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Abstract

The increasing availability of large-scale trajectory data provides us great opportunity
to explore them for knowledge discovery in transportation systems using advanced
data mining techniques. Nowadays, large number of taxicabs in major metropolitan
cities are equipped with a GPS device. Since taxis are on the road nearly twenty four
hours a day (with drivers changing shifts), they can now act as reliable sensors to
monitor the behavior of traffic. In this article, we use GPS data from taxis to monitor
the emergence of unexpected behavior in the Beijing metropolitan area, which has the
potential to estimate and improve traffic conditions in advance. We adapt likelihood
ratio test statistic(LRT) which have previously been mostly used in epidemiological
studies to describe traffic patterns. To the best of our knowledge the use of LRT in
traffic domain is not only novel but results in accurate and rapid detection of anomalous
behavior.
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1. Introduction

With the increasing availability of high resolution GPS traces from vehicles in large
metropolitan areas, there is an opportunity to infer sophisticated patterns and trends
which till now has not been possible [1]. The inferred trends can then be used as input
into policy planning across a variety of domains including traffic management, urban
planning and environmental monitoring.

In this article, we apply statistical approach on massive taxi location traces, which
are explored to extract the outlier traffic pattern in transportation systems. We know
thousands of taxis ply the roads of large metropolitan cities like New York, London,
Beijing and Tokyo every day. Most taxis are on the road twenty four hours a day with
drivers changing shifts. Many of these taxis are now equipped with GPS and their
spatio-temporal coordinates are available. Thus if a city is partitioned into a grid then
at a given time we can estimate the count of the number of taxis in the grid cells.
Over time, the cell counts will settle into a pattern and vary periodically. For example,
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during morning rush hour more taxis will be concentrated in business districts than
at other times of the day. Similarly taxi counts near airports will synchronize with
aircraft arrival and departure schedules. Occasionally there will be a departure of the
cells counts from periodic behavior due to unforeseen events like vehicle breakdowns
or one-time events like big sporting events, fairs and conventions.

Our objective is to identify contiguous set of cells and time intervals which have
the largest statistically significant departure from expected behavior.

Once such regions and time intervals have been discovered then experts can begin
identifying events which may have caused the unexpected behavior. This in turn can
help make provisions to manage future traffic behavior. Similar problems appear in
many other domains. For example, government healthcare agencies are interested in
detecting emergence of disease patterns which deviate from expected behavior.

The number of contiguous regions and time intervals is very large. For example, if
the spatial grid corresponds to a n × n matrix and there are T time intervals, then there
are potentially O(n2T ) spatio-temporal cells and O(n4T 2) cubic regions 1. The huge
amount of spatio-temporal data, such as taxi count across different grid regions within
different time steps from minutes to hours to days, requires an efficient approach to
detect spatial-temporal outliers for predicting abnormal events and implementing traffic
control measures in advance. For this motivation, we apply road network of Beijing
and partition it into grid to find outliers (Fig. 1).

In a paper of particular relevance to our work, the LRT framework [2] states the
computation cost for single statistic value as well as enumerating all the spatial regions
to be expensive. To avoid performing statistical computations for every region, it pro-
vides a pruning strategy based on classical likelihood test statistic. In this article, we
extend the LRT framework to detect abnormal traffic pattern. More specifically, the
contributions are:

• A general and efficient pattern mining approach for spatio-temporal outlier de-
tection is proposed.

• Persistent and emerging outlier detection statistical models are provided.

• We give our proof that the upper-bounding strategy of LRT is applicable to “per-
sistent” and “emerging” outlier detection models.

• Experiments are conducted on synthetic data to verify the extended pruning ap-
proach and show the significant improvement of searching when data set size is
large; we also performed real data validation in the detection of emerging taxi
count trend due to some major events.

The rest of this article is organized as follows. Section 2 reviews related work. Sec-
tion 3 illustrates the statistic background and upper-bounding methodology for pruning.
Section 4 proposes our approach, in which the statistic detection models are provided.
The upper-bounding and pruning mechanism in this framework based on our proof are
presented in section 5. Computational complexity is also discussed in this section. Sec-
tion 6 shows the experiments and case studies. Finally, section 7 concludes this work
and section 8 gives the future work.

1In this work, n × n spatial grid and T time intervals are mapped to a three-dimensional grid. The unit
cell is in the shape of a cube and every sub-region in the grid is called cubic region
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(a) Road Network of Beijing (b) Grid Map

Figure 1: An example of the traffic network of Beijing. Based on the longitude and
latitude, the entire city is partitioned into a grid map. Sub-figure (a) is partitioned into
sub-figure (b).

2. Related Work

2.1. Traffic Outliers
Recently, quite a few research projects started to find out traffic patterns and anoma-

lies using taxi trajectories [3, 4, 5, 6]. For instance, to provide a user with the fastest
route to a given destination at a given departure time, Yuan et al. [4] mines smart driv-
ing directions from historical GPS trajectories of a large number of taxis. It proposes a
time-dependent landmark graph to model the properties of dynamic road networks and
applies two-stage routing algorithm to find the efficient driving directions. In another
work of Yuan et al [3], it presents a cloud-based system to retrieve the fastest driving
routes based on traffic conditions and driver behavior. The Cloud builds a model in-
corporating day of the week, time of day, weather conditions, and individual driving
strategies. Using this model, the system predicts the traffic conditions of a future time
by given a route and performs a self-adaptive driving direction service for a particular
user.

