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Abstract.
A new algorithm is proposed for efficient stereo and novel view synthesis. Given the video streams acquired by

two synchronized cameras the proposed algorithm synthesises images from a virtual camera in arbitrary position
near the physical cameras. The new technique is based on an improved, dynamic-programming, stereo algorithm
for efficient novel view generation. The two main contributions of this paper are: i) a new four state matching
graph for dense stereo dynamic programming, that supports accurate occlusion labelling; ii) a compact geometric
derivation for novel view synthesis bydirect projection of the minimum cost surface. Furthermore, the paper
presents an algorithm for the temporal maintenance of a background model to enhance the rendering of occlusions
and reduce temporal artefacts (flicker); and a cost aggregation algorithm that acts directly in the three-dimensional
matching cost space.

The proposed algorithm has been designed to work with input images with large disparity range, a common
practical situation. The enhanced occlusion handling capabilities of the new dynamic programming algorithm
are evaluated against those of the most powerful state-of-the-art dynamic programming and graph-cut techniques.
Four-state DP is also evaluated against the disparity-based Middlebury error metrics and its performance found to
be amongst the best of the efficient algorithms. A number of examples demonstrate the robustness of four-state
DP to artefacts in stereo video streams. This includes demonstrations of cyclopean view synthesis in extended
conversational sequences, synthesis from a freely translating virtual camera and, finally, basic 3D scene editing.

Keywords: Dense stereo, image-based rendering, video-conferencing, gaze correction.

1. Introduction

This paper addresses the problem of novel-view syn-
thesis from a pair of rectified video streams with spe-
cific emphasis on gaze correction for one-to-one tele-
conferencing. With the rise of live chat technologies1,
it is envisaged that the PC will increasingly be used for
interactive visual communication. One pressing prob-
lem is that any camera used to capture images of one
of the participants has to be positioned offset from his
or her gaze (cf. fig. 1 and fig. 2). This can lead to lack
of eye contact and hence undesirable consequences for
human interaction [GTZ+00].

One might think that if it were possible to drill a
hole in the centre of a computer screen and place a
camera there, that would achieve the desired view-

point. The first problem with this solution is that
“porous” screens do not exist; but even if they did the
user would be required always to look at the centre
of the monitor, where the extra camera had been in-
serted. However in a messaging session the user looks
at the communication window (where the other per-
son’s face appears) which can be displaced and moved
around the screen at will (fig. 2). Therefore, the cam-
era needs to be placed behind the communication win-
dow on the screen; but this cannot be achieved with
available hardware and therefore a software solution
is sought.

Previously proposed approaches can be broadly cat-
egorized asmodel-basedor image-based. One model-
based technique is to use a detailed 3D head model,
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input left image input right image

Fig. 1. Failure of eye contact. In one-to-one video-
conferencing, cameras located on the frame of the computer
monitor fail to capture gaze correctly. Here a person looks at
the centre of the screen but, in the images captured by cam-
eras mounted on either side of the computer monitor, he does
not appear to be looking directly ahead. The proposed algo-
rithm is capable of synthesizing a virtual view that procures
eye contact.

texture map it and re-project it into the required view-
points. Whilst this can be successful [Vet98, YZ02],
it is limited to imaging heads with no hair or neck.
Nor can it deal with occlusion events such as a hand
in front of the face. A more general approach, pro-
posed here, is to use image-based rendering techniques
(IBR [CW93]) to synthesize novel views from two in-
put images. The entire input images, as opposed to the
head only, are processed, thus avoiding the detection
and modeling of heads with all the associated prob-
lems. Though we focus on the gaze correction applica-
tion, the algorithm developed in this paper is of general
nature and can be applied to different IBR scenarios.

