
Memory Performance Attacks:
Denial of Memory Service in Multi-Core Systems

Thomas Moscibroda Onur Mutlu
Microsoft Research

{moscitho,onur}@microsoft.com

Abstract
We are entering the multi-core era in computer science. All major high-performance processor manufacturers have integrated at

least two cores (processors) on the same chip — and it is predicted that chips with many more cores will become widespread in the near
future. As cores on the same chip share the DRAM memory system, multiple programs executing on different cores can interfere with
each others’ memory access requests, thereby adversely affecting one another’s performance.

In this paper, we demonstrate that current multi-core processors are vulnerable to a new class of Denial of Service (DoS)attacks
because the memory system is “unfairly” shared among multiple cores. An application can maliciously destroy the memory-related
performance of another application running on the same chip. We call such an application amemory performance hog (MPH). With
the widespread deployment of multi-core systems in commodity desktop and laptop computers, we expect MPHs to become a prevalent
security issue that could affect almost all computer users.

We show that an MPH can reduce the performance of another application by 2.9 times in an existing dual-core system, without being
significantly slowed down itself; and this problem will become more severe as more cores are integrated on the same chip. Our analysis
identifies the root causes of unfairness in the design of the memory system that make multi-core processors vulnerable toMPHs. As a
solution to mitigate the performance impact of MPHs, we propose a new memory system architecture that provides fairnessto different
applications running on the same chip. Our evaluations showthat this memory system architecture is able to effectivelycontain the
negative performance impact of MPHs in not only dual-core but also 4-core and 8-core systems.

1 Introduction
For many decades, the performance of processors has increased by hardware enhancements (increases in clock
frequency and smarter structures) that improved single-thread (sequential) performance. In recent years, however,
the immense complexity of processors as well as limits on power-consumption has made it increasingly difficult
to further enhance single-thread performance [17]. For this reason, there has been a paradigm shift away from
implementing such additional enhancements. Instead, processor manufacturers have moved on to integrating
multiple processors on the same chip in a tiled fashion to increase system performance power-efficiently. In
a multi-core chip, different applications can be executed on different processing cores concurrently, thereby
improving overall system throughput (with the hope that theexecution of an application on one core does not
interfere with an application on another core). Current high-performance general-purpose computers have at
least two processors on the same chip (e.g. Intel Pentium D and Core Duo (2 processors), Intel Core-2 Quad (4),
Intel Montecito (2), AMD Opteron (2), Sun Niagara (8), IBM Power 4/5 (2)). And, the industry trend is toward
integrating many more cores on the same chip. In fact, Intel has announced experimental designs with up to 80
cores on chip [15].

The arrival of multi-core architectures creates significant challenges in the fields of computer architecture,
software engineering for parallelizing applications, andoperating systems. In this paper, we show that there
are important challenges beyond these areas. In particular, we expose a new security problem that arises due to
the design of multi-core architectures – a Denial-of-Service (DoS) attack that was not possible in a traditional
single-threaded processor.1 We identify the “security holes” in the hardware design of multi-core systems that
make such attacks possible and propose a solution that mitigates the problem.

1While this problem could also exist in SMP (symmetric shared-memory multiprocessor) and SMT (simultaneous multithreading)
systems, it will become much more prevalent in multi-core architectures which will be widespreadly deployed in commodity desktop and
laptop computers.

1



In a multi-core chip, the DRAM memory system is shared among the threads concurrently executing on
different processing cores. The way current DRAM memory systems work, it is possible that a thread with a
particular memory access pattern can occupy shared resources in the memory system, preventing other threads
from using those resources efficiently. In effect, the memory requests of some threads can be denied service by
the memory system for long periods of time. Thus, an aggressive memory-intensive application can severely
degrade the performance of other threads with which it is co-scheduled (often without even being significantly
slowed down itself). We call such an aggressive applicationa Memory Performance Hog (MPH). For example,
we found that on an existing dual-core Intel Pentium D systemone aggressive application can slow down another
co-scheduled application by 2.9X while it suffers a slowdown of only 18% itself. In a simulated 16-core system,
the effect is significantly worse: the same application can slow down other co-scheduled applications by 14.6X
while it slows down by only 4.4X. This shows that, although already severe today, the problem caused by MPHs
will become much more severe as processor manufacturers integrate more cores on the same chip in the future.

There are three discomforting aspects of this novel security threat:

• First, an MPH can maliciously destroy the memory-related performance of other programs that run on differ-
ent processors on the same chip. Such Denial of Service in a multi-core memory system can ultimately cause
significant discomfort and productivity loss to the end user, and it can have unforeseen consequences. For
instance, an MPH (perhaps written by a competitor organization) could be used to fool computer users into
believing that some other applications are inherently slow, even without causing easily observable effects on
system performance measures such as CPU usage. With the widespread deployment of multi-core systems in
commodity desktop and laptop computers, we expect MPHs to become a much more prevalent security issue
that could affect almost all computer users.

• Second, the problem of memory performance attacks is radically different from other, known attacks on
shared resources in systems, because it cannot be preventedin software. The operating system or the com-
piler (or any other application) has no direct control over the way memory requests are scheduled in the
DRAM memory system. For this reason, even carefully designed and otherwise highly secured systems are
vulnerable to memory performance attacks, unless a solution is implemented inmemory system hardware
itself. For example, numerous sophisticated software-based solutions are known to prevent DoS and other at-
tacks involving mobile or untrusted code (e.g. [9, 24, 26, 5,7]), but these are unsuited to prevent our memory
performance attacks.

• Third, while an MPH can be designed intentionally, a regularapplication can unintentionally behave like an
MPH and damage the memory-related performance of co-scheduled applications, too. This is discomforting
because an existing application that runs without significantly affecting the performance of other applications
in a single-threaded system may deny memory system service to co-scheduled applications in a multi-core
system. Consequently, critical applications can experience severe performance degradations if they are co-
scheduled with a non-critical but memory-intensive application.

The fundamental reason why an MPH can deny memory system service to other applications lies in the “unfair-
ness” in the design of the multi-core memory system. State-of-the-art DRAM memory systems service memory
requests on a First-Ready First-Come-First-Serve (FR-FCFS) basis to maximize memory bandwidth [29, 28, 22].
This scheduling approach is suitable when a single thread isaccessing the memory system because it maximizes
the utilization of memory bandwidth and is therefore likelyto ensure fast progress in the single-threaded pro-
cessing core. However, when multiple threads are accessingthe memory system, servicing the requests in an
order that ignores which thread generated the request can unfairly delay some thread’s memory requests while
giving unfair preference to others. As a consequence, the progress of an application running on one core can be
significantly hindered by an application executed on another.

In this paper, we identify the causes of unfairness in the DRAM memory system that can result in DoS attacks
by MPHs. We show how MPHs can be implemented and quantify the performance loss of applications due to
unfairness in the memory system. Finally, we propose a new memory system design that is based on a novel
definition ofDRAM fairness. This design provides memory access fairness across different threads in multi-core
systems and thereby mitigates the impact caused by a memory performance hog.

2



The major contributions we make in this paper are:

• We expose a new Denial-of-Service attack that can significantly degrade application performance on multi-
core systems and we introduce the concept of Memory Performance Hogs (MPHs). An MPH is an application
that can destroy the memory-related performance of anotherapplication running on a different processing
core on the same chip.

• We demonstrate that MPHs are a real problem by evaluating theperformance impact of DoS attacks on both
real and simulated multi-core systems.

• We identify the major causes in the design of the DRAM memory system that result in DoS attacks: hardware
algorithms that are unfair across different threads accessing the memory system.

• We describe and evaluate a new memory system design that provides fairness across different threads and
mitigates the large negative performance impact of MPHs.

2 Background

We begin by providing a brief background on multi-core architectures and modern DRAM memory systems.
Throughout the section, we abstract away many details in order to give just enough information necessary to
understand how the design of existing memory systems could lend itself to denial-of-service attacks by explicitly-
malicious programs or real applications. Interested readers can find more details in [29, 8, 37].

2.1 Multi-Core Architectures

Figure 1 shows the high-level architecture of a processing system with one core (single-core), two cores (dual-
core) and N cores (N-core). In our terminology, a “core” includes the instruction processing pipelines (integer
and floating-point), instruction execution units, and the L1 instruction and data caches. Many general-purpose
computers manufactured today look like the dual-core system in that they have two separate but identical cores.
In some systems (AMD Athlon/Turion/Opteron, Intel Pentium-D), each core has its own private L2 cache, while
in others (Intel Core Duo, IBM Power 4/5) the L2 cache is shared between different cores. The choice of a shared
vs. non-shared L2 cache affects the performance of the system [13] and a shared cache can be a possible source
of vulnerability to DoS attacks. However, this is not the focus of our paper because DoS attacks at the L2 cache
level can be easily prevented by providing a private L2 cacheto each core (as already employed by some current
systems) or by providing “quotas” for each core in a shared L2cache [27].

...

L2 CACHE

CORE 1 CORE 2

L2 CACHE

DRAM BUS

CHIP

DRAM BANKS

DRAM Memory System

DRAM MEMORY

CONTROLLER

CHIP

...

L2 CACHE

CORE

DRAM BUS

DRAM BANKS

DRAM Memory System

DRAM MEMORY

CONTROLLER

CHIP

...

. . .