Mining traffic pattern is an important research approach, but detecting the outliers
from main traffic flow is also meaningful. For instance, when a traffic incident or jam
happens, traffic flow changes suddenly and this will be reflected by outliers. Traffic
incidents can be detected through recognizing outliers. Such unusual traffic pattern
reflects abnormal traffic streams on road networks and provides useful, important and
valuable information. Unknown but potentially important patterns can be forecast by
analyzing these outliers. Therefore, the detection of outliers/anomalies from trajectory
data can help in sensing abnormal events and plan for their impact to ensure smoother
flow of traffic. In Liu et al [5] work, algorithms are presented for discovering spatio-
temporal outliers and causal relationships. The discovery of relationships, especially
causal interactions, among detected traffic outliers are investigated. Chawla and Zheng
et al [7] further diagnose detected traffic anomalies by studying the traffic flows (paths)
that lead to an anomaly. In Zheng et al [6] work, it detects flawed urban planning using
the GPS trajectories of taxicabs travelling in urban areas. It finds anomalous patterns
in a city using taxi trajectories which provides a deeper understanding of the flawed
planning. Although these two approaches are used to detect traffic outliers, they are
different from our work since we detect traffic outliers using statistical-based approach
and we have a different definition for abnormal traffic patterns.
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2.2. Outlier Detection Methods
Till now, many anomaly detection techniques have been specifically developed for

certain application domains, while others are more generic. The techniques can be
categorized as classification-based, distanced-based, clustered-based, and statistical-
based, etc. In these surveys [8, 9], they give comprehensive and high-level overview of
different outlier detection techniques and some of their applications.
In this article, we focus on the statistic-based approach to detect spatio-temporal outlier.
The underlying principle of any statistical outlier detection technique is: “An anomaly
is an observation which is suspected of being partially or wholly irrelevant because it
is not generated by the stochastic model assumed” [10]. It is based on the key assump-
tion: Normal data instances occur in high probability regions of a stochastic model,
while anomalies occur in the low probability regions of the stochastic model. Statisti-
cal techniques fit a statistical model (usually for normal behavior) to the given data and
then apply a statistical inference test to determine if an unseen instance belongs to this
model or not. Instances that have a low probability from the applied test statistic are
declared as outliers. Scoring techniques are used to assign an anomaly score to each
instance in the test data depending on the degree to which that instance is considered
an anomaly. Usually, the output of such techniques is a ranked list of outliers. We
may choose to either analyze the top few outliers or use a cut-off threshold to select the
outliers. Both parametric as well as non-parametric techniques have been applied to
fit a statistical model [11, 12]. In our work, we only consider the parametric anomaly
detection techniques based on classical likelihood ratio test statistic (i.e. LRT).
In the domain of spatio-temporal applications, most statistic outlier detection approaches
proposed so far are on purely spatial searching [13, 14, 15]. Even when considering
time aspect, most of the existing work on spatio-temporal outlier detection treats the
time dimension simply, either by applying purely spatial outlier detection methods at
each time step, or by treating time as another spatial dimension and thus applying spa-
tial outlier detection in one more dimensional space (original spatial dimensions plus
time dimension). The disadvantage of the first approach is that by only examining
one time step of data at a time, more slowly emerging outliers may not be detected.
The disadvantage of the second approach is that less relevant outliers may be detected:
those outliers that have constantly existed for a long time, rather than those that are
newly emerging [16, 17]. In our following work, we differentiate temporal property
with spatial property. More specifically, we investigate the spatial region in two dif-
ferent scenarios in which the temporal property is persistent or otherwise emerging.
Persistent temporal data refers to data where its temporal property is consistent over
time. Emerging temporal data refers to the data where its temporal property is non-
decreasing over time. These two concepts provides more information for practical
outlier detections.

Among the various statistic methods for discovering outlier, the spatial and space-
time scan statistic, introduced by Kulldorff [18, 19, 20, 21], has been the most widely
adopted. However, it is originally designed for Poisson and Bernoulli data. Later on,
the different variations of ordinal, exponential and normal models are proposed [22, 23,
24, 25]. They have been implemented in the software (SaTScan) [26]. In the space-time
scan statistic of Kulldorff, the key parameter is assumed to be consistent over time. The
technique simply applies time as one more dimension. Niell et al. [16] points out the
distinct feature of time aspect and proposes a modified test statistic to detect localized
and globalized emerging cluster . Tango et al. [27] also proposes a space-time scan
statistic based on negative binomial model by taking into account the possibility of
nonnegligible time-to-time variation of Poisson mean. Wu et al. [2] proposes a generic

4



framework called LRT for any underlying statistics model. It uses the classic likelihood
ratio test (LRT) statistic as a scoring function to evaluate the “anomalousness” of a
given spatial region with respect to the rest of the spatial region. Moreover a generic
pruning strategy was proposed to greatly reduce the number of likelihood ratio tests.
However, it is used for spatial anomaly detection without considering the temporal
property. Liu et al. [5] propose an approach to discover casual relationships among
spatio-temporal outliers. Here, we only focus on detecting spatial-temporal outliers.

2.3. Performance Issue

Furthermore, performance issue is also a big problem in spatial or spatio-temporal
outlier detection. The naive computation of spatial outlier detection is very time-
consuming, various strategies have been proposed to speed up the process [18, 28,
29, 30]. These existing methods in the literature are based on Kulldorffs spatial scan
statistic and they aim to actually avoid considering all O(n4) rectangular areas. Also
they are only applicable to those relatively simple density measures that are convex or
monotonic with respect to the ratio of zone population over entire population and the
ratio of zones event count over the entire event count. The LRT framework states the
computation cost for single statistic value as well as enumerating all the spatial regions
to be expensive [2]. To avoid performing statistical computations for every region, it
provides a pruning strategy based on classical likelihood test statistic. In this article,
we extend it to be applicable to persistent and emerging outlier detection scenarios.