Many popular IBR algorithms combine a depth
map with input images to produce synthetic images.
In order to generate a depth map a dense stereo algo-
rithm is required, a substantial review of which can
be found in [SS02], in which the authors evaluate
a number of existing dense-stereo techniques. But
this evaluation may not be sufficient for our purposes
as: (i) the range of disparities considered in [SS02]
is smaller than in our application (0-29 pixels there,
whereas we typically consider 0-80 pixel disparities);
(ii) we are primarily interested in new-view synthesis
so it does not matter if the disparities are relatively
inaccurate in texture-less image regions; all that mat-
ters is that the new view is well synthesized (as noted
in [Sch99, Sze99]); (iii) we consider long video se-
quences so temporal stability is a significant issue.

In the past, research on dense stereo reconstruction
has been directed largely towards the accurate recov-
ery of disparity maps, though not entirely [BM92]. We
have found that while inaccurate disparities may still
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Fig. 2. The basic teleconferencing setupconsiders two
cameras placed on the frame of a computer monitor. A win-
dow for viewing the remote participant is marked in blue on
the computer screen. The algorithm described in this pa-
per achieves a corrected gaze image in an efficient and com-
pelling way.

produce acceptable synthesized images over matched
regions, inconsistent occlusion maps lead to unaccept-
able artefacts. Therefore, in this paper we focus on
accurate occlusion modelling and detection.

According to the evaluation in [SS02], two of the
most powerful dense stereo techniques use Graph cut
(GC) [KZ02] and loopy belief propagation [SSZ02].
However, both of these are currently too computation-
ally intensive for real-time applications and, since near
real time performance is one of the goals of this paper,
we turned our attention to more efficient algorithms
such as Epipolar-line Dynamic Programming [OK85],
commonly referred to asDP. The DP algorithm de-
scribed in [CHRM96] has previously been demon-
strated for cyclopean view interpolation [COL93] in
video2. In the basic form of the DP algorithm, in order
to obtain computational efficiency, observations con-
sist of single-pixel intensities. This, together with the
fact that pairs of corresponding scanlines are consid-
ered independently, introduces a number of artefacts
which corrupt the quality of the output reconstruction,
especially for large disparity ranges as fig. 3b shows.

In particular, DP-based algorithms for novel view
synthesis are characterized by three kinds of arte-
facts: (i) artefacts produced by mismatches (horizon-
tal streaks due to inconsistencies between adjacent
scanlines); (ii) the “halo” in the regions where the
background is visible in only one of the two input
views (occlusion); and (iii) flickering synthesized pix-
els, caused by matching ambiguities. The first two
kinds of artefacts are static, while the latter is tem-
poral in that it appears when processing sequences of
stereo images. This paper sets out to address and solve
those kinds of artefacts while maintaining high com-
putational efficiency.

Our new contributions have two aspects: accurate
generation of occlusion maps and efficient new-view
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a b c

Fig. 3. Fast cyclopean view synthesis by conventional DP.
(a,c) Input left and right views, respectively; (b) Cyclopen
view synthesized by dynamic-programming [COL93]. Note
that gaze is correct in the cyclopean view. The algorithm
runs at near real-time rate, but produces significant artefacts
in the synthesized cyclopean image.

rendering. For the first we propose a new DP algo-
rithm acting on afour-state matching graph. New la-
bels are introduced for occlusions, and the cost func-
tion is extended to favour: (a) good grouping of oc-
clusions, (b) formation of solid occlusion regions at
the boundaries of foreground objects, and (c) inter-
scanline consistency. For the second aspect we intro-
duce minimum-cost surface projection as a compact
technique for generating synthetic views from arbi-
trary virtual cameras,directly from the minimum-cost
surface obtained during the DP process3. This tech-
nique avoids the explicit construction of a 3D mesh
model or depth map.
Paper outline. Section 2 reviews the state of the art
in dense stereo via DP, and consequent issues for novel
view rendering, particularly of occluded regions. The
main contribution of this paper is described in sec-
tions 3 and 4 which introduce our improved multi-
state, dense-stereo algorithm. Section 5 illustrates the
cost filtering algorithm for inter-scanline consistency.
Section 6 presents a comparative evaluation of perfor-
mance of our technique with respect to disparity esti-
mation and occlusion detection. Realistic synthesis of
occluded regions is discussed in section 7 and virtual-
view generation and rendering in section 8. Finally,
section 9 demonstrates the effectiveness of the pro-
posed techniques with a number of examples where
both static images and entire sequences are generated
for various virtual camera locations.

