rdarray without being significantly slowed down itself.

We hypothesize that this behavior is due to the row-hit-8céteduling policy in the DRAM memory con-
troller. As most ofstrean's memory requests hit in the row-buffer, they are priogtdzoverrdarray’'s requests,
most of which result in row conflicts. Consequenttiarray is denied access to the DRAM banks that are being
accessed bgtreamuntil the streamprogram’s access pattern moves on to another bank. With aipexof 8KB
and a cache line size of 64B, 128 (=8KB/64B)stfean’s memory requests can be serviced by a DRAM bank
beforerdarray is allowed to access that bafikThus, due to the thread-unfair implementation of the DRAM
memory systemstreamcan act as an MPH againsiarray.
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Figure 5: Normalized execution time of (gtyeamand (b)rdarray when run alone/together on a dual-core system

Note that the slowdowrdarray experiences when run witream(2.90X) is much greater than the slowdown
it experiences when run with another copyrdérray (1.71X). Because neither copy afarray has good row-

SWe also repeated the same experiments in (1) the same syittethevRedHat Fedora Core 6 operating system and (2) anCotel
Duo based dual-core system running RedHat Fedora Core 6oWid the results to be almost exactly the same as thoseedport

®Note that we do not know the exact details of the DRAM memonytrdler and scheduling algorithm that is implemented ia th
existing systems. These details are not made public inreitiel’s or AMD'’s documentation. Therefore, we hypothesabout the
causes of the behavior based on public information avalabhl DRAM memory systems - and later support our hypothestsour
simulation infrastructure (see Section 6). It could be fmdsghat existing systems have a threshold up to which yeurgguests can be
ordered over older requests as described in a patent [20évba so our experiments suggest that memory performatezkatare still
possible in existing multi-core systems.



buffer locality, another copy aflarray cannot deny service talarray by holding on to a row-buffer for a long
time. In this case, the performance loss comes from incodaaek conflicts and contention in the DRAM bus.

On the other hand, the slowdowtreamexperiences when run witldarray is significantly smaller than the
slowdown it experiences when run with another copgtagam When two copies astreamrun together they are
both able to deny access to each other because they bothdrgMaigh row-buffer locality. Because the rates at
which bothstreans generate memory requests are the same, the slowdown is higteagdarray’s slowdown
with stream copies ofstreamtake turns in denying access to each other (in different DR#evks) whereas
stream alwayslenies access tdarray (in all DRAM banks).

3.2.2 A Dual Dual-core System

The second system we examine is a dual dual-core AMD Opteréri] system with 4GB SDRAM. In this
system, only the DRAM memory system is shared between adbfaur cores. Each core has an L2 cache size
of 1 MB. The operating system used was RedHat Fedora Coregbird-6(a) shows the normalized execution
time of streamwhen run (1) alone, (2) with one copy mfarray, (3) with 2 copies ofdarray, (4) with 3 copies

of rdarray, and (5) with 3 other copies atream Figure 6(b) shows the normalized execution timedafrray in
similar but “dual” setups.
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Figure 6: Slowdown of (adtreamand (b)rdarray when run alone/together on a dual dual-core system

Similar to the results shown for the dual-core Intel systira,performance atdarray degrades much more
significantly than the performance sfreamwhen the two applications are executed together on the @-cor
AMD system. In fact,streamslows down by only 48% when it is executed concurrently witbopies of
rdarray. In contrastrdarray slows down by 408% when running concurrently with 3 copiestiifam Again, we
hypothesize that this difference in slowdowns is due to daehit-first policy employed in the DRAM controller.

3.2.3 A Simulated 16-core System

While the problem of MPHSs is severe even in current dual- al-dwal-core systems, it will be significantly
aggravated in future multi-core systems consisting of mauoye cores. To demonstrate the severity of the
problem, Figure 7 shows the normalized execution timstefamandrdarray when run concurrently with 15
copies ofstreamor 15 copies ofdarray, along with their normalized execution times when 8 copiesach
application are run together. Note that our simulation meétthogy and simulator parameters are described in
Section 6.1. In a 16-core system, our memory performance sicgam slows downrdarray by 14.6X while
rdarray slows downstreamby only 4.4X. Hencestreamis an even more effective performance hog in a 16-core
system, indicating that the problem of “memory performaattacks” will become more severe in the future if
the memory system is not adjusted to prevent them.

4 Towards a Solution: Fairness in DRAM Memory Systems

The fundamental unifying cause of the attacks demonstiatdte previous section ignfairnessn the shared
DRAM memory system. The problem is that the memory systematadgistinguish whether a harmful memory
access pattern issued by a thread is due to a malicious adaeko erroneous programming, or simply a neces-
sary memory behavior of a specific application. Therefdre,liest the DRAM memory scheduler can do is to
contain and limitmemory attacks by providing fairness among different thisea
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Figure 7: Slowdown of (ajtreamand (b)rdarray when run alone and together on a simulated 16-core system

Difficulty of Defining DRAM Fairness: But what exactly constitutes fairness in DRAM memory systém
As it turns out, answering this question is non-trivial amining up with a reasonable definition is somewhat
problematic. For instance, simple algorithms that schededuests in such a way that memory latencies are
equally distributed among different threads disregarddicethat different threads have different row-buffer la-
tencies. As a consequence, satjual-latency scheduling algorithmgll unduly slow down threads that have
high row-buffer locality and prioritize threads that havaprow-buffer locality. Whereas the standard FR-FCFS
scheduling algorithm can starve threads with bad row-bldfeality (Section 2.3), any algorithm seeking egali-
tarian memory fairness would unfairly punish “well-behayi threads with good row-buffer locality. Neither of
the two options therefore rules out unfairness and the pitigsiof memory attacks.