3. Background

3.1. The Likelihood Ratio Test (LRT)

We provide a brief but self-contained introduction for finding the most anomalous
region (rectangle) in a spatial setting. The regions are rectangles mapped onto a spatial
grid. We also explain a pruning strategy which can cut down the number of rectangles
that need to be checked. The basic tool to find the anomalous region is the Likelihood
Ratio Test (LRT).

Given a data set X, the model distribution f (X, θ), a null hypothesis H0 : θ ∈ Θ0
and an alternate hypothesis H1 : θ ∈ Θ − Θ0, LRT is the ratio

λ =
supΘ0

{L(θ|X)|H0}

supΘ{L(θ|X)|H1}

where L() is the likelihood function. θ is a set of parameters coming from complete
parameter space Θ and null parameter space Θ0. See detail in [2, 31]. In a spatial set-
ting, the null hypothesis is that the statistical aspect of the phenomenon of interest in
a region R (that is currently being tested) are no different from rest of the spatial area
(denoted as R̄). Thus if a region R is anomalous then the alternate hypothesis will most
likely be a better fit and the denominator of λ will have a higher value for the maxi-
mum likelihood estimator of θ. A remarkable fact about λ is that under mild regularity
conditions, the asymptotic distribution of Λ ≡ −2 log λ follows a χ2

k distribution with
k degrees of freedom, where k is the number of free parameters2. (See Fig. 2). Thus
regions whose Λ value drops in the tail of χ2 distribution are likely to be anomalous.

2If the χ2 distribution is not applicable then Monte Carlo simulation can be used to ascertain the p-value
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Figure 2: Chi-square distribution with degree of freedom =3

3.2. Constrained Maximum Likelihood Estimation
Constrained maximum likelihood estimation is a set of procedures for the estima-

tion of the parameters of models via the maximum likelihood method with general
constraints on the parameters, along with an additional set of procedures for statistical
inference [32]. Barlow et al. [33, 34] solved the maximum likelihood estimation based
on a reliability growth model, which is applicable to our emerging scenario. It assumes
that a system is being modified during K stages of development (in our application, we
assume taxi counts in a region to be varying during K time steps). Data consists of xi

successes in ni trials in stage i, i = 1, ..., k. Let pi be the system reliability at the i-th
stage (in our case, pi is the increasing rate of taxi count at i-th time step). Barlow, et al,
obtained the maximum likelihood estimates of p1, p2, ..., pk, under the restriction that
p1 ≤ p2,≤ ...,≤ pk. To obtain the maximum likelihood estimates of p1, p2, ..., pk sub-
ject to the restriction that p1 ≤ p2, ...,≤ pk, first form the ratios x1/n1, x2/n2, ..., xk/nk.
If x1/n1 ≤ x2/n2,≤ ...,≤ xk/nk, then xi/xn is the MLE p̂i of pi. If for some j( j =

l, ...,K − l), x j/n j , combine the observations in the j-th and (j + 1)-st stages and ex-
amine the ratios: x1/n1, ..., x j−1/n j−1, x j + x j+1/n j + n j+1, x j+2/n j+2, ..., xk/nk, for the
(k − 1) stages thus formed. If these ratios are in non-decreasing order, they consti-
tute the MLE’s of p1 ≤ p2,≤ ...,≤ pk with p̂ j = p̂ j+1 =(x j + x j+1)/(n j + n j+1). If not,
continue the process of combining stages until the ratios are in non-decreasing order.
This process need be repeated at most (k−1) times, and the result is independent of the
order in which stages are combined to eliminate reversals in the sequence of ratios.

To simplify, we get :

p̂i = Maxk≥iMins≤i[
k∑

i=s

xi/

k∑
i=s

ni]

, where i = 1, ..., k

3.3. Monte Carlo Simulation
The likelihood ratio, or equivalently its logarithm, can be used to compute a p-

value, or compared to a critical value to decide whether to reject null hypothesis (i.e.
there is no anomaly in our case) in favor of the alternative hypothesis (i.e. there is
anomaly). The probability distribution of likelihood ratio, assuming that the null hy-
pothesis is true, can be approximated by chi-square distribution [35]. But we cannot
expect to find the distribution of the likelihood ratio test statistic in closed analytical
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form and thus Monte Carlo simulation can be performed to obtain p-value in some
cases. Therefore, once we have discovered the region with maximum likelihood ra-
tio value, the statistical significance of this region can be derived from the chi-square
distribution or by conducting Monte Carlo simulations. To run the simulation test, a
large number of replications of data sets are generated under the null hypothesis, for
instance, 9999 such replicas are created to perform likelihood ratio test. The test is
significant at the 5% level if the likelihood ratio value is among the 500 highest values
of the test statistic coming from the replications.

3.4. Upper-bounding Methodology:
The upper-bounding strategy for LRT for anomaly detection was introduced by Wu

and Jermaine [2]. The basic observation is that the likelihood value of any given region
R under complete parameter space is not greater than the multiplication of the likeli-
hood value of all its non-overlapping sub-regions under null parameter space. There-
fore, the log likelihood of any given region R can be upper-bounded. For instance, if a
region R is composed of two non-overlapping sub-regions R1 and R2, then

L(θR|XR) ≤ L(θ′R1 |XR1 ) × L(θ′R2 |XR2 )

It is equivalent to

logL(θR|XR) ≤ logL(θ′R1 |XR1 ) + logL(θ′R2 |XR2 )

Here θR, θ
′
R1 and θ′R2 are the maximum likelihood estimators under complete and null

parameter spaces separately. See figure 3.
The upper-bounding strategy is used to prune non-outliers: If we replace the likeli-

hood of a region R by the product of the likelihoods of its sub-regions and the new LRT
is below the anomalous threshold (i.e. confidence level α), then R cannot be anoma-
lous.