2. Background on Dynamic Programming
and Novel-view Synthesis

This section reviews the principles of dynamic-
programming algorithms for dense stereo [CHRM96,
OK85] and discusses issues related to the synthesis of
cyclopean images from the two input views.

P
 (X,Y,Z)


f


l
 r


O
l
 O
r


X


Z


B


Y


O


Left


camera


Right


camera


Fig. 4. Basic camera configuration and notation.Ol and
Or are the optical centres of left and right cameras respec-
tively, f is the focal length of the cameras (assumed identical
for both cameras) andB is the baseline between the two op-
tical centres. The origin of the reference coordinate system
X, Y, Z is denotedO.

2.1. Conventional dynamic-programming

Figure 4 shows a plan view of the camera setup. The
left and right cameras provide us with the synchro-
nized and epipolar-rectified input videos4 . The focal
length is denotedf , andB is the distance between the
two optical centres (the baseline). A Cartesian coor-
dinate system is chosen with origin at the mid-point
between the left and right optical centres. A 3D scene
pointP is projected into the two input image planes in
corresponding image points at positionsl and r rel-
ative to the respective image centres. The distance
d = l−r is commonly known as disparity. We refer to
the images corresponding to a virtual camera, with op-
tical centre in the originO, ascyclopeanimages. As
will be demonstrated, our algorithm is not restricted
to cyclopean views only but is capable of generating
virtual images from arbitrary viewpoints.

The diagram in fig. 5a represents the matching
graph for a pair of corresponding scanlines in the
two input images [OK85, CHRM96]. Note that, since
l >= r ∀P (i.e.disparitiesd = l− r are always non-
negative), then it is only ever necessary to consider the
lower half of the matching graph (grey area in fig. 5a).
The limiting, zero-disparity casel = r corresponds
to points at infinity. The 45-degree line in fig. 5a is
termed the “virtual scanline” for reasons that will be-
come obvious in the next section. The local cost of
matching a pixel at positionl along the left scanline
with a pixel at positionr along the right scanline is
denotedM(l, r). In conventional DP, the costM(l, r)
may be defined simply as the square difference of pixel
intensities, though more elaborate measures based on
patches, colour, wavelets etc., can be used.
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Fig. 5. Conventional dynamic-programming. (a) The
two-dimensional matching graph on which DP is based.
Each node in the planar graph corresponds to a pair of pix-
els, in the left and right scanlines. A matching costM(l, r)
is associated to each node and the goal is to find a minimum-
cost path (shown in red) joining the two opposite corners of
the graph. Bright colouring indicates high pixel similarity,
i.e. low values ofM(l, r). (b) A blown-up view of (a) show-
ing the three allowed moves between pixel pairs [COL93];
circles represent nodes of the graph in (a).

Standard 3-move DP. Dynamic-programming con-
sists of two passes: forward and backward [CHRM96].
The forward step constructs a matrix of cumulative
matching costsC by the following recurrence:

C(l, r) = min





C(l − 1, r) + β
C(l − 1, r − 1) + M(l, r)
C(l, r − 1) + β

(1)

whereC(l, r) indicates the cumulative cost of the path
from the point(0, 0) to the point(l, r). Note that
only three moves are permitted: a horizontal, possi-
bly occluded, move, a diagonalmatchedmove and a
vertical, possiblyoccludedmove (fig. 5b). Thus, 45-
degree segments in the minimum cost path correspond
to fronto-parallel surfaces (constant disparity); vertical
and horizontal segments represent either occlusions or
non-fronto-parallel surfaces. The cost of a horizon-
tal/vertical move, which may indicate occlusion, isβ.
When matching costsM(l, r) are normalised so that
0 ≤ M(l, r) ≤ 1, a value ofβ = 0.3 yields good re-
sults on a variety of images. At each iteration the min-
imum cost between the three possible moves is chosen
and a table of backward links is stored for use in the
second pass of DP.

