
MULTI-PARTY AUDIO CONFERENCING BASED ON A SIMPLER MCU
AND CLIENT-SIDE ECHO CANCELLATION

Junlin Li

Georgia Institute of Technology
School of Electrical and Computer Engineering

Atlanta, GA 30332

Li-wei He, Dinei Florêncio

Microsoft Research
One Microsoft Way,

Redmond, WA 98052

ABSTRACT

Traditional multiparty audio conferencing uses a star-shaped topol-
ogy where all the clients connect to a central MCU (Multipoint Con-
trol Unit). The MCU mixes the signals from the speakers, encodes
it, and sends back the encoded signal to each client. To prevent the
speakers from hearing their own voices, the MCU has to produce
and encode a different mixed signal for each speaker. As a result,
the CPU load on the MCU increases proportionally to the number of
speakers in the conference. In this paper, we introduce a new con-
ferencing architecture, where the MCU produces a single encoded
signal sum of all received signals and each client is responsible for
removing its own signal if necessary. This architecture can substan-
tially reduce CPU load on the MCU. The major challenge, however,
is that the client’s original speech is non-linearly distorted by the
MCU encoding process. Simply subtracting the original speech from
the mixed signal would produce an echo-like distortion. We solve
that problem using a novel algorithm which completely removes the
echo with minimal artifacts. Mean Opinion Score (MOS) results im-
ply that the proposed algorithm works well, making the proposed
multiparty audio conferencing architecture promising.

1. INTRODUCTION

As the Internet evolves into a global communication network, audio
conference over the Internet is becoming more pervasive in our ev-
eryday life. Many companies now offer audio and video conference
services for free. MSN Messenger, for example, hosts over 50 mil-
lion audio and video conference sessions per month. To these com-
panies, improving communication experience while holding down
the operation cost is essential.

The simplest multiparty audio conference architecture is full-
mesh [1], where all clients directly communicate to each other. The
major advantage of this architecture is its high audio quality because
the audio packets are encoded once and require only one hop from
the sender to the receiver. And since the packets travel directly be-
tween the sender and the receiver, the service provider incurs no ad-
ditional cost after the connections have been established. However
in full-mesh, the bandwidth consumption and computation load on
each client increase proportionally to the size of the conference. For
a conference with N clients, each client will need N − 1 upload
and download units of bandwidth and N − 1 decode operations. For
large conferences, the clients will run into resource problems. Fur-
thermore, direct connections between clients often might not even
be possible due to NAT traversal and firewall issues.

To complement the full-mesh architecture (in case of large con-
ferences or NAT/firewall problems), an MCU-based (Multipoint Con-
trol Unit) architecture is often used. In such architecture, all clients

Table 1. Distribution of multi-talk in a 4-person conference
of Talkers 0 1 2 3 4 Avg
Distribution 9% 49% 31% 8% 3% N/A
enc. (Old) 0 0 3 4 5 1.40
enc. (New) 0 0 1 1 1 0.42

connect to a central MCU, which is responsible for mixing the sig-
nals from the speakers and sending back the encoded mixed signal to
all the clients. It is obvious that the bandwidth and CPU load on each
client are greatly reduced since only one unit of upload and down-
load bandwidth and one decode operation are required. However,
in order to prevent the speakers from hearing their own voices, the
MCU has to produce and encode a different mixed signal for each
speaker. Consequently, the CPU load increases proportionally to the
number of speakers.

There are other audio conference architectures such as tandem-
free [3, 4], peer-to-peer relay and distribution tree, which involve
various trade-offs among audio quality and delay, client CPU and
bandwidth load, and service operator cost. In this paper, we focus on
reducing CPU load on the MCU in the MCU-based architecture by
taking the advantage of the CPU power on the client. In our proposed
scheme, the MCU produces a single encoded signal sum of all the
received signals and each client is responsible for removing its own
signal if necessary. This architecture can substantially reduce CPU
load on the MCU. Furthermore, since all clients receive the same
packet stream, a broadcast medium can be used, when available, to
reduce the MCU bandwidth load.