Another challenge is that DRAM memory systems have a notiagtade(consisting of the currently buffered
rows in each bank). For this reason, well-studied notioniohess that deal with stateless systems cannot be
applied in our setting. Imetwork fair queuindg23, 36, 3], for example, the idea is thatf processes share a
common channel with bandwidtR, every process should achieve exactly the same perfornamitet had a
single channel of bandwidtl®/N. When mapping the same notion of fairness onto a DRAM memystiem
(as done in [22]), however, the memory scheduler would nesdhiedule requests in such a way as to guarantee
the following: In a multi-core system witlV threads, no thread should run slower than the same thread on
a single-core system with a DRAM memory system that ruigith of the speed Unfortunately, because
memory banks have state and row conflicts incur a higherdgtdran row hit accesses, this notion of fairness
is ill-defined. Consider for instance two threads in a dumkcystem that constantly access the same bank but
different rows. While each of these threads by itself hasegerow-buffer locality, running them together will
inevitably result in row-buffer conflicts. Hence, it is imgmble to schedule these threads in such a way that each
thread runs at the same speed as if it ran by itself on a sydthaifahe speed. On the other hand, requests from
two threads that consistently access different banks d@liadost) entirely be scheduled in parallel and there is
no reason why the memory scheduler should be allowed to slesetthreads down by a factor®f

In summary, in the context of memory systems, notions oh&gs—such as network fair queuing—that attempt
to equalize the latencies experienced by different thraeglansuitable. Ina DRAM memory system, it is neither
possible to achieve such a fairness nor would achievingitiscantly reduce the risk of memory performance
attacks. In Section 4.1, we will present a novel definitio&AM fairness that takes into account the inherent
row-buffer locality of threads and attempts to balance tie¢ative slowdowns”.

The Idleness Problem:In addition to the above observations, it is important tossts that any scheme that
tries to balance latencies between threads runs into tkefiwhat we call thedleness problemThreads that
are temporarily idle (not issuing many memory requestsjrfstance due to an 1/0O operation) will be slowed
down when returning to a more memory intensive access pat@n the other hand, in certain solutions based
on network fair queuing [22], a memory hog could intentibp&sue no or few memory requests for a period
of time. During that time, other threads could “move aheadi proportionally lower latency, such that, when
the malicious thread returns to an intensive access pattesntemporarily prioritized and normal threads are
blocked. The idleness problem therefore poses a severdtgak: By exploiting it, an attacking memory hog
could temporarily slow down or even block time-critical &ipations with high performance stability require-
ments from memory.



4.1 Fair Memory Scheduling: A Model

As discussed, standard notions of fairness fail in progdair execution and hence, security, when mapping
them onto shared memory systems. The crucial insight thdsléo a better notion of fairness is that we need to
dissectthe memory latency experienced by a thread into two partst,fe latency that is inherent to the thread
itself (depending on its row-buffer locality) and secor latency that is caused by contention with other threads
in the shared DRAM memaory system. A fair memory system sheuidlike the approaches so far—schedule
requests in such a way that tbecondatency component is fairly distributed, while the first ggonent remains
untouched. With this, it is clear why our novel notion@RAM shared memory fairnessbased on the following
intuition: In a multi-core system wittVv threads, no thread should suffer more relative performaioevdown—
compared to the performance it gets if it used the same mesystgm by itself—than any other thre&#&cause
each thread’s slowdown is thus measured against its owrit@gerformance (single execution on the same
system), this notion of fairness successfully dissectswimecomponents of latency and takes into account the
inherent characteristics of each thread.

In more technical terms, we consider a measyrdor each currently executed thread This measure
captures the price (in terms of relative additional latgrecyhread: pays because the shared memory system is
used by multiple threads in parallel in a multi-core ardttitee. In order to provide fairness and contain the risk
of denial of memory service attacks, the memory controleusd schedule outstanding requests in the buffer in
such a way that thg; values are as balanced as possible. Such a scheduling siiteethat each thread only
suffers a fair amount of additional latency that is causethleyparallel usage of the shared memory system.

Formal Definition: Our definition of the measurg; is based on the notion @umulated bank-latency; ;
that we define as follows.

Definition 4.1. For each thread and bankb, the cumulated bank-latency; ; is the number of memory cycles
during which there exists an outstanding memory requeshigatii for bankb in the memory request buffer.
The cumulated latency of a thredd = >, L, ;, is the sum of all cumulated bank-latencies of thread

The motivation for this formulation of; ;, is best seen when considering latencies on the level ofioheiy
memory requests. Consider a thréaahd Ietbe denote thetith memory request of threadhat accesses bank
b. Each such requegt?, is associated with three specific times: Its arrival timig when it is entered into the
request buffer; its finish timff‘b, when it is completely serviced by the bank and sent to psmé's cache; and
finally, the request’'sictivation time & el
S’i,b = maX{ i,b ,a,hb}.

This is the earliest time when requédft’b could be scheduled by the bank scheduler. It is the largds afrfival

time and the finish time of the previous requé’{gl that was issued by the same thread to the same bank. A
request’s activation time marks the point in time from whmhRﬁb is responsible for the ensuing latency of
threads; beforesﬁ »» the request was either not sent to the memory system or bereaguest to the same bank
by the same thread was generating the latency. With thesstaefs, theamortized Iatenc;@fi p Of requestRﬁb

is the difference between its finish time and its activatiomet i.e.,(¥, = fF, — s¥,. By the definition of the
activation timesfb, it is clear that at any point in time, the amortized latentgxactly one outstanding request

is increasing (if there is at least one in the request buffelgnce, when describing time in terms of executed
memory cycles, our definition of cumulated bank-latefgy corresponds exactly to the sum over all amortized
latencies to this bank, i.el;, = >, ¢F,.