L2 CACHE L2 CACHE

CORE NCORE 1

. . .

DRAM BUS

DRAM BANKS

DRAM Memory System

DRAM MEMORY

CONTROLLER

Figure 1: High-level architecture of an example single-core system (left), a dual-core system (middle), and an
N-core system (right).The chip is shaded. The DRAM memory system, part of which is usually off chip, is encircled.

Regardless of whether or not the L2 cache is shared, the DRAM Memory System of current multi-core
systems is shared among all cores. In contrast to the L2 cache, assigning a private DRAM memory system to each
core would significantly change the programming model of shared-memory multiprocessing, which is commonly
used in commercial applications. Furthermore, in a multi-core system, partitioning the DRAM memory system
across cores (while still maintaining a shared-memory programming model) is also undesirable because:

1. DRAM memory is still a very expensive resource in modern systems. Partitioning it requires more DRAM
chips along with a separate memory controller for each core,which significantly increases the cost of a
commodity general-purpose system, especially in future systems that will incorporate tens of cores on chip.

3



2. In a partitioned DRAM system, a processor accessing a memory location needs to issue a request to the
DRAM partition that contains the data for that location. This incurs additional latency and a communication
network to access another processor’s DRAM if the accessed address happens to reside in that partition.

For these reasons, we assume in this paper that each core has aprivate L2 cache but all cores share the DRAM
memory system. We now describe the design of the DRAM memory system in current multi-core processors.

2.2 DRAM Memory Systems

A DRAM memory system consists of three major components: (1)the DRAM banks that store the actual data,
(2) the DRAM controller (scheduler) that schedules commands to read/write data from/to the DRAM banks, and
(3) DRAM address/data/command buses that connect the DRAM banks and the DRAM controller.

2.2.1 DRAM Banks

A DRAM memory system is organized into multiple banks such that memory requests to different banks can
be serviced in parallel. As shown in Figure 2, each DRAM bank has a two-dimensional structure, consisting of
multiple rows and columns. Consecutive addresses in memoryare located in consecutive columns in the same
row.2 The size of a row varies, but it is usually between 1-32Kbytesin commodity DRAMs. In other words, in a
system with 32-byte L2 cache blocks, a row contains 32-1024 L2 cache blocks.

C
ol

um
n 

C
−

1

ROW 0

ROW 1

ROW BUFFER

R
ow

 A
dd

re
ss

 D
ec

od
er

Column Decoder

Data

Column Address

Row Address

Address

C
ol

um
n 

0

ROW R−2

ROW R−1

Figure 2: Organization of a
DRAM bank

To/From Cores
L2 Cache 0
Requests

BUFFER
REQUEST
BANK 0 . . .

Crossbar

Requests
L2 Cache N−1

. . .

BUFFER
REQUEST
BANK B−1

Bank 0
Scheduler Scheduler

Bank B−1. . .

DRAM Bus Scheduler

Selected Address and DRAM Command

DRAM Address/Command Bus

To DRAM Banks

D
R

A
M

 D
at

a 
B

us

To/From DRAM Banks

Memory Request
Buffer

Memory Access
Scheduler

O
n−

C
hi

p 
D

at
a 

B
us

Figure 3: Organization of the DRAM controller

Each bank has onerow-bufferand data can only be read from this buffer. The row-buffer contains at most a single
row at any given time. Due to the existence of the row-buffer,modern DRAMs are not truly random access (equal
access time to all locations in the memory array). Instead, depending on the access pattern to a bank, a DRAM
access can fall into one of the three following categories:

1. Row hit: The access is to the row that is already in the row-buffer. The requested column can simply be read
from or written into the row-buffer (called acolumn access). This case results in the lowest latency (typically
40-50ns in commodity DRAM, including data transfer time, which translates into 120-150 processor cycles
for a core running at 3GHz clock frequency). Note that sequential/streaming memory access patterns (e.g.
accesses to cache blocks A, A+1, A+2, ...) result in row hits since the accessed cache blocks are in consecutive
columns in a row. Such requests can therefore be handled relatively quickly.

2. Row conflict: The access is to a row different from the one that is currentlyin the row-buffer. In this case,
the row in the row-buffer first needs to be written back into the memory array (called arow-close) because
the row access had destroyed the row’s data in the memory array. Then, arow accessis performed to load
the requested row into the row-buffer. Finally, a column access is performed. Note that this case has much
higher latency than a row hit (typically 80-100ns or 240-300processor cycles at 3GHz).

2Note that consecutive memory rows are located in different banks.

4



3. Row closed:There is no row in the row-buffer. Due to various reasons (e.g. to save energy), DRAM memory
controllers sometimes close an open row in the row-buffer, leaving the row-buffer empty. In this case, the
required row needs to be first loaded into the row-buffer (called a row access). Then, a column access is
performed. We mention this third case for the sake of completeness because in the paper, we focus primarily
on row hits and row conflicts, which have the largest impact onour results.

Due to the nature of DRAM bank organization, sequential accesses to the same row in the bank have low latency
and can be serviced at a faster rate. However, sequential accesses to different rows in the same bank result in high
latency. Therefore, to maximize bandwidth, current DRAM controllers schedule accesses to the same row in a
bank before scheduling the accesses to a different row even if those were generated earlier in time. We will later
show how this policy causes unfairness in the DRAM system andmakes the system vulnerable to DoS attacks.

2.2.2 DRAM Controller

The DRAM controller is the mediator between the on-chip caches and the off-chip DRAM memory. It receives
read/write requests from L2 caches. The addresses of these requests are at the granularity of the L2 cache block.
Figure 3 shows the architecture of the DRAM controller. The main components of the controller are thememory
request bufferand thememory access scheduler.

The memory request buffer buffers the requests received foreach bank. It consists of separatebank request
buffers. Each entry in a bank request buffer contains the address (row and column), the type (read or write), the
timestamp, and the state of the request along with storage for the data associated with the request.

The memory access scheduler is the brain of the memory controller. Its main function is to select a memory
request from the memory request buffer to be sent to DRAM memory. It has a two-level hierarchical organization
as shown in Figure 3. The first level consists of separate per-bank schedulers. Each bank scheduler keeps track
of the state of the bank and selects the highest-priority request from its bank request buffer. The second level
consists of an across-bank scheduler that selects the highest-priority request among all the requests selected by
the bank schedulers. When a request is scheduled by the memory access scheduler, its state is updated in the
bank request buffer, and it is removed from the buffer when the request is served by the bank (For simplicity,
these control paths are not shown in Figure 3).

2.2.3 Memory Access Scheduling Algorithm

Current memory access schedulers are designed to maximize the bandwidth obtained from the DRAM memory.
As shown in [29], a simple request scheduling algorithm thatserves requests based on a first-come-first-serve
policy is prohibitive, because it incurs a large number of bank conflicts. Instead, current memory access sched-
ulers usually employ what is called a First-Ready First-Come-First-Serve (FR-FCFS) algorithm to select which
request should be scheduled next [29, 22]. This algorithm prioritizes requests in the following order in a bank:

1. Row-hit-first : A bank scheduler gives higher priority to the requests thatwould be serviced faster. In other
words, a request that would result in arow hit is prioritized over one that would cause arow conflict.

2. Oldest-within-bank-first : A bank scheduler gives higher priority to the request that arrived earliest.

Selection from the requests chosen by the bank schedulers isdone as follows:
Oldest-across-banks-first: The across-bank DRAM bus scheduler selects the request with the earliest arrival

time among all the requests selected by individual bank schedulers.
In summary, this algorithm strives to maximize DRAM bandwidth by scheduling accesses that cause row hits
first (regardless of when these requests have arrived) within a bank. Hence, streaming memory access patterns
are prioritized within the memory system. The oldest row-hit request has the highest priority in the memory
access scheduler. In contrast, the youngest row-conflict request has the lowest priority.

5



2.3 Vulnerability of the Multi-Core DRAM Memory System to Do S Attacks

As described above, current DRAM memory systems do not distinguish between the requests of different threads
(i.e. cores)3. Therefore, multi-core systems are vulnerable to DoS attacks that exploit unfairness in the memory
system. Requests from a thread with a particular access pattern can get prioritized by the memory access sched-
uler over requests from other threads, thereby causing the other threads to experience very long delays. We find
that there are two major reasons why one thread can deny service to another in current DRAM memory systems:

1. Unfairness of row-hit-first scheduling: A thread whose accesses result in row hits gets higher priority
compared to a thread whose accesses result in row conflicts. We call an access pattern that mainly results in
row hits as a pattern withhigh row-buffer locality. Thus, an application that has a high row-buffer locality
(e.g. one that is streaming through memory) can significantly delay another application with low row-buffer
locality if they happen to be accessing the same DRAM banks.

2. Unfairness of oldest-first scheduling: Oldest-first scheduling implicitly gives higher priorityto those threads
that can generate memory requests at a faster rate than others. Such aggressive threads can flood the memory
system with requests at a faster rate than the memory system can service. As such, aggressive threads can fill
the memory system’s buffers with their requests, while lessmemory-intensive threads are blocked from the
memory system until all the earlier-arriving requests fromthe aggressive threads are serviced.

Based on this understanding, it is possible to develop a memory performance hog that effectively denies service to
other threads. In the next section, we describe such an example MPH and show its impact on another application.