Figure 3: The log likelihood of region R under complete parameter space is upper
bounded by the sum of two non-overlapping subregions R1 and R2 under null parameter
space

3.5. Examples:
3.5.1. Example 1

Using a simple but concrete example, we will now explain how to find anomalous
region using traditional LRT computation and the upper-bounding pruning strategy.
Consider the 4 × 4 grid (G) in Figure 4. The number of successes (mi) independently
generated by Poisson model Po(bi p) is displayed in each cell ci. The baseline bi in each
cell ci is set to 10. The success rate p is 0.5 for the region R and 0.1 for the rest of cells.
The significant level is set to α=0.05. We refer the success rate p as the test parameter.

Procedures: For a given region R, traditional LRT calculation involves several
steps: maximum likelihood estimator for test parameter of R, R̄ and G; likelihood
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Figure 4: An example of (4 × 4) grid to illustrate the LRT calculation and the upper-
bounding pruning methodology

calculation of R, R̄ and G; the ratio calculation from the previous two steps. Although
the calculation for Poisson distributed data can be simplified into 1EXP statistic model,
in order to illustrate the traditional LRT computation, the original steps are carried out
as the following :

(1) The likelihood function of each cell i is:

f (p|ci) =
(bi p)ki e−(bi p)

ki!
(1)

(2) The likelihood of any given region R is, which is composed of cell c1, c2, ..., ci, ..., ct:

L(p|R) = Πci∈R
(bi p)ki e−(bi p)

ki!
(2)

(3) The MLE0 of p for a region R (denoted as p̂) is calculated as:

p̂ = (
∑

ci∈R
ki)/(
∑

ci∈R
bi) (3)

Thus p̂R =
(7+8)

(10+10) = 0.75. Similarly, p̂R̄, p̂R1 , p̂R2 and p̂G are obtained as: 0.14, 0.7
,0.8 and 0.21.

(4) The Λ of region R is given by

ΛR = −2 log(L(p|G) + 2 log L(p|R) + 2 log L(p|R̄))

= −2 log(0.2119+15 × e−0.21×160)

+ 2 log(0.7515 × e−0.75×20)

+ 2 log(0.1419 × e−0.14×140)
= 20.76

(4)

From above steps, we get the exact log likelihood value of region R: log L(p|R) =

−19.31; and the exact log likelihood of R1 and R2: log L(p|R1) = −9.49, log L(p|R2) =

−9.78 separately.
We know the critical value of χ2(α)=3.84. Obviously, 20.76 is greater than 3.84.

Therefore region R is treated as a potential outlier.
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Upper-bounding Pruning: We can also verify the upper-bound of region R: The sum
of log likelihood of R1 and R2 is -19.27, which is greater than the exact log likelihood
value of R which was computed as -19.31.

Similarly, For region R′, log L(p|R′1) = −1.31, log L(p|R′2) = −1, sum of log likelihood
of R′1 and R′2 is -2.31. It is greater than the log likelihood value of R′, which is -2.66.
Furthermore, ΛR′ = 2.14, which is smaller than χ2(α)=3.84. That shows that the upper-
bounded LRT value is smaller than the critical value. Using the pruning strategy, the
actual value of region R′ need not be calculated and can be pruned.

3.5.2. Example 2:
This example illustrates how to estimate maximum likelihood of system reliability

in reliability growth model. To detect emerging outlier,we use this way to calculate
maximum likelihood estimator.

(1)The number of successes, population and success rate in each time step are
shown in Table 1.

Table 1: Reliability Growth Procedure

TimeS tep(i) Number of Successes (xi) Population (ni) Success Rate (xi/ni)
0 20 50 0.400
1 30 70 0.429
2 30 80 0.375
3 20 60 0.333
4 50 60 0.833

(2) To estimate the maximum likelihood of P̂i, the process to get a sequence of
non-decreasing ratios is summarized below according to Barlow theorem:

Table 2: The maximum likelihood estimator procedure

i xi ni xi/ni First Calculation Second Calculation Third Calculation
1 20 50 0.400 0.400
2 30 70 0.429
3 30 80 0.375 60/150=0.400
4 20 60 0.333 0.333 80/210=0.381 100/260=0.385
5 50 60 0.833 0.833 0.833 0.833

From above procedures, we obtain the maximum likelihood estimates: P̂1 = P̂2 =

P̂3 = P̂4 = 0.385, P̂5 = 0.833.

4. Proposed Statistical Models

Definition 1. KP : It refers to “key parameter”, denoted as KP{θ1, θ2,.., θi , ..,θn}. θi is
a parameter coming from the key parameter set. For instance, in epidemiology, if we
are concerned about the trend of the disease rate in a spatio-temporal view, the disease
rate is KP. In our application, the variation of taxi count within a period is KP. For
simplicity, we only consider one parameter from the key parameter set in our work
(denoted as KP).
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PSTO Model (Persistent Spatio-Temporal Outlier Model): It is used to detect
persistent spatio-temporal outliers. The null hypothesis H0 assumes that the KP is
consistent for all regions over time. The alternative hypothesis H1 assumes that KP has
a higher value in region ri ∈ R than the value outside of region r j ∈ G-R (i.e. R̄ ), but
the value in region ri ∈ R is consistent over time. We calculate the likelihood ratio test
as follows:

D(R) =


Πri∈RL(θr |XR)Πri∈R̄

L(θr̄ |Xr̄)
Πri∈G L(θG |XG) for θr ≥ θr̄ ,

1 otherwise.