In order to compute the experienéed slowdown of each threadpmpare the actual experienced cumulated
latencyL; of each threadto an imaginaryideal single-core cumulated Iatenfy that serves as a baseline. This
Iatencyfz- is the minimal cumulated latency that threadould have accrued if it had run as the only thread in
the system using the same DRAM memory; it captures the lgtemmmponent of.; that is inherent to the thread
itself and not caused by contention with other threads. Hetiweads with good and bad row-buffer locality

"The DRAM memory system only keeps track of threads that ameotly issuing requests.
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have small and IargEi, respectively. The measugg that captures the relative slowdown of threathused by
multi-core parallelism can now be defined as follows.

Definition 4.2. For a threadi, theDRAM memory slowdown indey; is the ratio between its cumulated latency
L; and its ideal single-core cumulated latenky.®

Finally, we define th®®RAM unfairness ¥ of a DRAM memory system as the ratio between the maximum

and minimum slowdown index over all currently executeddlsein the system:

U o mflxz’ Xi
min; x;
The “ideal” DRAM unfairness indext = 1 is achieved if all threads experience exactly the same siougd
the higherl, the more unbalanced is the experienced slowdown of differeeads. The goal of a fair memory
access scheduling algorithm is therefore to achievethat is as close t@ as possible. This ensures that no
thread is over-proportionally slowed down due to the shaggdre of DRAM memory in multi-core systems.

Notice that by taking into account the different row-buffecalities of different threads, our definition of
DRAM unfairness prevents punishing threads for havingeeitiood or bad memory access behavior. Hence,
a scheduling algorithm that achieves low DRAM unfairnessigaies the risk that any thread in the system,
regardless of its bank and row access pattern, is undulyezbggwn by other threads. Notice further that
DRAM unfairness is virtually unaffected by the idlenesstpeon, because both cumulated latendigand ideal
single-core cumulated latenciés are only accrued when there are requests in the memory tduufées.

Short-Term vs. Long-Term Fairness: So far, the aspect of time-scale has remained unspecifiedrin o
definition of DRAM-unfairness. Botli; andZi continue to increase throughout the lifetime of a threachsge
guently, a short-term unfair treatment of a thread wouldehiagreasingly little impact on its slowdown indgx
While still providing long-term fairness, threads that @édeen running for a long time could become vulnerable
to short-term DoS attacks even if the scheduling algorithforeed an upper bound on DRAM unfairneBsin
this way, delay-sensitive applications could be blockedfDRAM memory for limited periods of time.

We therefore generalize all our definitions to include anitaatthl parametefl” that denotes the time-scale
for which the definitions apply. In particulak,(7") andfi(T) are the maximum (ideal single-core) cumulated
latencies over all time-intervals of durati@hduring which thread is active. Similarly,y;(7) and¥(T") are de-
fined as the maximum values over all time-intervals of lerigti he paramet€r in these definitions determines
how short- or long-term the considered fairness is. In paldr, a memory scheduling algorithm with good long
term fairness will have small (T') for large T, but possibly largel (7”) for smallerT”. In view of the security
issues raised in this paper, it is clear that a memory schegalgorithm should aim at achieving smé(7") for
both small and largé.

5 Our Solution

In this section, we propose FairMem, a new fair memory sclirglalgorithm that achieves good fairness ac-
cording to the definition in Section 4 and hence, reducesiskeof memory-related DoS attacks.

5.1 Basicldea

The reason why MPHs can exist in multi-core systems is thaiumdss in current memory access schedulers.
Therefore, the idea of our new scheduling algorithm is taoerd fairness by balancing the relative memory-
related slowdowns experienced by different threads. Therihm schedules requests in such a way that each
thread experiences a similar degree of memory-relateddsiow relative to its performance when run alone.

8Notice that our definitions do not take into account the seraind waiting times of the shared DRAM bus and across-bdmdsting.
Both our definition of fairness as well as our algorithm présed in Section 5 can be extended to take into account thesethar more
subtle hardware issues. As the main goal of this paper pairdrmd investigate potential security risks caused by DRA¥&umNness, our
model abstracts away numerous aspects of secondary impei@cause our definition provides a good approximation.
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In order to achieve this goal, the algorithm maintains aedly in our model of Section 4.1) that character-
izes the relative slowdown of each thread. As long as alkttisdhave roughly the same slowdown, the algorithm
schedules requests using the regular FR-FCFS mechanisran Wh slowdowns of different threads start di-
verging and the difference exceeds a certain threshold\{ireen becomes too large), however, the algorithm
switches to an alternative scheduling mechanism and stadistizing requests issued by threads experiencing
large slowdowns.

5.2 Fair Memory Scheduling Algorithm (FairMem)

The memory scheduling algorithm we propose for use in DRAMtmdlers for multi-core systems is defined
by means of two input parameters,and3. These parameters can be used to fine-tune the involvedafesle
between fairness and throughput on the one hafiéid short-term versus long-term fairness on the othkr (
More concretelyy is a parameter that expresses to what extent the schedal®vied to optimize for DRAM
throughput at the cost of fairness, i.e., how much DRAM unigss is tolerable. The parametecorresponds
to the time-intervall’ that denotes the time-scale of the above fairness conditiorparticular, the memory
controller divides time into windows of duratigi and, for each thread maintains an accurate account of its
accumulated latencids;(3) andL;(3) in the current time window.