3 Motivation: Examples of Denial of Memory Service in Existing Multi-Cores

In this section, we present measurements from real systems to demonstrate that Denial of Memory Service attacks
are possible in existing multi-core systems.

3.1 Applications

We consider two applications to motivate the problem. One isa modified version of the popularstreambench-
mark [19], an application that streams through memory and performs operations on two one-dimensional arrays.
The arrays instreamare sized such that they are much larger than the L2 cache on a core. Each array consists of
2.5M 128-byte elements.4 Stream(Figure 4(a)) has very high row-buffer locality since consecutive cache misses
almost always access the same row (limited only by the size ofthe row-buffer). Even though we cannot directly
measure the row-buffer hit rate in our real experimental system (because hardware does not directly provide this
information), our simulations show that 96% of all memory requests instreamresult in row-hits.

(b) RDARRAY

// initialize arrays a, b
for (j=0; j<N; j++)

index[j] = rand(); // random # in [0,N]

b[index[j]] = scalar * a[index[j]];
for (j=0; j<N; j++)

a[index[j]] = b[index[j]];
for (j=0; j<N; j++)

// initialize arrays a, b
for (j=0; j<N; j++)

b[index[j]] = scalar * a[index[j]];
for (j=0; j<N; j++)

a[index[j]] = b[index[j]];
for (j=0; j<N; j++)

index[j] = j; // streaming index

(a) STREAM

Figure 4: Major loops of thestream(a) andrdarray (b) programs

The other application, calledrdarray, is almost the exact opposite ofstreamin terms of its row-buffer locality.
Its pseudo-code is shown in Figure 4(b). Although it performs the same operations on two very large arrays
(each consisting of 2.5M 128-byte elements),rdarray accesses the arrays in a pseudo-random fashion. The array
indices accessed in each iteration of the benchmark’s main loop are determined using a pseudo-random number

3We assume, without loss of generality, one core can execute one thread.
4Even though the elements are 128-byte, each iteration of themain loop operates on only one 4-byte integer in the 128-byteelement.

We use 128-byte elements to ensure that consecutive accesses miss in the cache and exercise the DRAM memory system.

6



generator. Consequently, this benchmark has very low row-buffer locality; the likelihood that any two outstanding
L2 cache misses in the memory request buffer are to the same row in a bank is low due to the pseudo-random
generation of array indices. Our simulations show that 97% of all requests inrdarray result in row-conflicts.

3.2 Measurements

We ran the two applications alone and together on two existing multi-core systems and one simulated future
multi-core system.

3.2.1 A Dual-core System

The first system we examine is an Intel Pentium D 930 [16] baseddual-core system with 2GB SDRAM. In this
system each core has an L2 cache size of 2MB. Only the DRAM memory system is shared between the two cores.
The operating system is Windows XP Professional.5 All the experiments were performed when the systems were
unloaded as much as possible. To account for possible variability due to system state, each run was repeated 10
times and the execution time results were averaged (error bars show the variance across the repeated runs). Each
application’s main loops consist ofN = 2.5 · 106 iterations and were repeated 1000 times in the measurements.

Figure 5(a) shows the normalized execution time ofstreamwhen run (1) alone, (2) concurrently with another
copy ofstream, and (3) concurrently withrdarray. Figure 5(b) shows the normalized execution time ofrdarray
when run (1) alone, (2) concurrently with another copy ofrdarray, and (3) concurrently withstream.

Whenstreamandrdarray execute concurrently on the two different cores,streamis slowed down by only
18%. In contrast,rdarray experiences a dramatic slowdown: its execution time increases by up to 190% (it takes
2.9X longer to complete compared to when it is run alone). Hence,streameffectively denies memory service to
rdarray without being significantly slowed down itself.

We hypothesize that this behavior is due to the row-hit-firstscheduling policy in the DRAM memory con-
troller. As most ofstream’s memory requests hit in the row-buffer, they are prioritized overrdarray’s requests,
most of which result in row conflicts. Consequently,rdarray is denied access to the DRAM banks that are being
accessed bystreamuntil thestreamprogram’s access pattern moves on to another bank. With a rowsize of 8KB
and a cache line size of 64B, 128 (=8KB/64B) ofstream’s memory requests can be serviced by a DRAM bank
beforerdarray is allowed to access that bank!6 Thus, due to the thread-unfair implementation of the DRAM
memory system,streamcan act as an MPH againstrdarray.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e STREAM

stream alone with another stream with rdarray
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e RDARRAY

rdarray alone with another rdarray with stream

Figure 5: Normalized execution time of (a)streamand (b)rdarray when run alone/together on a dual-core system

Note that the slowdownrdarrayexperiences when run withstream(2.90X) is much greater than the slowdown
it experiences when run with another copy ofrdarray (1.71X). Because neither copy ofrdarray has good row-

5We also repeated the same experiments in (1) the same system with the RedHat Fedora Core 6 operating system and (2) an IntelCore
Duo based dual-core system running RedHat Fedora Core 6. We found the results to be almost exactly the same as those reported.

6Note that we do not know the exact details of the DRAM memory controller and scheduling algorithm that is implemented in the
existing systems. These details are not made public in either Intel’s or AMD’s documentation. Therefore, we hypothesize about the
causes of the behavior based on public information available on DRAM memory systems - and later support our hypotheses with our
simulation infrastructure (see Section 6). It could be possible that existing systems have a threshold up to which younger requests can be
ordered over older requests as described in a patent [20], but even so our experiments suggest that memory performance attacks are still
possible in existing multi-core systems.

7



buffer locality, another copy ofrdarray cannot deny service tordarray by holding on to a row-buffer for a long
time. In this case, the performance loss comes from increased bank conflicts and contention in the DRAM bus.

On the other hand, the slowdownstreamexperiences when run withrdarray is significantly smaller than the
slowdown it experiences when run with another copy ofstream. When two copies ofstreamrun together they are
both able to deny access to each other because they both have very high row-buffer locality. Because the rates at
which bothstreams generate memory requests are the same, the slowdown is not as high asrdarray’s slowdown
with stream: copies ofstreamtake turns in denying access to each other (in different DRAMbanks) whereas
stream alwaysdenies access tordarray (in all DRAM banks).

3.2.2 A Dual Dual-core System

The second system we examine is a dual dual-core AMD Opteron 275 [1] system with 4GB SDRAM. In this
system, only the DRAM memory system is shared between a totalof four cores. Each core has an L2 cache size
of 1 MB. The operating system used was RedHat Fedora Core 5. Figure 6(a) shows the normalized execution
time of streamwhen run (1) alone, (2) with one copy ofrdarray, (3) with 2 copies ofrdarray, (4) with 3 copies
of rdarray, and (5) with 3 other copies ofstream. Figure 6(b) shows the normalized execution time ofrdarray in
similar but “dual” setups.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

STREAM

stream alone with rdarray with 2 rdarrays with 3 rdarrays with 3 streams
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

RDARRAY

rdarray alone with stream with 2 streams with 3 streams with 3 rdarrays

Figure 6: Slowdown of (a)streamand (b)rdarray when run alone/together on a dual dual-core system

Similar to the results shown for the dual-core Intel system,the performance ofrdarray degrades much more
significantly than the performance ofstreamwhen the two applications are executed together on the 4-core
AMD system. In fact,streamslows down by only 48% when it is executed concurrently with 3copies of
rdarray. In contrast,rdarray slows down by 408% when running concurrently with 3 copies ofstream. Again, we
hypothesize that this difference in slowdowns is due to the row-hit-first policy employed in the DRAM controller.

3.2.3 A Simulated 16-core System

While the problem of MPHs is severe even in current dual- or dual-dual-core systems, it will be significantly
aggravated in future multi-core systems consisting of manymore cores. To demonstrate the severity of the
problem, Figure 7 shows the normalized execution time ofstreamandrdarray when run concurrently with 15
copies ofstreamor 15 copies ofrdarray, along with their normalized execution times when 8 copies of each
application are run together. Note that our simulation methodology and simulator parameters are described in
Section 6.1. In a 16-core system, our memory performance hog, stream, slows downrdarray by 14.6X while
rdarray slows downstreamby only 4.4X. Hence,streamis an even more effective performance hog in a 16-core
system, indicating that the problem of “memory performanceattacks” will become more severe in the future if
the memory system is not adjusted to prevent them.

4 Towards a Solution: Fairness in DRAM Memory Systems

The fundamental unifying cause of the attacks demonstratedin the previous section isunfairnessin the shared
DRAM memory system. The problem is that the memory system cannot distinguish whether a harmful memory
access pattern issued by a thread is due to a malicious attack, due to erroneous programming, or simply a neces-
sary memory behavior of a specific application. Therefore, the best the DRAM memory scheduler can do is to
contain and limitmemory attacks by providing fairness among different threads.

8



0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

STREAM

stream alone with 7 streams + 8 rdarrays with 15 rdarrays 0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

RDARRAY

rdarray alone with 7 rdarrays + 8 streams with 15 streams

Figure 7: Slowdown of (a)streamand (b)rdarray when run alone and together on a simulated 16-core system

Difficulty of Defining DRAM Fairness: But what exactly constitutes fairness in DRAM memory systems?
As it turns out, answering this question is non-trivial and coming up with a reasonable definition is somewhat
problematic. For instance, simple algorithms that schedule requests in such a way that memory latencies are
equally distributed among different threads disregard thefact that different threads have different row-buffer la-
tencies. As a consequence, suchequal-latency scheduling algorithmswill unduly slow down threads that have
high row-buffer locality and prioritize threads that have poor row-buffer locality. Whereas the standard FR-FCFS
scheduling algorithm can starve threads with bad row-buffer locality (Section 2.3), any algorithm seeking egali-
tarian memory fairness would unfairly punish “well-behaving” threads with good row-buffer locality. Neither of
the two options therefore rules out unfairness and the possibility of memory attacks.