The reminder of this paper is organized as follows. First, we
introduce a new MCU-based architecture for multiparty audio con-
ferencing in Section 2. Then the G.722.1 codec used in the system
is briefly reviewed in Section 3, and the proposed client-side echo
cancellation algorithm is described in Section 4. Section 5 discuss
the subjective test results, and Section 6 presents the conclusions.

2. A SCALABLE MCU-BASED SOLUTION

In an MCU-based audio conference architecture, the MCU just needs
to forward the packets to other clients when only one person speaks.
However, when multiple people speak, a traditional MCU needs to
generate and encode M +1 different output packets (where M is the
number of speakers). Using the speaker number distribution figures
from [2] (see Table 1 for a typical 4-person conference), the tra-
ditional MCU requires an average of 1.4 encodes per output period.
In our proposed solution, the MCU simply mixes the speeches from
all the clients together, encodes it, and sends that same stream to all

841-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

Fig. 1. The proposed MCU-based solution for multi-party audio con-
ferencing.

the clients. Therefore, our proposed solution just needs an average of
0.42 encode per output period – a 70% reduction of the encoding op-
erations. Given that the CPU load on the MCU is dominated by the
number of encode operations (e.g. for the specific codec used in this
paper ITU-T G.722.1 [5], encoding is 3-4 times more costly than
decoding on a typical PC), the overall CPU saving is very signifi-
cant. Furthermore, since all clients receive the same packet stream,
a broadcast medium can be used, when available, to reduce the MCU
upload bandwidth cost. For large conferences, the saving in band-
width can also be substantial.

The major challenge for the proposed solution, however, is that
each client needs to remove its own speech (which is non-linearly
distorted by the encoding process at the MCU) from the mixed speech
before playback. The system diagram of the proposed solution is
shown in Fig. 1.

3. OVERVIEW OF G.722.1 ENCODER

Fig. 2 shows a block diagram of the G.722.1 encoder. The Modu-
lated Lapped Transform (MLT) performs a frequency spectrum anal-
ysis on audio samples, converting the samples from time domain into
a frequency domain representation. The MLT transform coefficients
are divided into 16 regions (only 14 regions are used as the band-
width is 7 Khz), each having 20 transform coefficients, respectively.
The region power, defined as the the root-mean-square (rms) value
of the MLT coefficients in the region, is determined for each region
and quantized with a logarithmic quantizer.

The categorization procedure generates 16 possible categoriza-
tions to determine the parameters used to quantize and code the MLT

Fig. 2. Block diagram of the G.722.1 encoder

coefficients. Each categorization consists of a set of 14 “category”
assignments, one assignment for each of the 14 regions. The cate-
gory assigned to a region defines the quantization and coding param-
eters such as quantization step size, dead zone, vector dimension,
and variable bit-length code for that region. There are 8 categories:
category 0 through category 7. Category 0 has the smallest quan-
tization step size and uses the most bits. Category 7 has only one
quantization output value, set to “0”.

MLT coefficients in categories 0 through 6 are normalized, scalar
quantized, combined into vectors, and Huffman coded in the Scalar
Quantized Vector Huffman Coding (SQVH) module shown in Fig. 2.
For each of the 16 possible categorizations, the total number of bits
actually required to represent the frame is computed. The catego-
rization with the lowest index is selected from those categorizations
which yield bit totals that fit within the bit budget, or the categoriza-
tion closest is selected if no categorization yields a bit total that fits
within the bit budget. It is noted that only the scalar quantization
(SQ) in the G.722.1 encoder is lossy.

4. CLIENT-SIDE ECHO CANCELLATION

Each Client receives a signal that includes its own signal and needs
to remove that before play back. This resembles other echo cancel-
lation problems, but it is unique in a number of ways. In most other
cases, the echo is a linear function of the signal, and is introduced
by some natural or uncontrolled phenomenon (e.g., acoustic echo,
impedance mismatch, etc.). The task in these applications is exactly
to estimate this linear transfer function. In contrast, in our case, the
echo was “introduced” at the MCU and is 100% under our control.
This means we actually know the gain and delay of the “echo”. Thus,
if transcoding at the MCU were lossless, each client could perfectly
remove its own signal from the mixed signal. However, non-linear
distortions are introduced by the MCU encoder, mainly due to the
quantization. This distortion (i.e., quantization noise) is random, but
its energy is roughly proportional to the encoded signal, producing a
residual signal that sounds like a distorted echo. Our main task is to
estimate and remove this non-linear distortion.