Instead of using the (FR-FCFS) algorithm described in 8ac#.2.3, our algorithm first determines two
candidate requestsom each each bartk one according to each of the following rules:

e Highest FR-FCFS priority: Let Rrr-rcrsbe the request to bartkthat has the highest priority according to
the FR-FCFS scheduling policy of Section 2.2.3. That is, hits have higher priority than row conflicts,
and—agiven this partial ordering—the oldest request isesfirst.

e Highest fairness-index Let i’ be the thread with highest current DRAM memory slowdown inge(/3)
that has at least one outstanding request in the memoryselutfer to bankb. Among all requests té
issued byi’, let Re,ir be the one with highest FR-FCFS priority.

Between these two candidates, the algorithm chooses thesttp be scheduled based on the following rule:

e Fairness-oriented SelectionLet y,(3) andxs(3) denote largest and smallest DRAM memory slowdown
index of any request in the memory request buffer for a ctitiere window of duratiorns. If it holds that

xe(B)
XS(B)
then Re4yr is selected by banks scheduler an®gr-rcrsotherwise.

Instead of using the oldest-across-banks-first strategysad in current DRAM memory schedulers, selection
from requests chosen by the bank schedulers is handled@assol

Highest-DRAM-fairness-index-first across banks The request with highest slowdown indgx 3) among
all selected bank-requests is sent on the shared DRAM bus.

In principle, the algorithm is built to ensure that at no tiBlRAM unfairnessl (3) exceeds the parameter
Whenever there is the risk of exceeding this threshold, tmany controller will switch to a mode in which it
starts prioritizing threads with highgf; values, which decreasgs. It also increases the; values of threads that
have had little slowdown so far. Consequently, this strabedances large and small slowdowns, which decreases
DRAM unfairness and—as shown in Section 6—keeps potentahany-related DoS attacks in check.

Notice that this algorithm does not—in fact, cannot—gumithat the DRAM unfairnesg does stay below
the predetermined threshaldat all times. The impossibility of this can be seen when ateréng the corner-
casea = 1. In this case, a violation occurs after the first requestniigas of which request is scheduled by the
algorithm. On the other hand, the algorithm always attetgteep the necessary violations as small as possible.

°Notice that in principle, there are various possibilitidsirderpreting the term “current time window”. The simplesay is to
completely resel;(3) andL;(3) after each completion of a window. More sophisticated teqies could include maintaining multiple,
sayk, such windows of sizg in parallel, each shifted in time b§/k memory cycles. In this case, all windows are constantly teatja
but only the oldest is used for the purpose of decision-ngaKiinis could help in reducing volatility.
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Another advantage of our scheme is that an approximateover§it lends itself to efficientimplementation in
hardware. Finally, notice that our algorithm is robust witgard to thedleness problemmentioned in Section 4.
In particular, neithel.; nor L; is increased or decreased if a thread has no outstanding peetuests in the
request buffer. Hence, not issuing any requests for somedpef time (either intentionally or unintentionally
due to I/O, for instance) does not affect this or any othezalis priority in the buffer.

5.3 Hardware Implementations

The algorithm as described so far is abstract in the sensét thssumes a memory controller that always has
full knowledge of every active (currently-executed) thi'sal; and L;. In this section, we show how this exact
scheme could be implemented, and we also briefly discuss a effizient practical hardware implementation.
Exact Implementation: Theoretically, it is possible to ensure that the memory idier always keeps
accurate information of.;(3) and L;(3). Keeping track ofZ;(3) for each thread is simple. For each active
thread, a counter maintains the number of memory cycles@wihich at least one request of this thread is
buffered for each bank. After completion of the wind@ivor when a new thread is scheduled on a core),
counters are reset. The more difficult part of maintainingesurate account df; (3) can be done as follows: At
all times, maintain for each active threadnd for each bank the row that would currently be in the roffelnif
had been the only thread using the DRAM memory system. Thidealone by simulating an FR-FCFS priority
scheme for each thread and bank that ignores all requesttliby threads other tha’.nTheEfib latency of each

requestbe then corresponds to the latency this request would haveeddti®RAM memory was not shared.

Whenever a request is served, the memory controller carhéglddeal latency” to the correspondirfgyb(ﬁ) of
that thread and—if necessary—update the simulated stétte odw-buffer accordingly. For instance, assume that
a requestRk‘b is served, but results in a row conflict. Assume further thatdame request would have been a

row hit, if threadi had run by itself, i.e. R’“ ! accesses the same row@% In this case[; »(B) is increased
by row-hit latencyT},;;, wheread.; () is mcreased by the bank-conflict IateriE;gnf By thus “simulating” its
own execution for each thread, the memory controller obtasturate information for aﬂl7b(ﬁ).

The obvious problem with the above implementation is thiatekpensive in terms of hardware overhead and
cost. It requires maintaining at least one counter for eacexdank pair. Similarly severe, it requires one divider
per core in order to compute the valyg 5) = L;(3)/Li(() for the thread that is currently running on that core
in every memory cycle. Fortunately, much less expensivevnare implementations are possible because the
memory controller does not need to know the exact valuds gfand L, , at any given moment. Instead, using
reasonably accurate approximate values suffices to maiategxcellent level of fairness and security.