Another challenge is that DRAM memory systems have a notion of state(consisting of the currently buffered
rows in each bank). For this reason, well-studied notions offairness that deal with stateless systems cannot be
applied in our setting. Innetwork fair queuing[23, 36, 3], for example, the idea is that ifN processes share a
common channel with bandwidthB, every process should achieve exactly the same performanceas if it had a
single channel of bandwidthB/N . When mapping the same notion of fairness onto a DRAM memory system
(as done in [22]), however, the memory scheduler would need to schedule requests in such a way as to guarantee
the following: In a multi-core system withN threads, no thread should run slower than the same thread on
a single-core system with a DRAM memory system that runs at1/N th of the speed. Unfortunately, because
memory banks have state and row conflicts incur a higher latency than row hit accesses, this notion of fairness
is ill-defined. Consider for instance two threads in a dual-core system that constantly access the same bank but
different rows. While each of these threads by itself has perfect row-buffer locality, running them together will
inevitably result in row-buffer conflicts. Hence, it is impossible to schedule these threads in such a way that each
thread runs at the same speed as if it ran by itself on a system at half the speed. On the other hand, requests from
two threads that consistently access different banks could(almost) entirely be scheduled in parallel and there is
no reason why the memory scheduler should be allowed to slow these threads down by a factor of2.

In summary, in the context of memory systems, notions of fairness–such as network fair queuing–that attempt
to equalize the latencies experienced by different threadsare unsuitable. In a DRAM memory system, it is neither
possible to achieve such a fairness nor would achieving it significantly reduce the risk of memory performance
attacks. In Section 4.1, we will present a novel definition ofDRAM fairness that takes into account the inherent
row-buffer locality of threads and attempts to balance the “relative slowdowns”.

The Idleness Problem:In addition to the above observations, it is important to observe that any scheme that
tries to balance latencies between threads runs into the risk of what we call theidleness problem. Threads that
are temporarily idle (not issuing many memory requests, forinstance due to an I/O operation) will be slowed
down when returning to a more memory intensive access pattern. On the other hand, in certain solutions based
on network fair queuing [22], a memory hog could intentionally issue no or few memory requests for a period
of time. During that time, other threads could “move ahead” at a proportionally lower latency, such that, when
the malicious thread returns to an intensive access pattern, it is temporarily prioritized and normal threads are
blocked. The idleness problem therefore poses a severe security risk: By exploiting it, an attacking memory hog
could temporarily slow down or even block time-critical applications with high performance stability require-
ments from memory.

9



4.1 Fair Memory Scheduling: A Model

As discussed, standard notions of fairness fail in providing fair execution and hence, security, when mapping
them onto shared memory systems. The crucial insight that leads to a better notion of fairness is that we need to
dissectthe memory latency experienced by a thread into two parts: First, the latency that is inherent to the thread
itself (depending on its row-buffer locality) and second, the latency that is caused by contention with other threads
in the shared DRAM memory system. A fair memory system should—unlike the approaches so far—schedule
requests in such a way that thesecondlatency component is fairly distributed, while the first component remains
untouched. With this, it is clear why our novel notion ofDRAM shared memory fairnessis based on the following
intuition: In a multi-core system withN threads, no thread should suffer more relative performanceslowdown—
compared to the performance it gets if it used the same memorysystem by itself—than any other thread.Because
each thread’s slowdown is thus measured against its own baseline performance (single execution on the same
system), this notion of fairness successfully dissects thetwo components of latency and takes into account the
inherent characteristics of each thread.

In more technical terms, we consider a measureχi for each currently executed threadi.7 This measure
captures the price (in terms of relative additional latency) a threadi pays because the shared memory system is
used by multiple threads in parallel in a multi-core architecture. In order to provide fairness and contain the risk
of denial of memory service attacks, the memory controller should schedule outstanding requests in the buffer in
such a way that theχi values are as balanced as possible. Such a scheduling will ensure that each thread only
suffers a fair amount of additional latency that is caused bythe parallel usage of the shared memory system.

Formal Definition: Our definition of the measureχi is based on the notion ofcumulated bank-latencyLi,b

that we define as follows.

Definition 4.1. For each threadi and bankb, thecumulated bank-latencyLi,b is the number of memory cycles
during which there exists an outstanding memory request by threadi for bankb in the memory request buffer.
The cumulated latency of a threadLi =

∑
b Li,b is the sum of all cumulated bank-latencies of threadi.

The motivation for this formulation ofLi,b is best seen when considering latencies on the level of individual
memory requests. Consider a threadi and letRk

i,b denote thekth memory request of threadi that accesses bank

b. Each such requestRk
i,b is associated with three specific times: Its arrival timeak

i,b when it is entered into the

request buffer; its finish timefk
i,b, when it is completely serviced by the bank and sent to processori’s cache; and

finally, the request’sactivation time
sk
i,b := max{fk−1

i,b , ak
i,b}.

This is the earliest time when requestRk
i,b could be scheduled by the bank scheduler. It is the larger of its arrival

time and the finish time of the previous requestRk−1

i,b that was issued by the same thread to the same bank. A

request’s activation time marks the point in time from whichon Rk
i,b is responsible for the ensuing latency of

threadi; beforesk
i,b, the request was either not sent to the memory system or an earlier request to the same bank

by the same thread was generating the latency. With these definitions, theamortized latencyℓk
i,b of requestRk

i,b

is the difference between its finish time and its activation time, i.e.,ℓk
i,b = fk

i,b − sk
i,b. By the definition of the

activation timesk
i,b, it is clear that at any point in time, the amortized latency of exactly one outstanding request

is increasing (if there is at least one in the request buffer). Hence, when describing time in terms of executed
memory cycles, our definition of cumulated bank-latencyLi,b corresponds exactly to the sum over all amortized
latencies to this bank, i.e.,Li,b =

∑
k ℓk

i,b.
In order to compute the experienced slowdown of each thread,we compare the actual experienced cumulated

latencyLi of each threadi to an imaginary,ideal single-core cumulated latencỹLi that serves as a baseline. This
latencyL̃i is the minimal cumulated latency that threadi would have accrued if it had run as the only thread in
the system using the same DRAM memory; it captures the latency component ofLi that is inherent to the thread
itself and not caused by contention with other threads. Hence, threads with good and bad row-buffer locality

7The DRAM memory system only keeps track of threads that are currently issuing requests.

10



have small and largẽLi, respectively. The measureχi that captures the relative slowdown of threadi caused by
multi-core parallelism can now be defined as follows.

Definition 4.2. For a threadi, theDRAM memory slowdown indexχi is the ratio between its cumulated latency
Li and its ideal single-core cumulated latencyL̃i:8

χi := Li/L̃i.

Finally, we define theDRAM unfairness Ψ of a DRAM memory system as the ratio between the maximum
and minimum slowdown index over all currently executed threads in the system:

Ψ :=
maxi χi

minj χj

The “ideal” DRAM unfairness indexΨ = 1 is achieved if all threads experience exactly the same slowdown;
the higherΨ, the more unbalanced is the experienced slowdown of different threads. The goal of a fair memory
access scheduling algorithm is therefore to achieve aΨ that is as close to1 as possible. This ensures that no
thread is over-proportionally slowed down due to the sharednature of DRAM memory in multi-core systems.

Notice that by taking into account the different row-bufferlocalities of different threads, our definition of
DRAM unfairness prevents punishing threads for having either good or bad memory access behavior. Hence,
a scheduling algorithm that achieves low DRAM unfairness mitigates the risk that any thread in the system,
regardless of its bank and row access pattern, is unduly bogged down by other threads. Notice further that
DRAM unfairness is virtually unaffected by the idleness problem, because both cumulated latenciesLi and ideal
single-core cumulated latenciesL̃i are only accrued when there are requests in the memory request buffer.

Short-Term vs. Long-Term Fairness: So far, the aspect of time-scale has remained unspecified in our
definition of DRAM-unfairness. BothLi andL̃i continue to increase throughout the lifetime of a thread. Conse-
quently, a short-term unfair treatment of a thread would have increasingly little impact on its slowdown indexχi.
While still providing long-term fairness, threads that have been running for a long time could become vulnerable
to short-term DoS attacks even if the scheduling algorithm enforced an upper bound on DRAM unfairnessΨ. In
this way, delay-sensitive applications could be blocked from DRAM memory for limited periods of time.

We therefore generalize all our definitions to include an additional parameterT that denotes the time-scale
for which the definitions apply. In particular,Li(T ) andL̃i(T ) are the maximum (ideal single-core) cumulated
latencies over all time-intervals of durationT during which threadi is active. Similarly,χi(T ) andΨ(T ) are de-
fined as the maximum values over all time-intervals of lengthT . The parameterT in these definitions determines
how short- or long-term the considered fairness is. In particular, a memory scheduling algorithm with good long
term fairness will have smallΨ(T ) for largeT , but possibly largeΨ(T ′) for smallerT ′. In view of the security
issues raised in this paper, it is clear that a memory scheduling algorithm should aim at achieving smallΨ(T ) for
both small and largeT .