This formula is the classical LRT statistic. We first calculate the MLE of θr and θr̄

to maximize the numerator and the MLE of θG to maximize the denominator. Then the
ratio is the score we use to evaluate the “anomalousness” of a given spatio-temporal
region.

ESTO Model (Emerging Spatio-Temporal Outlier Model): This model is used
to detect emerging spatio-temporal outliers. The null hypothesis H0 assumes that the
KP is consistent for all regions over time. The alternative hypothesis H1 assumes that
KP is non-decreasing with every time step over region ri ∈ R and higher than r j ∈ R̄.
We calculate the likelihood ratio test as follows:

D(R) =


Maxθr̄≤θtmin ≤...≤θT

Πri∈RL(θt
r |X

t
r)Πri∈R̄

L(θt
r̄ |X

t
r̄)

Πri∈G L(θt
G |X

t
G) for θr̄ ≤ θtmin ≤ ... ≤ θT ,

1 otherwise.

This formula is derived from the classical LRT statistic and designed for the emerg-
ing scenario. User needs to find a solution to maximize the numerator with the in-
creasing KP. For instance, Barlow [34] provide an approach to solve the constrained
maximum likelihood estimation on the reliability growth model in which the relative
risk is non-decreasing over time. Or EM algorithm can be performed to estimate the
key parameter.

5. Upper-bounding Strategy and Pruning Mechanism for Proposed Framework

5.1. Upper-bounding Strategy

(1) In PS TO model, the upper-bounding strategy explained in section 2.2.2 can be
extended directly to spatio-temporal dimension.

(2) In ES TO model, KP is assumed to vary at different time step; we show below that
the upper-bounding strategy is still applicable to this model.

Theorem 1. Let region R = Rt1 ∪ Rt2, for non-overlapping time interval t1 and t2, we
have:

L(θR|XR) ≤ L(θ′Rt1 |XRt1 ) × L(θ′Rt2 |XRt2 ) (5)

, where θR = θRt1 ∪ θRt2 and XR = XRt1 ∪ XRt2

Proof. We know L(θR|XR) = L(θRt1 |XRt1 )×L(θRt2 |XRt2 ) . Using the LRT upper-bounding
basic concepts, we know that θRt1 is chosen under more strict complete parameter space
and θ′Rt1 is chosen under loosen null parameter space. That means performing MLE0
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on a sub-interval of R has loosen the constraints comparing with performing MLE1 on
R. Thus, we have L(θRt1 |XRt1 ) ≤ L(θ′Rt1 |XRt1 ) and L(θRt2 |XRt2 ) ≤ L(θ′Rt2 |XRt2 ). Therefore,
L(θR|XR) ≤ L(θ′Rt1 |XRt1 ) × L(θ′Rt2 |XRt2 )

Theorem 2. Let region R = R1∪R2, for non-overlapping spatial region R1 and R2,we
have:

L(θR1, θR2|XR1, XR2) ≤ L(θ′R1t1 , θ
′
R1t2 |XR1t1 , XR1t2 ) × L(θ′R2t1 , θ

′
R2t2 |XR2t1 , XR2t2 ) (6)

,where R, R1, R2 are composed of (t1,t2) time steps respectively. Here we just use two
time steps to illustrate. It is applicable to any t time steps.

Proof. For each time step i, we have: L(θRti |XRti ) ≤ L(θ′R1ti |XR1ti ) × L(θ′R2ti |XR2ti )

L(θR1, θR2|XR1, XR2) = L(θR1|XR1) × L(θR2|XR2)
L(θR1t1 , θR1t2 |XR1t1 , XR1t2 ) = L(θR1t1 |XR1t1 ) × L(θR1t2 |XR1t2 )
L(θR2t1 , θR2t2 |XR2t1 , XR2t2 ) = L(θR2t1 |XR2t2 ) × L(θR2t2 |XR2t2 )

Therefore we get

L(θR1, θR2|XR1, XR2) ≤ L(θ′R1t1 , θ
′
R1t2 |XR1t1 , XR1t2 ) × L(θ′R2t1 , θ

′
R2t2 |XR2t1 , XR2t2 )

From theorem 1 and theorem 2, we know that the upper-bounding strategy is applicable
to emerging model (ES TO).

5.2. Pre-computation and Pruning Mechanism

5.2.1. Pre-computation for region R:
We recursively split the region into two sub-regions of the same size, starting from

the biggest cuboid enclosed by two planes from time view, ending at the lowest reso-
lution of the spatial-temporal grid. Fig. 5b shows the split approaches for a sub-cuboid
highlighted as blue from the temporal dimension in a 8 × 8 × 8 grid (Fig. 5a). The
likelihood of any given region can be upper-bounded by this pre-computed set via the
tiling of LRT.