Reduce counters by sampling:Using sampling techniques, the number of counters that teebd main-
tained can be reduced fro@(#Banks x #Cores) to O(#Cores) with only little loss in accuracy. Briefly, the
idea is the following. For each core and its active threadkeep two counters; and H; denoting the number
of samples and sampled hits, respectively. Instead of kgdpack of the exact row that would be open in the
row-buffer if a thread was running alone, we randomly sample a subset of reqllRl;%tis;sued by threadand

check whether the next request bto the same banlﬁf“, is for the same row. If so, the memory controller
increases botl§; and H;, otherwise, onl\5; is increased. Requesﬁ , to different banks’ # b served between

Rf‘b andR’“Jrl are ignored. Finally, if none of th@ requests of threadfollowing R’“ go to bankp, the sample

is dlscarded neithe$; nor H; is increased, and a new sample request is taken. Wlth thisitpee, the proba-
bility H;/S; that a request results in a row hit gives the memory contralleasonably accurate picture of each
thread's row-buffer locality. An approximation @f; can thus be maintained by adding the expected amortized
latency to it whenever a request is served, i.e.,

Lo .= L9 4 (H;/S; - Tt + (1 — H;/Si) - Teony) -
Reuse dividers: The ideal scheme employ3(#Cores) hardware dividers, which significantly increases
the memory controller's energy consumption. Instead, glsidivider can be used for all cores by assigning

individual threads to it in a round robin fashion. That is,iletthe slowdownsl;(3) andL;(3) can be updated
in every memory cycle, their quotient () is recomputed in intervals.
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6 Evaluation

6.1 Experimental Methodology

We evaluate our solution using a detailed processor and myegystem simulator based on the Pin dynamic
binary instrumentation tool [18]. Our in-house instruatievel performance simulator can simulate applications
compiled for the x86 instruction set architecture. We sateithe memory system in detail using a model loosely
based on DRAMsim [33], which is commonly used for DRAM penfiance evaluations. Both our processor
model and the memory model mimmick the design of a modern-péaformance dual-core processor based on
Intel Core Duo [10]. The size/bandwidth/latency/capacitgifferent processor structures along with the number
of cores and other structures are parameters to the simul@ibe simulator faithfully models the bandwidth,
latency, and capacity of each buffer, bus, and structureeémiemory subsystem (including the caches, memory
controller, DRAM buses, and DRAM banks). The relevant pai@nms of the modeled baseline processor are
shown in Table 1. Unless otherwise stated, all evaluatiomisis section are performed on a simulated dual-core
system using these parameters. For our measurements wiffaifiMem system presented in Section 5, the
parameters are setto= 1.025 andg3 = 10°.

Processor pipeline 4 GHz processor, 128-entry instruction window, 12-stagelpie

Fetch/Execute width per core 3 instructions can be fetched/executed every cycle; ongrilbe a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte blozk,<2-cycle latency

L2 Caches 512 K-byte per core, 8-way set associative, 32-byte blank, gi2-cycle latency
Memory controller 128 request buffer entries, FR-FCFS baseline scheduliligypauns at 2 GHz

DRAM parameters 8 banks, 2K-byte row-buffer

DRAM latency (round-trip L2 miss latency) row-buffer hit: 50ns (200 cycles), closed: 75ns (300 cyclesnflict: 100ns (400 cycles

Table 1: Baseline processor configuration

We simulate each application for 100 million x86 instrun8o The portions of applications that are sim-
ulated are determined using the SimPoint tool [31], whidecs simulation points in the application that are
representative of the application’s behavior as a whole.applications includsetreamandrdarray (described in
Section 3), several large benchmarks from the SPEC CPU28@thimark suite [32], and one memory-intensive
application from the Olden benchmark suite [30]. Theseiagpbns are described in Table 2.

| Benchmark [| Suite | Brief description | Base performande.2-misses per 1K insf.row-buffer hit rate
stream Microbenchmark Streaming on 32-byte-element arrays| 46.30 cycles/inst 629.65 96%
rdarray Microbenchmark Random access on arrays 56.29 cycles/inst 629.18 3%
small-stream Microbenchmark Streaming on 4-byte-element arrays | 13.86 cycles/inst 71.43 97%
art SPEC 2000 FP | Object recognition in thermal image | 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT| Chess game 0.64 cycles/inst. 0.35 15%
health Olden Columbian health care system simulgtor.24 cycles/inst. 83.45 27%
mcf SPEC 2000 INT| Single-depot vehicle scheduling 4.73 cycles/inst. 45,95 51%
vpr SPEC 2000 INT| FPGA circuit placement and routing | 1.71 cycles/inst. 5.08 14%

Table 2: Evaluated applications and their performanceatharistics on the baseline processor

6.2 Evaluation Results
6.2.1 Dual-core Systems

Two microbenchmark applications - stream and rdarray: Figure 8 shows the normalized execution time of
streamandrdarray applications when run alone or together using either thellesFR-FCFS or our FairMem
memory scheduling algorithms. Execution time of each a&pfthn is normalized to the execution time they
experience when they are run alone using the FR-FCFS schgaugorithm (This is true for all normalized
results in this paper). Whestreamandrdarray are run together on the baseline systastream—which acts
as an MPH—experiences a slowdown of only 1.22X wherdasray slows down by 2.45X. In contrast, a
memory controller that uses our FairMem algorithm prevstresamfrom behaving like an MPH againgtarray

— both applications experience a similar slowdown when ogether. FairMem does not significantly affect
performance when the applications are run alone or when itimidentical copies of themselves (i.e. when
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the memory performance is not unfairly impacted). TheseBrpents show that our simulated system closely
matches the behavior we observe in an existing dual-corersyé~igure 5), and that FairMem successfully
provides fairness among threads. Next, we show that witrepgdications, the effect of an MPH can be drastic.
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Figure 8: Slowdown of (ajtreamand (b)rdarray benchmarks using FR-FCFS and our FairMem algorithm