5 Our Solution
In this section, we propose FairMem, a new fair memory scheduling algorithm that achieves good fairness ac-
cording to the definition in Section 4 and hence, reduces the risk of memory-related DoS attacks.

5.1 Basic Idea

The reason why MPHs can exist in multi-core systems is the unfairness in current memory access schedulers.
Therefore, the idea of our new scheduling algorithm is to enforce fairness by balancing the relative memory-
related slowdowns experienced by different threads. The algorithm schedules requests in such a way that each
thread experiences a similar degree of memory-related slowdown relative to its performance when run alone.

8Notice that our definitions do not take into account the service and waiting times of the shared DRAM bus and across-bank scheduling.
Both our definition of fairness as well as our algorithm presented in Section 5 can be extended to take into account these and other more
subtle hardware issues. As the main goal of this paper point out and investigate potential security risks caused by DRAM unfairness, our
model abstracts away numerous aspects of secondary importance because our definition provides a good approximation.

11



In order to achieve this goal, the algorithm maintains a value (χi in our model of Section 4.1) that character-
izes the relative slowdown of each thread. As long as all threads have roughly the same slowdown, the algorithm
schedules requests using the regular FR-FCFS mechanism. When the slowdowns of different threads start di-
verging and the difference exceeds a certain threshold (i.e., whenΨ becomes too large), however, the algorithm
switches to an alternative scheduling mechanism and startsprioritizing requests issued by threads experiencing
large slowdowns.

5.2 Fair Memory Scheduling Algorithm (FairMem)

The memory scheduling algorithm we propose for use in DRAM controllers for multi-core systems is defined
by means of two input parameters,α andβ. These parameters can be used to fine-tune the involved trade-offs
between fairness and throughput on the one hand (α) and short-term versus long-term fairness on the other (β).
More concretely,α is a parameter that expresses to what extent the scheduler isallowed to optimize for DRAM
throughput at the cost of fairness, i.e., how much DRAM unfairness is tolerable. The parameterβ corresponds
to the time-intervalT that denotes the time-scale of the above fairness condition. In particular, the memory
controller divides time into windows of durationβ and, for each thread maintains an accurate account of its
accumulated latenciesLi(β) andL̃i(β) in the current time window.9

Instead of using the (FR-FCFS) algorithm described in Section 2.2.3, our algorithm first determines two
candidate requestsfrom each each bankb, one according to each of the following rules:

• Highest FR-FCFS priority : Let RFR-FCFSbe the request to bankb that has the highest priority according to
the FR-FCFS scheduling policy of Section 2.2.3. That is, rowhits have higher priority than row conflicts,
and—given this partial ordering—the oldest request is served first.

• Highest fairness-index: Let i′ be the thread with highest current DRAM memory slowdown index χi′(β)
that has at least one outstanding request in the memory request buffer to bankb. Among all requests tob
issued byi′, let RFair be the one with highest FR-FCFS priority.

Between these two candidates, the algorithm chooses the request to be scheduled based on the following rule:

• Fairness-oriented Selection: Let χℓ(β) andχs(β) denote largest and smallest DRAM memory slowdown
index of any request in the memory request buffer for a current time window of durationβ. If it holds that

χℓ(β)

χs(β)
≥ α

thenRFair is selected by bankb’s scheduler andRFR-FCFSotherwise.

Instead of using the oldest-across-banks-first strategy asused in current DRAM memory schedulers, selection
from requests chosen by the bank schedulers is handled as follows:

Highest-DRAM-fairness-index-first across banks: The request with highest slowdown indexχi(β) among
all selected bank-requests is sent on the shared DRAM bus.

In principle, the algorithm is built to ensure that at no timeDRAM unfairnessΨ(β) exceeds the parameterα.
Whenever there is the risk of exceeding this threshold, the memory controller will switch to a mode in which it
starts prioritizing threads with higherχi values, which decreasesχi. It also increases theχj values of threads that
have had little slowdown so far. Consequently, this strategy balances large and small slowdowns, which decreases
DRAM unfairness and—as shown in Section 6—keeps potential memory-related DoS attacks in check.

Notice that this algorithm does not–in fact, cannot–guarantee that the DRAM unfairnessΨ does stay below
the predetermined thresholdα at all times. The impossibility of this can be seen when considering the corner-
caseα = 1. In this case, a violation occurs after the first request regardless of which request is scheduled by the
algorithm. On the other hand, the algorithm always attemptsto keep the necessary violations as small as possible.

9Notice that in principle, there are various possibilities of interpreting the term “current time window”. The simplestway is to
completely resetLi(β) andeLi(β) after each completion of a window. More sophisticated techniques could include maintaining multiple,
sayk, such windows of sizeβ in parallel, each shifted in time byβ/k memory cycles. In this case, all windows are constantly updated,
but only the oldest is used for the purpose of decision-making. This could help in reducing volatility.

12



Another advantage of our scheme is that an approximate version of it lends itself to efficient implementation in
hardware. Finally, notice that our algorithm is robust withregard to theidleness problemmentioned in Section 4.
In particular, neitherLi nor L̃i is increased or decreased if a thread has no outstanding memory requests in the
request buffer. Hence, not issuing any requests for some period of time (either intentionally or unintentionally
due to I/O, for instance) does not affect this or any other thread’s priority in the buffer.

5.3 Hardware Implementations

The algorithm as described so far is abstract in the sense that it assumes a memory controller that always has
full knowledge of every active (currently-executed) thread’s Li andL̃i. In this section, we show how this exact
scheme could be implemented, and we also briefly discuss a more efficient practical hardware implementation.

Exact Implementation: Theoretically, it is possible to ensure that the memory controller always keeps
accurate information ofLi(β) and L̃i(β). Keeping track ofLi(β) for each thread is simple. For each active
thread, a counter maintains the number of memory cycles during which at least one request of this thread is
buffered for each bank. After completion of the windowβ (or when a new thread is scheduled on a core),
counters are reset. The more difficult part of maintaining anaccurate account of̃Li(β) can be done as follows: At
all times, maintain for each active threadi and for each bank the row that would currently be in the row-buffer if i
had been the only thread using the DRAM memory system. This can be done by simulating an FR-FCFS priority
scheme for each thread and bank that ignores all requests issued by threads other thani. Theℓ̃k

i,b latency of each

requestRk
i,b then corresponds to the latency this request would have caused if DRAM memory was not shared.

Whenever a request is served, the memory controller can add this “ideal latency” to the corresponding̃Li,b(β) of
that thread and–if necessary–update the simulated state ofthe row-buffer accordingly. For instance, assume that
a requestRk

i,b is served, but results in a row conflict. Assume further that the same request would have been a

row hit, if threadi had run by itself, i.e.,Rk−1

i,b accesses the same row asRk
i,b. In this case,̃Li,b(β) is increased

by row-hit latencyThit, whereasLi,b(β) is increased by the bank-conflict latencyTconf . By thus “simulating” its
own execution for each thread, the memory controller obtains accurate information for all̃Li,b(β).

The obvious problem with the above implementation is that itis expensive in terms of hardware overhead and
cost. It requires maintaining at least one counter for each core×bank pair. Similarly severe, it requires one divider
per core in order to compute the valueχi(β) = Li(β)/L̃i(β) for the thread that is currently running on that core
in every memory cycle. Fortunately, much less expensive hardware implementations are possible because the
memory controller does not need to know the exact values ofLi,b andL̃i,b at any given moment. Instead, using
reasonably accurate approximate values suffices to maintain an excellent level of fairness and security.

Reduce counters by sampling:Using sampling techniques, the number of counters that needto be main-
tained can be reduced fromO(#Banks × #Cores) to O(#Cores) with only little loss in accuracy. Briefly, the
idea is the following. For each core and its active thread, wekeep two countersSi andHi denoting the number
of samples and sampled hits, respectively. Instead of keeping track of the exact row that would be open in the
row-buffer if a threadi was running alone, we randomly sample a subset of requestsRk

i,b issued by threadi and

check whether the next request byi to the same bank,Rk+1

i,b , is for the same row. If so, the memory controller
increases bothSi andHi, otherwise, onlySi is increased. RequestsRq

i,b′ to different banksb′ 6= b served between

Rk
i,b andRk+1

i,b are ignored. Finally, if none of theQ requests of threadi following Rk
i,b go to bankb, the sample

is discarded, neitherSi nor Hi is increased, and a new sample request is taken. With this technique, the proba-
bility Hi/Si that a request results in a row hit gives the memory controller a reasonably accurate picture of each
thread’s row-buffer locality. An approximation of̃Li can thus be maintained by adding the expected amortized
latency to it whenever a request is served, i.e.,

L̃new
i := L̃old

i + (Hi/Si · Thit + (1 − Hi/Si) · Tconf ) .

Reuse dividers: The ideal scheme employsO(#Cores) hardware dividers, which significantly increases
the memory controller’s energy consumption. Instead, a single divider can be used for all cores by assigning
individual threads to it in a round robin fashion. That is, while the slowdownsLi(β) andL̃i(β) can be updated
in every memory cycle, their quotientχi(β) is recomputed in intervals.