5.2.2. Pre-computation for the complement of region R (i.e. R̄):
By considering all of the intersection points, we connect each intersection point on

the 3-dimensional grid with the eight corners of the grid. This produces eight diago-
nals, each of which creates one cuboid in the pre-computed set. Since there are O(n4)
intersection points, there are O(n4) cuboids in the pre-computed set. After we get the
pre-computed set, for any given region R̄, we use the radial and sandwich methods in
LRT to get the upper-bounded likelihood value of R̄. These two methods produce six
non-overlapping sub-cuboid regions for R̄ separately. Radial method is performed by
elongating the sides of a region R until the sides hit the grid borders using clock-wise
counter clock-wide order. Sandwich method is performed by elongating two parallel
sides of R in both directions until they reach the borders of the grid. See detail of
these methods in 2-dimensional grid [2]. In 3-dimensional view, twelve times tiling is
involved. Fig. 5c shows the tiling in radial way.
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(a) R (b) R (c) R̄

Figure 5: Pre-computation of any given spatial-temporal region R and tiling of R̄. Sub-
figure (a) shows a 8 × 8 × 8 spatial-temporal grid; sub-figure(b) shows: one of the
cuboids from spatial pre-computed set is split from temporal dimension and results in
15 smaller cuboids. Sub-figure(c) is the radial method to tile R̄

5.2.3. Computational Complexity
In the brute-force approach, there are a total of O(n6) regions that need to be

searched. Our approach reduces the cost by precomputing two likelihood data set with
size of O(n4). The likelihood of every region is upper-bounded and the real likelihood
is calculated only for a number of regions. Furthermore, In our implementation, we
have already ranked the top-k regions according to the likelihood ratio values. There-
fore, the performance wont be affected no matter which significance testing method is
being applied.

The process of outlier detection is shown in Algorithm 1. The inputting parame-
ters are: data grid (G), probability density function (f), maximum likelihood estimation
function under different parameter space (MLE0, MLE1), likelihood function (L), num-
ber of top regions to be returned (K) and the significance level (α). In this process, step
1 and 2 perform pre-computations; Step 5 to step 8 obtains the upper-bounded likeli-
hood value of current cuboid for each iteration. During each iteration, the chi-squared
distribution is applied to prune normal regions. Finally, it outputs top-k anomalous
regions.

6. Experiments, Results and Analysis

We report on experiments conducted where we have used Algorithm 1 to test for
accuracy, pruning ability and performance. K was set to 1. In section 6.1 and section
6.2 all experiments were carried out on synthetic data. In section 6.3, we demonstrate
the usefulness of our approach on a real data set.

6.1. Results on Synthetic Data

We tested four variants of the outlier detection:

(1) brute-force persistent spatio-temporal outliers (bpsto)

(2) brute-force emerging spatio-temporal outliers (besto)

(3) pruning-based persistent spatial-temporal outliers (ppsto)

(4) pruning-based emerging spatio-temporal outliers (pesto)
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Algorithm 1: Top k spatio-temporal outlier detection
Input: G, MLE0, MLE1, L, k and α
//G: a spatial-temporal grid ; L: likelihood function;
//MLE: maximum likelihood estimator;
//k:number of outliers to be detected; α: critical value;
Output: top-k anomalous spatio-temporal regions.
——————————————————————
Pre-compute the O(n4) cuboids for upper-bounding any given cuboid R;
Pre-compute the O(n3) cuboids for upper-bounding any given cuboid R̄;
Let θ0 = MLE0( f (G));
for Each cuboid R in the grid do

Get the upper-bounded value for log L(θR|XR);
Get the upper-bounded value for log L(θR̄|XR̄);
Combine the results of above steps to get an upper bound for ΛR;
Check upper-bounded value of ΛR from chi-square distribution;
if The ΛR is in the α level and less than the kth best;
then

Prune R;
end
else

Compute real ΛR ;
end
if ΛR is in the top k;
then

Remember R
end

end
Output top-k regions;

We generated data set on a grid size varying from (4×4×4) to (128×16×16). Fifty
separate trials were carried out for each scenario (see below) and we measured three
aspects: (a) pruning rate (b) accuracy, and (c) running time. The significance level was
set at α = 0.05.

6.1.1. Scenario I
The null hypothesis holds. The baseline bc is generated relatively uniformly by a

Normal distribution (µ = 104, σ = 103) and a fixed success rate p of 0.001. The number
of successes kc is generated from Po (bcp). Results are shown in Table 3.

6.1.2. Scenario II
The null hypothesis holds. The only difference with scenario I is that the data in a

random selected cuboid area with size of (5×4×3) is generated by a Normal distribution
with different parameter setting (µ = 105, σ = 5 × 103). Results are shown in Table 3.

6.1.3. Scenario III
The alternative hypothesis holds. It is similar to the null model except that the data

of a randomly selected cuboid area of size (5 × 4 × 3) is generated from a Poisson
distribution with p = 3, 6, 9, 18, 36 for emerging case and p = 3 for persistent case.
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Test Pruning(%) Accuracy(%)
4 × 4 × 4 100 no false alarm
8 × 8 × 8 100 no false alarm

16 × 16 × 16 99.9 0.1 false alarm

(a) Scenario I

Test Pruning(%) Accuracy(%)
4 × 4 × 4 100 no false alarm
8 × 8 × 8 99.99 0.01 false alarm

16 × 16 × 16 100 no false alarm

(b) Scenario II

Table 3: Average Pruning Rate and Accuracy in Scenario I and II

Test 16 × 16 × 16 32 × 16 × 16 64 × 16 × 16 32 × 32 × 32 128 × 16 × 16
ppsto (%) 95.27 97.35 97.64 97.47 96.74
pesto (%) 98.37 98.46 98.69 99.11 99.23

Table 4: Average Pruning Rate in Scenario III

The data not within the cuboid area was also from a Poisson distribution with p = 1.
Results are shown in Table 4.

6.1.4. Scenario IV
The alternative hypothesis holds. It is similar to scenario III except that data of a

randomly selected cuboid area of size (5 × 4 × 3) was generated from a Poisson dis-
tribution with p = 10, 50, 250, 1250, 6250 for emerging case and p = 10 for persistent
case. Results are shown in Table 5.