Effect on real applications: Figure 9 shows the normalized execution time of 8 differeaitgof applications
when run alone or together using either the baseline FR-FCIFairMem. The results show that 1) an MPH can
severely damage the performance of another application? pour FairMem algorithm is effective at preventing
it. For example, whestreamandhealthare run together in the baseline syststreamacts as an MPH slowing
down healthby more than 8.5X while itself being slowed down by only 1.09Xis is because it has 7 times
higher L2 miss rate and much higher row-buffer locality (96880 25%) — therefore, it exploits unfairness in
both row-buffer-hit first and oldest-first scheduling p@ki by flooding the memory system with its requests.
When the two applications are run on our FairMem systagajths slowdown is reduced from 8.63X to 2.28X.
The figure also shows that even regular applications with regv-buffer locality can act as MPHSs. For instance
whenart andvpr are run together in the baseline systami,acts as an MPH slowing dowrpr by 2.35X while
itself being slowed down by only 1.05X. When the two are runoan FairMem system, each slows down by

only 1.35X; thusart is no longer a performance hog.
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Figure 9: Slowdown of different application combinatiorssng FR-FCFS and our FairMem algorithm

Effect on Throughput and Unfairness: Table 3 shows the overall throughput (in terms of executsttuations
per 1000 cycles) and DRAM unfairness (relative differenegveen the maximum and minimum memory-related
slowdowns, defined ak in Section 4) when different application combinations aseceited together. In all cases,
FairMem reduces the unfairness to below 1.20 (Remembed tb@tis the best possibie value). Interestingly,



in most cases, FairMem also improves overall throughputifsigintly. This is especially true when a very
memory-intensive application (e.gtrean) is run with a much less memory-intensive application (eps).
Providing fairness leads to higher overall system througbpcause it enables better utilization of the cores
(i.e. better utilization of the multi-core system). The é&lase FR-FCFS algorithm significantly hinders the
progress of a less memory-intensive application, wheraaMEm allows this application to stall less due to the
memory system, thereby enabling it to make fast progressigitrits instruction stream. Hence, rather than wast-
ing execution cycles due to unfairly-induced memory staitsne cores are better utilized with FairMéfmOn
the other hand, FairMem reduces the overall throughput byv@%n two extremely memaory-intensive applica-
tions, streamandrdarray, are run concurrently. In this case, enforcing fairnessicedstrean’s data throughput
without significantly increasing the throughputrofarray becausedarray encounters L2 cache misses as fre-
guently asstream(as shown in Table 2).

Combination Baseline (FR-FCFS) FairMem Throughput Fairess
Throughput| Unfairness Throughput| Unfairnesg| improvement | improvement
stream-rdarra 24.8 2.00 22.5 1.06 0.91X 1.89X
art-vpr 401.4 2.23 513.0 1.00 1.28X 2.23X
health-vpr 463.8 1.56 508.4 1.09 1.10X 1.43X
art-health 179.3 1.62 178.5 1.15 0.99X 1.41X
rdarray-art 65.9 2.24 97.1 1.06 1.47X 2.11X
stream-health 38.0 8.14 72.5 1.18 1.91X 6.90X
stream-vpr 87.2 8.73 390.6 1.11 4.48X 7.86X
stream-mcf 63.1 5.17 117.1 1.08 1.86X 4.79X
stream-art 51.2 4.06 98.6 1.06 1.93X 3.83X

Table 3: Effect of FairMem on overall throughput (in termsredtructions per 1000 cycles) and unfairness
6.2.2 Effect of Row-buffer Size

From the above discussions, it is clear that the exploiatiorow-buffer locality by the DRAM memory con-
troller makes the multi-core memory system vulnerable t& Bétacks. The extent to which this vulnerability
can be exploited is determined by the size of the row-bulfethis section, we examine the impact of row-buffer
size on the effectiveness of our algorithm. For these deitgiéxperiments we use two real applicatioag and
vpr, whereart behaves as an MPH agairvir.

Figure 10 shows the mutual impactaft andvpr on machines with different row-buffer sizes. Additional
statistics are presented in Table 4. As row-buffer sizeeiases, the extent to whiart becomes a memory
performance hog fovpr increases when FR-FCFS scheduling algorithm is used. Istesywith very small,
512-byte row-buffersypr experiences a slowdown of 1.65X (versars's 1.05X). In a system with very large,
64 KB row-buffers,vpr experiences a slowdown of 5.50X (versarss 1.03X). Becausart has very high row-
buffer locality, a large buffer size allows its accessesdnupy a bank much longer than a small buffer size does.
Hence art’s ability to deny bank service tepr increases with row-buffer size. FairMem effectively congahis
denial of service and results in similar slowdowns for bartendvpr (1.32X to 1.41X). Itis commonly assumed
that row-buffer sizes will increase in the future to allow mahroughput for streaming applications [37]. As
our results show, this implies that memory-related DoScktavill become a larger problem and algorithms to
prevent them will become more importast.

| [512B[ 1KB [ 2KB [ 4KB | 8KB [ 16 KB[32 KB[64 KB

art’s row-buffer hit rate 56% | 67% | 87% | 91% | 92% | 93% | 95% | 98%
vpr's row-buffer hit rate 13% | 15% | 17% | 19% | 23% | 28% | 38% | 41%
FairMem throughput improvement1.08X | 1.16X | 1.28X| 1.44X| 1.62X| 1.88X | 2.23X | 2.64X
FairMem fairness improvement || 1.55X| 1.75X| 2.23X| 2.42X | 2.62X| 3.14X | 3.88X| 5.13X

Table 4: Statistics foart andvpr with different row-buffer sizes

Note that the data throughput obtained from the DRAM itsedfyrve, and usually is reduced using FairMem. However, dveral
throughput in terms of instructions executed per cycle lhsusreases.