Quantization error is generally considered impossible to predict.
Nevertheless, ours is a very unique situation: the client has access
to both the original signal (which it just sent to the MCU) and to
the quantized (mixed) signal. We will try to predict the quantization
noise to further reduce the residual echo. To that end, an enforced-
quantization based scheme is proposed, as shown in Fig. 3. The
original speech will go through two encoding and decoding cycles to
simulate the whole process of the echo going through. Since quan-
tization parameters (e.g., quantization step) are input dependent, we
force the second encoder in the echo cancellation module to use the
same quantization parameters used by the encoder in the MCU. It
is worth noting that all the required quantization parameters can be
obtained from the bitstream of the mixed signal without extra cost
(i.e. no additional side information is needed).

We now analyze the behavior of the proposed algorithm for a
given client. Let’s call A the signal that the client sends to the MCU,
and B the sum of the signals from all the other clients received at
the MCU. The MCU will encode the mixed signal A + B into a sin-
gle common stream and transmit it to all clients. In the following
analysis, we denote the samples of signal A and B as a and b, re-
spectively. The signal sample transmitted to the clients from MCU
is Q(a + b) = kabQs, where Q(·) denotes scalar quantization, Qs

is the quantization step used, and kab is the appropriate quantization
index for a+b. Assume a and b are individually quantized to ka and
kb with quantization error ea and eb, respectively, using Qs, that is,

85

Fig. 3. The proposed client-side echo cancellation algorithm - I:
enforced quantization based scheme. In this figure, “E” denotes En-
coder, and “D” denotes Decoder.

a = kaQs + ea, and b = kbQs + eb. Then,

Q(a + b) = (ka + kb)Qs + Q(ea + eb). (1)

It is obvious that |ea| < Qs
2

, |eb| < Qs
2

, and Q(ea + eb) may be
equal to 0, or ±Qs.

As depicted in Fig. 3, our estimation of the contribution of a to
the mixed signal received at the given client is obtained by requan-
tizing a using Qs. The final signal played at the given client is there-
fore: b̂ = Q(a + b)−Q(a) = kbQs + Q(ea + eb). Therefore, the
residual distortion after echo cancellation is b− b̂ = eb−Q(ea+eb),
that is,

∣∣∣b− b̂
∣∣∣ =

{
eb, if Q(ea + eb) = 0
Qs − |eb| , if Q(ea + eb) = ±Qs

(2)

In other words, whenever Q(ea+eb) = 0, the quantization error
is the same as if we had never transmitted A. Otherwise, the error
may be larger, but still smaller than the quantization step. Listening
test shows that this algorithm remove essentially all echo, but it does
introduce some perceptible artifacts into the final output speech sig-
nal. These have two main origins, which can be easily observed in
the Eq. (2). First, the higher quantization step for the mixed signal
may quantize too many coefficients to zero. And second, the spuri-
ous larger quantization errors may be noticeable in some places.

4.1. Client-Side Echo Cancellation Algorithm - II

We now propose a more elaborate client-side echo cancellation algo-
rithm that alleviates the residual distortion in the previous algorithm.
As shown in Fig. 4, this algorithm has three main changes in rela-
tion to the basic algorithm described earlier. First, it is performed
in the MLT domain instead of time domain. Second, we directly
compute the desired signal using a conditional estimation, instead of
estimating (and subtracting) the echo. Finally, an adaptive noise-fill
is introduced to further reduce the artifacts.

4.1.1. Conditional Estimation

As shown in the Fig. 4, the original problem can be formulated as
follows:

Given a and Q(a+b), find the best estimation b̂ of b to minimize
the mean-square error E[(b− b̂)2]. Here, a and b denote the MLT
coefficient samples of the signal A and B, respectively.