6.2. Evaluations on Synthetic Data

6.2.1. Analysis on Scenario I and II
The results of Scenario I and II show that we achieve a high pruning rate and no

false alarm is generated even when we perturb the distribution of one region. This is
as expected and demonstrates that the algorithm is well calibrated. By a high pruning
rate we mean that we can rule out the outliers by just checking the LRT upper bound
derived from the tiling. If the upper bound value is less than the critical value then the
true LRT value of the region cannot be anomalous.

6.2.2. Analysis on Scenario III and IV
For Scenario III and IV the anomalous regions were correctly identified while main-

taining a high pruning rate. Also there were no regions declared as false positives.

6.2.3. Analysis on Running Time
I Proportion of Running Time:

We analyze the running time with and without pruning for Scenario III and IV.
We plot out the proportion of running time of pruning approach relative to brute-
force approach in Fig. 6, which is the computation of running time of (brute-force
-pruning)/brute-force. Also, the proportion percentage is displayed on these line
graphs. It shows that as the size of the spatial and temporal region increase, the
effect of pruning becomes prominent. For the largest data tested, the pruning
mechanism resulted in a savings of nearly 50% compared to the brute-force ap-
proach.
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Test 16 × 16 × 16 32 × 16 × 16 64 × 16 × 16 32 × 32 × 32 128 × 16 × 16
ppsto (%) 79.27 97.51 97.77 97.22 96.68
pesto (%) 95.57 97.40 96.78 94.70 95.23

Table 5: Average Pruning Rate in Scenario IV

(a) Scenario III psto (b) Scenario III esto

(c) Scenario IV psto (d) Scenario IV esto

Figure 6: The proportion of running time of pruning vs. brute-force approach. It
shows that outlier pruning searching is significantly improved when the dataset size
starts from 32 × 16 × 16 in these four different scenarios.

II Single LRT Calculation Cost: We have also calculated the cost of a single likeli-
hood calculation as the dimension of the grid size increases. The results are show
in Fig. 7. For the 8× 8× 8 data set, the cost of the likelihood calculation using the
brute-force approach is 0.01ms while with pruning it increases to 0.08ms. How-
ever, for the larger data sets (e.g., 128 × 16 × 16) the cost of a single likelihood
calculation goes from 0.30ms for the brute-force approach to around 0.16ms with
pruning. Another observation is that the cost of the single likelihood calculation is
nearly similar for data sets of the same size but different dimensions, for example
128 × 16 × 16 and 32 × 32 × 32.

III Components Running Cost: We have also analyzed and compared the running of
the different components both for the brute-force and pruning approaches. The re-
sults are shown in Fig. 8. The brute-force approach has the following components:

(1) The cost of the likelihood calculation for each region R (R Computation).

15



(a) Scenario III psto (b) Scenario III esto

(c) Scenario IV psto (d) Scenario IV esto

Figure 7: The single likelihood ration calculation cost of pruning vs. brute-force ap-
proach. It shows that outlier pruning searching is significantly improved when the
dataset size starts from 32 × 16 × 16 in these four different scenarios.

(2) The cost of the likelihood calculation for the complement of each region R,
denoted as R̄ (R̄ Computation).

The pruning approach is more complex and involves the following components:

(1) The cost of computing the likelihood for each element of the tiling set TR.
This will be used to upper bound the likelihood value for an arbitrary spatio-
temporal region. (R pre-computation)

(2) The cost of computing the likelihood for each element of the tiling set TR̄ (R̄
pre-computation).

(3) The cost of upper-bounding the likelihood of R. This involves first expressing
R as a union of subregions and then each subregion as a union of tiles from
TR.

(4) The cost of upper-bounding the likelihood of R̄ (R̄ Computation). This in-
volves first expressing R̄ as union of subregions and then each subregion as
a union of tiles from TR̄. Each R̄ region can be expressed as a union of six
subregions and there are two types of tiling methods: sandwich and radial.
We calculate the likelihood value using both tiling methods and then select
the tightest upper-bound.
As is clear from Fig. 8, R̄ computation is the most expensive part of the calcu-
lation. However, as the data set size increases, the overheads of the tiling give
way to its more efficient reuse resulting in considerable savings.
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(a) Split cost of ESTO with smaller dataset (b) Split cost of ESTO with larger dataset

(c) Split cost of PSTO with smaller dataset (d) Split cost of PSTO with larger dataset

Figure 8: The running time of comparable parts of brute-force vs. pruning approach
in scenario III. It shows that the pruning searching is faster with the larger dataset.
Although the tiling of every R̄ takes longest time in pruning searching, the cost is small
compared to the likelihood calculation of every R̄ in brute force searching.

6.3. Case Studies: Beijing Taxi GPS Data

We illustrate the use of the Pesto method on a real data set [4, 5]. The data set
consists of three months of GPS trajectories collected from 33,000 taxis in Beijing
between 01/03/2009 and 31/05/2009. The road network of Beijing is split into grid.
The taxi counts of each cell which is identified by column index and row index are
provided in a text file. The time frequency of monitoring the taxi counts is 15 minutes.
To deal with real data, we only need to calculate the total taxi counts in each cell within
a given period, then this pre-processed data can be directly loaded into our algorithm.
In this section, we search for the most anomalous emerging region within a specified
time period and then provide a possible explanation for the anomaly.

6.3.1. Case I:
All (8 × 8) grid were tested between 9 : 00 : 00am and 10 : 00 : 00am for sixteen

days. We choose 20 days of data to calculate the baseline probabilities.
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(a) The average taxi counts within outlier regions vs.
non-outlier regions from 01/05/2009 to 02/05/2009

(b) The average taxi counts within outlier regions from
01/05/2009 to 08/05/2009

(c) The average taxi counts within outlier regions vs.
non-outlier regions from 16/03/2009 to 20/03/2009

(d) The average taxi counts within outlier regions from
14/03/2009 to 21/03/2009

Figure 9: Comparison of outlying and non-outlying regions in 8× 8× 8 grid. It shows:
(a) the average taxi counts within outlier regions is non-decreasing compared to non-
outlier regions which share the same emerging period with outlier. (b) the average
taxi counts within outlier regions throughout the emerging period is non-decreasing
compared to the outlier regions for the rest of the period.