13



6 Evaluation
6.1 Experimental Methodology

We evaluate our solution using a detailed processor and memory system simulator based on the Pin dynamic
binary instrumentation tool [18]. Our in-house instruction-level performance simulator can simulate applications
compiled for the x86 instruction set architecture. We simulate the memory system in detail using a model loosely
based on DRAMsim [33], which is commonly used for DRAM performance evaluations. Both our processor
model and the memory model mimmick the design of a modern high-performance dual-core processor based on
Intel Core Duo [10]. The size/bandwidth/latency/capacityof different processor structures along with the number
of cores and other structures are parameters to the simulator. The simulator faithfully models the bandwidth,
latency, and capacity of each buffer, bus, and structure in the memory subsystem (including the caches, memory
controller, DRAM buses, and DRAM banks). The relevant parameters of the modeled baseline processor are
shown in Table 1. Unless otherwise stated, all evaluations in this section are performed on a simulated dual-core
system using these parameters. For our measurements with the FairMem system presented in Section 5, the
parameters are set toα = 1.025 andβ = 105.

Processor pipeline 4 GHz processor, 128-entry instruction window, 12-stage pipeline
Fetch/Execute width per core 3 instructions can be fetched/executed every cycle; only 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 32-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 32-byte block size, 12-cycle latency
Memory controller 128 request buffer entries, FR-FCFS baseline scheduling policy, runs at 2 GHz
DRAM parameters 8 banks, 2K-byte row-buffer
DRAM latency (round-trip L2 miss latency) row-buffer hit: 50ns (200 cycles), closed: 75ns (300 cycles), conflict: 100ns (400 cycles)

Table 1: Baseline processor configuration

We simulate each application for 100 million x86 instructions. The portions of applications that are sim-
ulated are determined using the SimPoint tool [31], which selects simulation points in the application that are
representative of the application’s behavior as a whole. Our applications includestreamandrdarray (described in
Section 3), several large benchmarks from the SPEC CPU2000 benchmark suite [32], and one memory-intensive
application from the Olden benchmark suite [30]. These applications are described in Table 2.

Benchmark Suite Brief description Base performanceL2-misses per 1K inst.row-buffer hit rate

stream Microbenchmark Streaming on 32-byte-element arrays 46.30 cycles/inst. 629.65 96%
rdarray Microbenchmark Random access on arrays 56.29 cycles/inst. 629.18 3%
small-stream Microbenchmark Streaming on 4-byte-element arrays 13.86 cycles/inst. 71.43 97%
art SPEC 2000 FP Object recognition in thermal image 7.85 cycles/inst. 70.82 88%
crafty SPEC 2000 INT Chess game 0.64 cycles/inst. 0.35 15%
health Olden Columbian health care system simulator7.24 cycles/inst. 83.45 27%
mcf SPEC 2000 INT Single-depot vehicle scheduling 4.73 cycles/inst. 45.95 51%
vpr SPEC 2000 INT FPGA circuit placement and routing 1.71 cycles/inst. 5.08 14%

Table 2: Evaluated applications and their performance characteristics on the baseline processor

6.2 Evaluation Results

6.2.1 Dual-core Systems

Two microbenchmark applications - stream and rdarray: Figure 8 shows the normalized execution time of
streamandrdarray applications when run alone or together using either the baseline FR-FCFS or our FairMem
memory scheduling algorithms. Execution time of each application is normalized to the execution time they
experience when they are run alone using the FR-FCFS scheduling algorithm (This is true for all normalized
results in this paper). Whenstreamand rdarray are run together on the baseline system,stream—which acts
as an MPH—experiences a slowdown of only 1.22X whereasrdarray slows down by 2.45X. In contrast, a
memory controller that uses our FairMem algorithm preventsstreamfrom behaving like an MPH againstrdarray
– both applications experience a similar slowdown when run together. FairMem does not significantly affect
performance when the applications are run alone or when run with identical copies of themselves (i.e. when

14



the memory performance is not unfairly impacted). These experiments show that our simulated system closely
matches the behavior we observe in an existing dual-core system (Figure 5), and that FairMem successfully
provides fairness among threads. Next, we show that with real applications, the effect of an MPH can be drastic.

0.0

0.5

1.0

1.5

2.0

2.5
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e baseline (FR-FCFS)
FairMem

STREAM

stream alone with another stream with rdarray
0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e baseline (FR-FCFS)

FairMem

RDARRAY

rdarray alone with another rdarray with stream

Figure 8: Slowdown of (a)streamand (b)rdarray benchmarks using FR-FCFS and our FairMem algorithm

Effect on real applications: Figure 9 shows the normalized execution time of 8 different pairs of applications
when run alone or together using either the baseline FR-FCFSor FairMem. The results show that 1) an MPH can
severely damage the performance of another application, and 2) our FairMem algorithm is effective at preventing
it. For example, whenstreamandhealthare run together in the baseline system,streamacts as an MPH slowing
down healthby more than 8.5X while itself being slowed down by only 1.05X. This is because it has 7 times
higher L2 miss rate and much higher row-buffer locality (96%vs. 25%) — therefore, it exploits unfairness in
both row-buffer-hit first and oldest-first scheduling policies by flooding the memory system with its requests.
When the two applications are run on our FairMem system,health’s slowdown is reduced from 8.63X to 2.28X.
The figure also shows that even regular applications with high row-buffer locality can act as MPHs. For instance
whenart andvpr are run together in the baseline system,art acts as an MPH slowing downvpr by 2.35X while
itself being slowed down by only 1.05X. When the two are run onour FairMem system, each slows down by
only 1.35X; thus,art is no longer a performance hog.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

art
vpr

baseline (FR-FCFS) FairMem
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

rdarray
art

baseline (FR-FCFS) FairMem
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

health
vpr

baseline (FR-FCFS) FairMem
0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

art
health

baseline (FR-FCFS) FairMem

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

stream
vpr

baseline (FR-FCFS) FairMem
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

stream
health

baseline (FR-FCFS) FairMem
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

stream
mcf

baseline (FR-FCFS) FairMem
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(b
as

e:
 r

un
ni

ng
 a

lo
ne

)

stream
art

baseline (FR-FCFS) FairMem

Figure 9: Slowdown of different application combinations using FR-FCFS and our FairMem algorithm

Effect on Throughput and Unfairness: Table 3 shows the overall throughput (in terms of executed instructions
per 1000 cycles) and DRAM unfairness (relative difference between the maximum and minimum memory-related
slowdowns, defined asΨ in Section 4) when different application combinations are executed together. In all cases,
FairMem reduces the unfairness to below 1.20 (Remember that1.00 is the best possibleΨ value). Interestingly,

15



in most cases, FairMem also improves overall throughput significantly. This is especially true when a very
memory-intensive application (e.g.stream) is run with a much less memory-intensive application (e.g.vpr).

Providing fairness leads to higher overall system throughput because it enables better utilization of the cores
(i.e. better utilization of the multi-core system). The baseline FR-FCFS algorithm significantly hinders the
progress of a less memory-intensive application, whereas FairMem allows this application to stall less due to the
memory system, thereby enabling it to make fast progress through its instruction stream. Hence, rather than wast-
ing execution cycles due to unfairly-induced memory stalls, some cores are better utilized with FairMem.10 On
the other hand, FairMem reduces the overall throughput by 9%when two extremely memory-intensive applica-
tions,streamandrdarray, are run concurrently. In this case, enforcing fairness reducesstream’s data throughput
without significantly increasing the throughput ofrdarray becauserdarray encounters L2 cache misses as fre-
quently asstream(as shown in Table 2).

Baseline (FR-FCFS) FairMem Throughput FairnessCombination
Throughput Unfairness Throughput Unfairness improvement improvement

stream-rdarray 24.8 2.00 22.5 1.06 0.91X 1.89X
art-vpr 401.4 2.23 513.0 1.00 1.28X 2.23X
health-vpr 463.8 1.56 508.4 1.09 1.10X 1.43X
art-health 179.3 1.62 178.5 1.15 0.99X 1.41X
rdarray-art 65.9 2.24 97.1 1.06 1.47X 2.11X
stream-health 38.0 8.14 72.5 1.18 1.91X 6.90X
stream-vpr 87.2 8.73 390.6 1.11 4.48X 7.86X
stream-mcf 63.1 5.17 117.1 1.08 1.86X 4.79X
stream-art 51.2 4.06 98.6 1.06 1.93X 3.83X

Table 3: Effect of FairMem on overall throughput (in terms ofinstructions per 1000 cycles) and unfairness

6.2.2 Effect of Row-buffer Size

From the above discussions, it is clear that the exploitation of row-buffer locality by the DRAM memory con-
troller makes the multi-core memory system vulnerable to DoS attacks. The extent to which this vulnerability
can be exploited is determined by the size of the row-buffer.In this section, we examine the impact of row-buffer
size on the effectiveness of our algorithm. For these sensitivity experiments we use two real applications,art and
vpr, whereart behaves as an MPH againstvpr.