Fig. 4. The proposed client-side echo cancellation algorithm - II. In
this figure, “E” denotes Encoder, and “D” denotes Decoder.

It is easy to show that the solution for the above problem is the
conditional mean of b, which can be written as:

b̂ =

h∫
l

x · f(b = x)dx

h∫
l

f(b = x)dx,

, (3)

where, l = Q(a+b)−a−d·Qs and h = Q(a+b)−a+(1−d)·Qs

are the endpoints of the integration interval, and d is the dead zone
of the scalar quantizer defined in ITU-T G.722.1 [5].

To solve Eq. (3), the probability distribution function (PDF) of
b, say f(b), is needed, which is unknown. The ITU-T G.722.1 codec
groups MLT coefficients in groups of 20, called regions. We assume
all the 20 MLT coefficients bi (i = 1, · · · , 20) in the same region
are independent, identical Gaussian distributed with zero-mean and
variance σ2. Then f(b) only depends on σ2, which can be estimated
as follows:

σ2 =
1

20

20∑
i=1

b̂2
i . (4)

So the whole problem is to jointly solve the above Eq. (3) and Eq. (4).
Note that there are 20 equations included in Eq. (3), one for each of
the 20 MLT coefficients in that same region. To solve this system,
an iterative procedure is proposed as follows:

1. Initialize b̂i (i = 1, · · · , 20) as:

b̂i = Q(ai + bi)−Q(ai), (5)

where, the same quantizer is used for ai as that for the mixed
signal ai + bi. Actually, the initialized estimation of bi is
just the result of the enforced quantization based algorithm
proposed earlier.

2. Iterate the following two steps:

(a) Estimate σ2 based on b̂i (i = 1, · · · , 20):

σ2 =
1

20

20∑
i=1

b̂2
i . (6)

(b) Estimate b̂i (i = 1, · · · , 20) based on σ2:

b̂i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if Q(ai + bi)−Q(ai) = 0

h∫
l

x·f(bi=x)dx

h∫
l

f(bi=x)dx

, otherwise
(7)

86

where, l = Q(ai+bi)−ai−d·Qs and h = Q(ai+bi)−
ai+(1−d)·Qs, and it is noted that the estimation of b̂i

is set as 0 when b is so small that Q(ai +bi)−Q(ai) =
0 to avoid residual echo.

This iterative procedure converges quickly after 2 or 3 iterations.

4.1.2. Adaptive Noise-Fill

In the original ITU-T G.722.1 codec, noise-fill is used for all coef-
ficients in regions assigned category 7 and for coefficients coded as
zero in regions assigned category 5 or 6 (since the large quantization
step sizes in these categories result in most MLT coefficients being
coded as zero). The amplitude of the inserted noise is proportional
to the quantization step size, which is related to the region power.

However, the original noise-fill scheme in the ITU-T G.722.1
cannot be directly applied to the proposed audio conferencing sys-
tem, since here the noise-fill is for the desired speech signal after
echo cancellation, but the quantization parameter is determined by
the mixed signal. Instead, an adaptive noise-fill scheme is proposed,
which addresses the following two questions: (i) where to fill noise,
and (ii) how much noise to fill. Noise fill is applied as follows:

• If the desired speech is dominant, compared with the echo
speech in this region, (i.e. Ed � Ee, where Ed and Ee

are the quantized energy of the desired speech and the echo
speech), the same strategy with the original G.722.1 codec is
used, i.e. noise is filled for any zero coefficient in this region
if it is assigned category 5, 6 or 7.

• If the desired speech and the echo speech are comparable in
this region, and it is assigned category 3, 4, 5, 6 or 7, then
noise is filled for the coefficients coded as zero in this region.

• If the echo speech is dominant in this region, i.e. Ed � Ee,
then noise is filled for the coefficients coded as zero in this
region regardless of the category assigned.

The amplitude of the filled noise is determined as:

Nf = min {f1(Qs), f2(Ed)} , (8)

where, Qs is the quantization step, f1(Qs) is a linear function of Qs,
which is same as the original G.722.1 codec, and f2(Ed) is a linear
function of the quantized region power Ed of the desired speech.