Result I: The period from 01/05/2009 to 02/05/2009 emerged as a top outlier at the
position of (0, 1) and (1, 1) on the grid. This period corresponds to the Labor day public
holiday (“Golden Week”) . Usually the holiday duration is seven days (from May 1st to
May 7th) , but starting from 2009, the holiday period was shorten to between May 1st
and May 3rd inclusive. To celebrate the holidays it appears that many people visited
Happy Valley, the biggest amusement park in Beijing. The 3rd International Fashion
festival was also held in that location. Our results coincide with the fact that taxis
enjoy good business on public holidays and there is usually an increase in the number
of taxis near tourist spots. The results are shown in Fig. 9a, 9b, 10a. We can see that
the number of taxis increased from 1st May to 2nd May and then decreased from 3rd
of May onwards.

6.3.2. Case II:
All (8 × 8) grids were tested between 3 : 15 : 00pm to 4 : 30 : 00pm for 8 days.

We use 12 days of data to calculate the baseline probabilities.
Result II: The region highlighted as blue on the map was detected as an emerg-

ing outlier from 16/03/2009 to 20/03/2009. It is one of the city express road called
Tonghuihe North Road. From 01/03/2009 to 13/03/20093, the 11th National People’s
Congress (i.e. NPC) was held in Beijing, which is the annual meeting of the highest
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(a) The region highlighted with blue borders on the map
is the outlier region of Case I. The icon shows the exact
location of Happy Valley.

(b) The region highlighted with blue borders is the
outlier of Case II. It is the city express road of Bei-
jing. (i.e. Tonghuihe North Road)

Figure 10: Outlier Locations from our two case studies on Beijing Map

legislative body of the People’s Republic of China. Nearly 3000 deputies from all over
China attended the Congress. During this period, the traffic authorities in Beijing im-
posed temporary restriction measures on vehicles to control traffic flow. Most people
choose to take bus or subway instead of driving or taking taxi to commute to work. The
number of taxi travelling on Tonghuihe North road increased until most of the deputies
left Beijing. The results are shown in Fig. 9c, 9d, 10b.

To investigate more, we set k = 5 in our case studies. We found the other top 4
outliers have big overlap on the top 1 outlier region. These outliers have similar spatial
area and spanning time period. It verifies that the emerging outlier can be correctly
located.

7. Conclusion

In this article, an efficient pattern mining approach was proposed to cater for spatio-
temporal traffic data, which is able to detect “persistent outliers” and “emerging out-
liers”. We proposed two statistical models , which encompass the generic features of
anomalous patterns. We also derived an upper-bounding strategy for the two statis-
tic models supporting for fast outlier detection. Our comprehensive experiments show
that the performance of computational time is greatly improved when the dataset size
is large, and we can still find the correct outliers. We also carefully analyzed the tiling
scheme and the upper-bounding strategy in the synthetic experiments. In our case
studies, our model is able to detect regions with emerging number of taxis that can be
validated by known major traffic events.

Our approach is applicable to a wide variety of contexts. For instance, in weather
forecast models, it can be used to detect emerging weather pattern which raises possi-
bility of dry and warm climate. These climates may have great impact on infectious
disease. Investigating such weather variables associated with infectious diseases can
help anticipating future epidemics, and early warning system can be developed for
surveillance and interventions. In gene expression models, discovering emerging pat-
terns is helpful for diagnosis and understanding correlation of gene expression profiles
to disease states in a significant way. They are useful for capturing interactions among
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genes, finding signature patterns for disease subtypes, and generating potential disease
treatment plans, etc. In finance models, mining emerging business trend from different
geographical regions can provide insight for identifying some profitable investments.
It can also be applied in emerging event identification, intrusion detection, etc.

8. Future Work

From the above discussion,we already observed the cost of pruning approach has
nearly above 50% speed-up with respect to the naive algorithm as the grid size in-
creases. It allows the computation to be performed for large-scale applications. How-
ever, we also noticed that it still needs almost one to two days to find the top outlier
even with pruning approach in our synthetic experiments with grid size of 128×16×16
or 32 × 32 × 32. When the datasets are not modestly sized, the scalability is still not
good. This performance might not be acceptable in real detection applications.

We see that the scalability of outlier detection has become important as the amount
of data for analysis has been increasing greatly. For dealing with large datasets, it is
important to both parallelize the algorithms, and implement them to execute efficiently.
Fortunately, the LRT scanning algorithm is highly parallelizable, each sub-grid com-
putation is independent of each other and the whole grid can be partitioned into equal
parts and distributed over the multiple processors. The GPU computing or GPGPU
(i.e. General-Purpose computation on Graphics Processing Units) has become a new
trend for researchers to do general purpose scientific and engineering computation by
the use of GPU. It enables dramatic increases in computing performance by harnessing
the power of the GPU and is starting to play a significant role in large-scale modeling.
Due to our highly parallelizable algorithm, the technology of graphics processing unit
(GPU) and compute unified device architecture (CUDA), which are ideal for massive
data parallelism, might be considered in our implementation to accelerate the spatio-
temporal exploring and analyzing processes. As part of our future work, parallelization
of pruning approach will be pursued to achieve faster outlier detection.
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