"Note that reducing the row-buffer size may at first seem like way of reducing the impact of memory-related DoS attakksy-
ever, this solution is not desirable because reducing thiébdfer size significantly reduces the memory bandwid#n@e performance)
for applications with good row-buffer locality even wheryhare running alone or when they are not interfering witleottpplications.
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Figure 10: Normalized execution time aft andvpr when run together on processors with different row-buffer
Sizes.Execution time is independently normalized to each machittedifferent row-buffer size.

6.2.3 Effect of Number of Banks

The number of DRAM banks is another important parameterdffatts how much two threads can interfere
with each others’ memory accesses. Figure 11 shows the trapad andvpr on each other on machines with
different number of DRAM banks. As the number of banks insesathe available parallelism in the memory
system increases, and thait becomes less of a performance hog; its memory requestsatdeis withvpr's
requests. Regardless of the number of banks, our mechaigsificantly mitigates the performance impact of
art on vpr while at the same time improving overall throughput as showhable 5. Current DRAMs usually
employ 4-16 banks because a larger number of banks incrgsesst of the DRAM system. In a system with 4
banks,art slows downvpr by 2.64X (while itself being slowed down by only 1.10X). Rdem is able to reduce
vprs slowdown to only 1.62X and improve overall throughput 8@ In fact, Table 5 shows that FairMem
achieves the same throughput on only 4 banks as the baseliedging algorithm on 8 banks.

1 bank 2 banks 4 banks —art 8 banks 16 banks 32 banks 64 banks

Endmum

FR-FCFS FairMem  FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem FR-FCFS FairMem

Figure 11: Slowdown oért andvpr when run together on processors with various number of DRAMKS.
Execution time is independently normalized to each machittedifferent number of banks.
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| [ 1 bank] 2 banks 4 banks 8 banks] 16 bankg 32 bankg 64 bankg
art-vpr base throughput (IPTC) 122 210 304 401 507 617 707
art-vpr FairMem throughput (IPTC)] 190 287 402 513 606 690 751
FairMem throughput improvement| 1.56X | 1.37X | 1.32X | 1.28X | 1.20X 1.12X 1.06X
FairMem fairness improvement 2.67X| 257X | 2.35X | 2.23X | 1.70X | 1.50X | 1.18X

Table 5: Statistics foart-vpr with different number of DRAM banks (IPTC: Instructions@®cycles)

6.2.4 Effect of Memory Latency

Clearly, memory latency also has an impact on the vulnetaliil the DRAM system. Figure 12 shows how
different DRAM latencies influence the mutual performanegact ofart andvpr. We vary the round-trip
latency of a request that hits in the row-buffer from 50 to@@@ocessor clock cycles, and scale closed/conflict
latencies proportionally. As memory latency increases,itippact ofart on vpr also increases/pr's slowdown

is 1.89X with a 50-cycle latency versus 2.57X with a 1000leyatency. Again, FairMem reducest’s impact

on vpr for all examined memory latencies while also improving aesystem throughput. As main DRAM
latencies are expected to increase in modern processotsrifirs of processor clock cycles) [35], scheduling
algorithms that mitigate the impact of MPHs will become miongortant and effective in the future.

6.2.5 Effect of Number of Cores

Finally, this section analyzes FairMem within the contefkéiecore and 8-core systems. Our results show that
FairMem effectively mitigates the impact of MPHs while imping overall system throughput in both 4-core
and 8-core systems running different application mixe wétrying memory-intensiveness.
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Figure 12: Slowdown oért andvpr when run together on processors with different DRAM accatankies.
Execution time is independently normalized to each machittedifferent number of banks. Row-buffer hit latency isxdéed.

| || 50 cycled 100 cycleg 200 cycleq 300 cycleq 400 cycled 500 cycleq 1000 cycleg

art-vpr base throughput (IPTC) 1229 728 401 278 212 172 88
art-vpr FairMem throughput (IPTC} 1459 905 513 359 276 224 114
FairMem throughput improvement| 1.19X 1.24X 1.28X 1.29X 1.30X 1.30X 1.30X
FairMem fairness improvement 1.69X 1.82X 2.23X 2.21X 2.25X 2.23X 2.22X

Table 6: Statistics foart-vpr with different DRAM latencies (IPTC: Instructions/1009etes)

Figure 13 shows the effect of FairMem on three different ipgibn mixes run on a 4-core system. In all
three mixesstreamand small-streamact as severe MPHs when run on the baseline FR-FCFS sysmming!
down other applications by up to 10.4X (and at least 3.5X)levtiiemselves being slowed down by no more
than 1.10X. FairMem reduces the maximum slowdown causethdgettwo hogs to at most 2.98X while also
improving the overall throughput of the system (shown inl&ak).
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Figure 13: Effect of FR-FCFS and FairMem scheduling on déffie application mixes in a 4-core system

Figure 14 shows the effect of FairMem on three different @pgibn mixes run on an 8-core system. Again,
in the baseline systemmsireamandsmall-strearmact as MPHs, sometimes degrading the performance of another
application by as much as 17.6X. FairMem effectively camgahe negative performance impact caused by the
MPHs for all three application mixes. Furthermore, it is oripnt to observe that FairMem is also effective at iso-
lating non-memory-intensive applications (sucltesdty in MIX2 and MI1X3) from the performance degradation
caused by the MPHs. Even though crafty rarely generates aomyeequest (0.35 times per 1000 instructions), it
is slowed down by 7.85X by the baseline system when run wikhix2! With FairMem crafty's rare memory re-
guests are not unfairly delayed due to a memory performange-hand its slowdown is reduced to only 2.28X.
The same effect is also observed éoafty in MIX3. We conclude that FairMem provides fairness in thenmoey
system, which improves the performance of both memoryasite and non-memory-intensive applications that
are unfairly delayed by an MPH.
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Figure 14: Effect of FR-FCFS and FairMem scheduling on déffe application mixes in an 8-core system