Figure 10 shows the mutual impact ofart andvpr on machines with different row-buffer sizes. Additional
statistics are presented in Table 4. As row-buffer size increases, the extent to whichart becomes a memory
performance hog forvpr increases when FR-FCFS scheduling algorithm is used. In a system with very small,
512-byte row-buffers,vpr experiences a slowdown of 1.65X (versusart’s 1.05X). In a system with very large,
64 KB row-buffers,vpr experiences a slowdown of 5.50X (versusart’s 1.03X). Becauseart has very high row-
buffer locality, a large buffer size allows its accesses to occupy a bank much longer than a small buffer size does.
Hence,art’s ability to deny bank service tovpr increases with row-buffer size. FairMem effectively contains this
denial of service and results in similar slowdowns for bothart andvpr (1.32X to 1.41X). It is commonly assumed
that row-buffer sizes will increase in the future to allow more throughput for streaming applications [37]. As
our results show, this implies that memory-related DoS attacks will become a larger problem and algorithms to
prevent them will become more important.11

512 B 1 KB 2 KB 4 KB 8 KB 16 KB 32 KB 64 KB

art’s row-buffer hit rate 56% 67% 87% 91% 92% 93% 95% 98%
vpr’s row-buffer hit rate 13% 15% 17% 19% 23% 28% 38% 41%
FairMem throughput improvement1.08X 1.16X 1.28X 1.44X 1.62X 1.88X 2.23X 2.64X
FairMem fairness improvement 1.55X 1.75X 2.23X 2.42X 2.62X 3.14X 3.88X 5.13X

Table 4: Statistics forart andvpr with different row-buffer sizes

10Note that the data throughput obtained from the DRAM itself may be, and usually is reduced using FairMem. However, overall
throughput in terms of instructions executed per cycle usually increases.

11Note that reducing the row-buffer size may at first seem like one way of reducing the impact of memory-related DoS attacks.How-
ever, this solution is not desirable because reducing the row-buffer size significantly reduces the memory bandwidth (hence performance)
for applications with good row-buffer locality even when they are running alone or when they are not interfering with other applications.

16



0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e art

vpr

FR-FCFS FairMem

512-byte

FR-FCFS FairMem

1 KB

FR-FCFS FairMem

2 KB

FR-FCFS FairMem

4 KB

FR-FCFS FairMem

8 KB

FR-FCFS FairMem

16 KB

FR-FCFS FairMem

32 KB

FR-FCFS FairMem

64 KB

Figure 10: Normalized execution time ofart andvpr when run together on processors with different row-buffer
sizes.Execution time is independently normalized to each machinewith different row-buffer size.

6.2.3 Effect of Number of Banks

The number of DRAM banks is another important parameter thataffects how much two threads can interfere
with each others’ memory accesses. Figure 11 shows the impact of art andvpr on each other on machines with
different number of DRAM banks. As the number of banks increases, the available parallelism in the memory
system increases, and thusart becomes less of a performance hog; its memory requests conflict less withvpr’s
requests. Regardless of the number of banks, our mechanism significantly mitigates the performance impact of
art on vpr while at the same time improving overall throughput as shownin Table 5. Current DRAMs usually
employ 4-16 banks because a larger number of banks increasesthe cost of the DRAM system. In a system with 4
banks,art slows downvpr by 2.64X (while itself being slowed down by only 1.10X). FairMem is able to reduce
vpr’s slowdown to only 1.62X and improve overall throughput by 32%. In fact, Table 5 shows that FairMem
achieves the same throughput on only 4 banks as the baseline scheduling algorithm on 8 banks.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

FR-FCFS FairMem

1 bank

FR-FCFS FairMem

2 banks

FR-FCFS FairMem

4 banks art
vpr 

FR-FCFS FairMem

8 banks

FR-FCFS FairMem

16 banks

FR-FCFS FairMem

32 banks

FR-FCFS FairMem

64 banks

Figure 11: Slowdown ofart andvpr when run together on processors with various number of DRAM banks.
Execution time is independently normalized to each machinewith different number of banks.

1 bank 2 banks 4 banks 8 banks 16 banks 32 banks 64 banks

art-vpr base throughput (IPTC) 122 210 304 401 507 617 707
art-vpr FairMem throughput (IPTC) 190 287 402 513 606 690 751
FairMem throughput improvement 1.56X 1.37X 1.32X 1.28X 1.20X 1.12X 1.06X
FairMem fairness improvement 2.67X 2.57X 2.35X 2.23X 1.70X 1.50X 1.18X

Table 5: Statistics forart-vpr with different number of DRAM banks (IPTC: Instructions/1000-cycles)

6.2.4 Effect of Memory Latency

Clearly, memory latency also has an impact on the vulnerability in the DRAM system. Figure 12 shows how
different DRAM latencies influence the mutual performance impact ofart and vpr. We vary the round-trip
latency of a request that hits in the row-buffer from 50 to 1000 processor clock cycles, and scale closed/conflict
latencies proportionally. As memory latency increases, the impact ofart on vpr also increases.Vpr’s slowdown
is 1.89X with a 50-cycle latency versus 2.57X with a 1000-cycle latency. Again, FairMem reducesart’s impact
on vpr for all examined memory latencies while also improving overall system throughput. As main DRAM
latencies are expected to increase in modern processors (interms of processor clock cycles) [35], scheduling
algorithms that mitigate the impact of MPHs will become moreimportant and effective in the future.

6.2.5 Effect of Number of Cores

Finally, this section analyzes FairMem within the context of 4-core and 8-core systems. Our results show that
FairMem effectively mitigates the impact of MPHs while improving overall system throughput in both 4-core
and 8-core systems running different application mixes with varying memory-intensiveness.

17



0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e art 
vpr

FR-FCFS FairMem

50 cyc

FR-FCFS FairMem

100 cyc

FR-FCFS FairMem

200 cyc

FR-FCFS FairMem

300 cyc

FR-FCFS FairMem

400 cyc

FR-FCFS FairMem

500 cyc

FR-FCFS FairMem

1000 cyc

Figure 12: Slowdown ofart andvpr when run together on processors with different DRAM access latencies.
Execution time is independently normalized to each machinewith different number of banks. Row-buffer hit latency is denoted.

50 cycles 100 cycles 200 cycles 300 cycles 400 cycles 500 cycles 1000 cycles

art-vpr base throughput (IPTC) 1229 728 401 278 212 172 88
art-vpr FairMem throughput (IPTC) 1459 905 513 359 276 224 114
FairMem throughput improvement 1.19X 1.24X 1.28X 1.29X 1.30X 1.30X 1.30X
FairMem fairness improvement 1.69X 1.82X 2.23X 2.21X 2.25X 2.23X 2.22X

Table 6: Statistics forart-vpr with different DRAM latencies (IPTC: Instructions/1000-cycles)

Figure 13 shows the effect of FairMem on three different application mixes run on a 4-core system. In all
three mixesstreamandsmall-streamact as severe MPHs when run on the baseline FR-FCFS system, slowing
down other applications by up to 10.4X (and at least 3.5X) while themselves being slowed down by no more
than 1.10X. FairMem reduces the maximum slowdown caused by these two hogs to at most 2.98X while also
improving the overall throughput of the system (shown in Table 7).

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e stream

art
mcf
health

4p-MIX1

FR-FCFS FairMem
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e stream

art
mcf
vpr

4p-MIX2

FR-FCFS FairMem
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e small-stream

art
mcf
health

4p-MIX3

FR-FCFS FairMem

Figure 13: Effect of FR-FCFS and FairMem scheduling on different application mixes in a 4-core system

Figure 14 shows the effect of FairMem on three different application mixes run on an 8-core system. Again,
in the baseline system,streamandsmall-streamact as MPHs, sometimes degrading the performance of another
application by as much as 17.6X. FairMem effectively contains the negative performance impact caused by the
MPHs for all three application mixes. Furthermore, it is important to observe that FairMem is also effective at iso-
lating non-memory-intensive applications (such ascrafty in MIX2 and MIX3) from the performance degradation
caused by the MPHs. Even though crafty rarely generates a memory request (0.35 times per 1000 instructions), it
is slowed down by 7.85X by the baseline system when run withinMIX2! With FairMem crafty’s rare memory re-
quests are not unfairly delayed due to a memory performance hog — and its slowdown is reduced to only 2.28X.
The same effect is also observed forcrafty in MIX3. We conclude that FairMem provides fairness in the memory
system, which improves the performance of both memory-intensive and non-memory-intensive applications that
are unfairly delayed by an MPH.12

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

stream-1
stream-2
art-1
art-2
mcf-1
mcf-2
health-1
health-2

8p-MIX1

FR-FCFS FairMem
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

stream
small-stream
rdarray
art
vpr
mcf
health
crafty

8p-MIX2

FR-FCFS FairMem
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

small-stream
art
mcf
health
vpr-1
vpr-2
crafty-1
crafty-2

8p-MIX3

FR-FCFS FairMem

Figure 14: Effect of FR-FCFS and FairMem scheduling on different application mixes in an 8-core system

12Notice that 8p-MIX2 and 8p-MIX3 are much less memory intensive than 8p-MIX1. Due to this, their baseline overall throughput is
significantly higher than 8p-MIX1 as shown in Table 7.