The listening test shows that this client-side echo cancellation
algorithm not only completely removes the echo, but also greatly
reduces the artifacts compared with the basic client-side echo can-
cellation algorithm proposed earlier.

5. RESULTS AND DISCUSSIONS

To evaluate the effectiveness of our proposed echo-cancellation al-
gorithm (Prop-II) against the traditional MCU-based solution (Trad),
we use subjective quality rating from human listeners [6]. In addition
to the two algorithms, we added simple signal substraction algorithm
(Naiv) and the proposed solution I (Prop-I) as control conditions. As
source, we used 4 clips from a recording of a real 4-person audio
conference. Each clip is 5-10 seconds long, and contains multiple
speakers. A total of 48 clips were generated by processing the 4 clips
with 4 algorithms each coded with G.722.1 codec at three different
bit rates (16, 24, and 32 kbps).

In the test, we simulated the effect that the subject is sitting next
to one of the 4 conference participants. The test audio clips are gen-
erated as stereo files: the left channel contains speech from the par-
ticipant that the subject is “sitting next to” while the right channel

Table 2. Subjective test results (MOS)
Method Naiv Prop-I Prop-II Trad.
16 kbps 3.08 3.15 3.81 4.04
24 kbps 3.32 3.30 3.90 3.97
32 kbps 3.46 3.65 3.80 4.15
Overall 3.29 3.36 3.83 4.06

contains the speech of the 3 other participants processed with vari-
ous echo cancellation algorithms plus a 200 ms delay. By playing
the local participant’s speech at the same time as the remote speech,
the masking effect from the local speech is taken into consideration
of the overall echo cancellation quality.

A total of 36 subjects participated in our test, each rating half of
the 48 clips. The MOS (min=1, max=5) are shown in Table 2. As
expected, the traditional, full-load, MCU solution obtained the high-
est rating. However, our proposed solution only appears to introduce
a small quality degradation while the 2 control algorithms have done
considerably worse.

Given the significant amount CPU savings on the MCU and
slight quality degradation, we believe that our client-side echo can-
cellation algorithm offers a viable solution to MCU design.

6. CONCLUSIONS

In this paper, we introduced a new MCU-based architecture for multi-
party audio conferencing, which can greatly reduce the computation
and bandwidth requirements at both the client side and the MCU
at the cost of introducing a non-linearly distorted echo. To remove
the echo, a novel client-side echo cancellation algorithm was pro-
posed. The listening test shows that the proposed algorithm not
only removes the echo completely, but also minimizes the artifacts,
and it outperforms the naive echo cancellation solution greatly. The
MOS score also shows that the proposed algorithm only introduces
a small quality degradation while gaining a significant CPU saving
compared to the traditional MCU-based solution. As future work,
we plan to extend the echo cancellation algorithm for different audio
codec, such as CELP-based codec, and investigate the impact of the
packet loss and delay jitter on the system.

7. REFERENCES

[1] ITU-T Rec. H.323, “Packet-based multimedia communication
systems,” Nov. 2000.

[2] P.J. Smith, P. Kabal, and R. Rabipour, “Speaker selection for
tandem-free operation voip conference bridges,” in Proc. IEEE
Workshop Speech Coding, Oct. 2002, pp. 120–122.

[3] P.J. Smith, P. Kabal, M.L. Blostein, and R. Rabipour, “Tandem-
free voip conferencing: A bridge to next-generation networks,”
IEEE Communication Magnize, vol. 41, no. 5, pp. 136–145,
May 2003.

[4] X. Xu, L. He, D. Florencio, and Y. Rui, “Pass: Peer-aware
silence suppression for internet voice conferences,” in IEEE
International Conference on Multimedia & Expo, 2006.

[5] ITU-T Rec. G.722.1, “Coding at 24 and 32 kbit/s for hands-free
operation in systems with low frame loss,” Sept. 1999.

[6] ITU-T Rec. P.800, “Methods for subjective determination of
transmission quality,” Aug. 1996.

87