12Notice that 8p-MIX2 and 8p-MIX3 are much less memory inteeshan 8p-MIX1. Due to this, their baseline overall thropghis
significantly higher than 8p-MIX1 as shown in Table 7.
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| [[4p-MIX1 [ 4p-MIX2 | 4p-MIX3 ]| 8p-MIX1 [ 8p-MIX2 [ 8p-MIX3]

base throughput (IPTC) 107 156 163 131 625 1793
FairMem throughput (IPTC) 179 338 234 189 1233 2809
base unfairnessk) 8.05 8.71 10.98 7.89 13.56 10.11
FairMem unfairness¥) 1.09 1.32 1.21 1.18 1.34 1.32
FairMem throughput improvemefjt 1.67X 2.17X 1.44X 1.44X 1.97X 157X
FairMem fairness improvement 7.39X 6.60X 9.07X 6.69X | 10.11X | 7.66X

Table 7: Throughput and fairness statistics for 4-core andr8 systems

7 Related Work

The possibility of exploiting vulnerabilities in theoftware systerto deny memory allocation to other applica-
tions has been considered in a number of works. For exangi¢ describes an attack in which one process
continuously allocates virtual memory and causes othectgages on the same machine to run out of memory
space because swap space on disk is exhausted. The “menmfaymaace attack” we present in this paper is
conceptually very different from such “memory allocatidiaaks” because (1) it exploits vulnerabilities in the
hardware system(2) it is not amenable to software solutions — the hardw#gerdhms must be modified to
mitigate the impact of attacks, and (3) it can be caused emgnantionally by well-written, non-malicious but
memory-intensive applications.

There are only few research papers that condidetwaresecurity issues in computer architecture. The one
closest to our paper is a work by Grunwald and Ghiasi [11] wivestigate the possibility of microarchitectural
denial of service attacks. In particular, they show that Sgimultaneous multithreading) processors exhibit a
number of vulnerabilities that could be exploited by malie threads. More specifically, they study a number of
DoS attacks that affect caching behavior, including oneukas self-modifying code to cause the trace cache to
be flushed. The authors then propose counter-measuresitwaedair pipeline utilization. The work of Hasan
et al. [12] studies the possibility of so-callbdat strokeattacks that repeatedly access a shared resource to create
a hot spot at the resource, thus slowing down the SMT pipeliine authors propose a solution that selectively
slows down malicious threads. These two papers presenveétiavays of “hacking” existing systems using
sophisticated techniques such as self-modifying codeemtitying on-chip hardware resources that can heat up.
In contrast, our paper describes a more prevalent probldrivial type of attack that could be easily developed
by anyone who writes a program. In fact, even existing simaplgications may behave like memory performance
hogs and future multi-core systems are bound to become egamvulnerable to MPHSs. In addition, neither of
the above works consider vulnerabilities in shared DRAM mgnin multi-core architectures.

The FR-FCFS scheduling algorithm implemented in many ctrsengle-core and multi-core systems was
studied in [29, 28, 14, 22], and its best implementation—ethe we presented in Section 2—is due to Rixner et
al [29]. This algorithm was initially developed for singlleread general purpose applications and shows good
throughput performance in such scenarios. As shown in [RR}iever, this algorithm can have negative effects
on fairness in chip-multiprocessor systems. The perfoom@mpact of different memory scheduling techniques
in SMT processors and multiprocessors has been conside[88,i21].

Fairness issues in managing access to shared resourcesdmmvstudied in a variety of contextdetwork
fair queuinghas been studied in order to offer guaranteed service tdtsineous flows over a shared network
link, e.g., [23, 36, 3], and techniques from network fair gimg have since been applied in numerous fields, e.g.,
CPU scheduling [6]. The best currently known algorithm fetwork fair scheduling that also effectively solves
the idleness problem was proposed in [2]. In [22], Nesbit.epeopose a fair memory scheduler that uses the
definition of fairness in network queuing and is based onrtegles from [3, 36]. As we pointed out in Section 4,
directly mapping the definitions and techniques from nekwiair queuing to DRAM memory scheduling is
problematic. Also, the scheduling algorithm in [22] canngfigantly suffer from the idleness problem. Fairness
in disk schedulingras been studied in [4, 25]. The techniques used to achiewedsa in disk access are highly
influenced by the physical association of data on the diskn@srs, tracks, sectors...) and can therefore not
directly be applied in DRAM scheduling.
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The advent of multi-core architectures has spurred a lokot@ment in recent years. It is widely regarded as
the most promising direction towards increasing compuggigpmance in the current era of power-consumption-
limited processor design. In this paper, we show that thield@ment—besides posing numerous challenges in

Conclusion

fields like computer architecture, software engineerimgyperating systems—bears important security risks.

In particular, we have shown that due to unfairness in the amgrsystem of multi-core architectures, some
applications can act amemory performance hogsd destroy the memory-related performance of other appli-
cations that run on different processors in the chip; witlemen being significantly slowed down themselves. In
order to contain the potential of such attacks, we have mepa@a memory request scheduling algorithm whose
design is based on our novel definition of DRAM fairness. Asniamber of processors integrated on a single
chip increases, and as multi-chip architectures beconguitbus, the danger of memory performance hogs is
bound to aggravate in the future and more sophisticatedisotumay be required. We hope that this paper helps
in raising awareness of the security issues involved inap&rshift towards ever-larger multi-core architectures.
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