18



4p-MIX1 4p-MIX2 4p-MIX3 8p-MIX1 8p-MIX2 8p-MIX3

base throughput (IPTC) 107 156 163 131 625 1793
FairMem throughput (IPTC) 179 338 234 189 1233 2809
base unfairness (Ψ) 8.05 8.71 10.98 7.89 13.56 10.11
FairMem unfairness (Ψ) 1.09 1.32 1.21 1.18 1.34 1.32
FairMem throughput improvement 1.67X 2.17X 1.44X 1.44X 1.97X 1.57X
FairMem fairness improvement 7.39X 6.60X 9.07X 6.69X 10.11X 7.66X

Table 7: Throughput and fairness statistics for 4-core and 8-core systems

7 Related Work
The possibility of exploiting vulnerabilities in thesoftware systemto deny memory allocation to other applica-
tions has been considered in a number of works. For example, [34] describes an attack in which one process
continuously allocates virtual memory and causes other processes on the same machine to run out of memory
space because swap space on disk is exhausted. The “memory performance attack” we present in this paper is
conceptually very different from such “memory allocation attacks” because (1) it exploits vulnerabilities in the
hardware system, (2) it is not amenable to software solutions — the hardware algorithms must be modified to
mitigate the impact of attacks, and (3) it can be caused even unintentionally by well-written, non-malicious but
memory-intensive applications.

There are only few research papers that considerhardwaresecurity issues in computer architecture. The one
closest to our paper is a work by Grunwald and Ghiasi [11] who investigate the possibility of microarchitectural
denial of service attacks. In particular, they show that SMT(simultaneous multithreading) processors exhibit a
number of vulnerabilities that could be exploited by malicious threads. More specifically, they study a number of
DoS attacks that affect caching behavior, including one that uses self-modifying code to cause the trace cache to
be flushed. The authors then propose counter-measures that ensure fair pipeline utilization. The work of Hasan
et al. [12] studies the possibility of so-calledheat strokeattacks that repeatedly access a shared resource to create
a hot spot at the resource, thus slowing down the SMT pipeline. The authors propose a solution that selectively
slows down malicious threads. These two papers present involved ways of “hacking” existing systems using
sophisticated techniques such as self-modifying code or identifying on-chip hardware resources that can heat up.
In contrast, our paper describes a more prevalent problem: atrivial type of attack that could be easily developed
by anyone who writes a program. In fact, even existing simpleapplications may behave like memory performance
hogs and future multi-core systems are bound to become even more vulnerable to MPHs. In addition, neither of
the above works consider vulnerabilities in shared DRAM memory in multi-core architectures.

The FR-FCFS scheduling algorithm implemented in many current single-core and multi-core systems was
studied in [29, 28, 14, 22], and its best implementation—theone we presented in Section 2—is due to Rixner et
al [29]. This algorithm was initially developed for single-thread general purpose applications and shows good
throughput performance in such scenarios. As shown in [22],however, this algorithm can have negative effects
on fairness in chip-multiprocessor systems. The performance impact of different memory scheduling techniques
in SMT processors and multiprocessors has been considered in [38, 21].

Fairness issues in managing access to shared resources havebeen studied in a variety of contexts.Network
fair queuinghas been studied in order to offer guaranteed service to simultaneous flows over a shared network
link, e.g., [23, 36, 3], and techniques from network fair queuing have since been applied in numerous fields, e.g.,
CPU scheduling [6]. The best currently known algorithm for network fair scheduling that also effectively solves
the idleness problem was proposed in [2]. In [22], Nesbit et al. propose a fair memory scheduler that uses the
definition of fairness in network queuing and is based on techniques from [3, 36]. As we pointed out in Section 4,
directly mapping the definitions and techniques from network fair queuing to DRAM memory scheduling is
problematic. Also, the scheduling algorithm in [22] can significantly suffer from the idleness problem. Fairness
in disk schedulinghas been studied in [4, 25]. The techniques used to achieve fairness in disk access are highly
influenced by the physical association of data on the disk (cylinders, tracks, sectors...) and can therefore not
directly be applied in DRAM scheduling.

19



8 Conclusion
The advent of multi-core architectures has spurred a lot of excitement in recent years. It is widely regarded as
the most promising direction towards increasing computer performance in the current era of power-consumption-
limited processor design. In this paper, we show that this development—besides posing numerous challenges in
fields like computer architecture, software engineering, or operating systems—bears important security risks.

In particular, we have shown that due to unfairness in the memory system of multi-core architectures, some
applications can act asmemory performance hogsand destroy the memory-related performance of other appli-
cations that run on different processors in the chip; without even being significantly slowed down themselves. In
order to contain the potential of such attacks, we have proposed a memory request scheduling algorithm whose
design is based on our novel definition of DRAM fairness. As the number of processors integrated on a single
chip increases, and as multi-chip architectures become ubiquitous, the danger of memory performance hogs is
bound to aggravate in the future and more sophisticated solutions may be required. We hope that this paper helps
in raising awareness of the security issues involved in the rapid shift towards ever-larger multi-core architectures.

References
[1] Advanced Micro Devices. AMD Opteron.http://www.amd.com/us-en/Processors/ProductInformation/.
[2] J. H. Anderson, A. Block, and A. Srinivasan. Quick-release fair scheduling. InIEEE Real-Time Systems Symposium (RTSS), 2003.
[3] J. C. Bennett and H. Zhang. Hierarchical packet fair queueing algorithms. InIn Proceedings of SIGCOMM’96, 1996.
[4] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silberschatz. Disk scheduling with quality of service guarantees. InProceed-

ings of IEEE Conference on Multimedia Computing and Systems, 1999.
[5] A. Chander, J. C. Mitchell, and I. Shin. Mobile code security by Java bytecode instrumentation. InDARPA Information Survivability

Conference & Exposition (DISCEX II), 2001.
[6] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus fair scheduling: A proportional-share CPU scheduling algorithm for

symmetric multiprocessors. InOSDI-4, 2000.
[7] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A safety-oriented platform for web applications. InIEEE Symposium on

Security and Privacy, 2006.
[8] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. A performance comparison of contemporary DRAM architectures. InISCA-26, 1999.
[9] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform for trusted computing. In

19th ACM Symposium on Operating Systems Principles (SOSP), 2003.
[10] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine. The Intel Pentium M

processor: Microarchitecture and performance.Intel Technology Journal, 7(2), May 2003.
[11] D. Grunwald and S. Ghiasi. Microarchitectural denial of service: Insuring microarchitectural fairness. InMICRO-35, 2002.
[12] J. Hasan et al. Heat stroke: power-density-based denial of service in SMT. InHPCA-11, 2005.
[13] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, utilitarian, and capitalist cache policies on CMPs:Caches as a

shared resource. InPACT-15, 2006.
[14] I. Hur and C. Lin. Adaptive history-based memory schedulers. InMICRO-37, 2004.
[15] Intel Corporation. Intel Develops Tera-Scale Research Chips. http://www.intel.com/pressroom/archive/

releases/20060926corp b.htm.
[16] Intel Corporation. Pentium D.http://www.intel.com/products/processor number/chart/pentium d.htm.
[17] Intel Corporation. Terascale computing.http://www.intel.com/research/platform/terascale/index.htm.
[18] C. K. Luk et al. Pin: building customized program analysis tools with dynamic instrumentation. InPLDI, 2005.
[19] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high performance computers.http://www.cs.virginia.

edu/stream/.
[20] O. Mutlu and E. Sprangle. Method and apparatus to control memory accesses. U.S. Patent Number 6,799,257, 2004.
[21] C. Natarajan, B. Christenson, and F. Briggs. A study of performance impact of memory controller features in multi-processor server

environment. InWorkshop on Memory Performance Issues (WMPI’04), 2004.
[22] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory systems. InMICRO-39, 2006.
[23] A. K. Parekh.A Generalized Processor Sharing Approach to Flow Control inIntegrated Service Networks. PhD thesis, MIT, 1992.
[24] D. Peterson, M. Bishop, and R. Pandey. A flexible containment mechanism for executing untrusted code. InProceedings of the

11th USENIX Security Symposium, 2002.
[25] T. Pradhan and J. Haritsa. Efficient fair disk schedulers. In3rd Conference on Advanced Computing (ADCOMP), 1995.
[26] V. Prevelakis and D. Spinellis. Sandboxing applications. InUSENIX 2001 Technical Conference: FreeNIX Track, 2001.
[27] N. Rafique et al. Architectural support for operating system-driven CMP cache management. InPACT-15, 2006.
[28] S. Rixner. Memory controller optimizations for web servers. InMICRO-37, pages 355–366, 2004.
[29] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory access scheduling. InISCA-27, 2000.
[30] A. Rogers, M. C. Carlisle, J. Reppy, and L. Hendren. Supporting dynamic data structures on distributed memory machines.ACM

Transactions on Programming Languages and Systems, 17(2):233–263, Mar. 1995.
[31] T. Sherwood et al. Automatically characterizing largescale program behavior. InASPLOS-X, 2002.
[32] Standard Performance Evaluation Corporation.SPEC CPU2000 V1.3. http://www.spec.org/cpu2000/.
[33] D. Wang et al. DRAMsim: A memory system simulator.Computer Architecture News, 33(4):100–107, 2005.
[34] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala. Checkpointing and its applications. InFTCS-25, 1995.
[35] W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious.ACM Computer Architecture News, 23(1), 1995.
[36] H. Zhang. Service disciplines for guaranteed performance service in packet-switching networks. InProceedings of the IEEE, 1995.
[37] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based pageinterleaving scheme to reduce row-buffer conflicts and exploit data

locality. In MICRO-33, 2000.
[38] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory system optimizations for SMT processors. InHPCA-11,

2005.

20