The backward pass of the algorithm follows the
saved back-links; starting from(l = W, r = W )

For each pair of scanlines, given their matching pathP:

• For each pointp ∈ P
1. take the coloursIl(l) andIr(r) of the correspond-

ing pixels l and r in the left and right scanlines,
respectively;

2. compute the average valueĨ = 1
2
(Il(l) + Ir(r));

3. project the newly obtained pixel orthogonally to the
virtual image scanline, into the virtual image point
v; i.e.Iv(v) = Ĩ.

Fig. 6. Cyclopean view synthesis from direct projection of the
minimum-cost path.

whereW is the image width, to the origin(l = 0, r =
0). This defines the minimum-cost pathP as the se-
quence of visited nodes.

Limitations of conventional DP. The three-move
model is limited since it fails to distinguish completely
between occluded and non-occluded moves. One of
the main contributions of this paper will be to expand
the set of permitted moves to support unambiguous de-
tection and classification of occlusion events.

2.2. Direct cyclopean-view synthesis from DP

This introductory section explains how cyclopean
views can be generated directly from the minimum-
cost paths estimated by conventional DP. Special at-
tention is paid to the synthesis of pixels in occluded re-
gions. The basic cyclopean-view synthesis algorithm
is described in fig. 6 and illustrated in fig. 7a.

The algorithm in fig. 6 applies to matched pixels
only and occluded areas must be treated differently.
Indiscriminate application of the algorithm in fig. 6 to
occluded and unoccluded points alike, would produce
a distorting effect, a “halo” around the foreground ob-
jects in the cyclopean view. An example is shown in
fig. 8 where the frame of the door and the edge of the
whiteboard have been deformed into curves which fol-
low the outline of the foreground head. The “halo”
artefact is much more noticeable and disturbing when
video sequences are reconstructed in this way.

Fronto-parallel assumption for occlusion filling.
In order to overcome the halo effect occluded pix-
els must first be reliably detected. For those pixels
it is necessary to make a plausible assumption about
underlying 3D structure since this information is not
available given the absence of a stereo match. One
effective assumption is that of a fronto-parallel back-
ground [Sch99]. As illustrated in fig. 7c, filling of the
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Fig. 7. Generating the cyclopean view.(a) A matched pointp ∈ P is projected orthogonally onto its corresponding point
v on the virtual scanline. The luminance value of the virtual pixelv is the average of the corresponding pixelsl andr on left
and right images, respectively. (b)Halo: treating the occluded segments (dotted lines) inP in the same way as the matched
segments produces a lens-like effect that we call the “halo” artefact (fig. 8). (c)Fronto-parallel occlusion synthesis:the halo
effect is largely removed if a fronto-parallel background assumption is made: an occluded pointp on the continuation of the
background is projected orthogonally onto its corresponding pointv on the virtual scanline.

a b

Fig. 8. Halo artefact. (a) A cyclopean view reconstructed
by applying the algorithm in fig. 6 to both matched and oc-
cluded segments of the recovered minimum-cost path. A
“halo” of deformed background objects is visible around the
head. (b) Regions over which the halo effect occurs are high-
lighted.

occluded regions can be achieved under the fronto-
parallel assumption by extending the background at
constant disparity. Fig. 7c shows how, for a left oc-
clusion (vertical dashed line), the values of the virtual
pixels are takenonly from the right image:Iv(v) =
Ir(r), and vice-versa.

The reset artefact. The fronto-parallel approxima-
tion can be applied only if occluded regions are cor-
rectly detected. Detection errors (fig. 9b) cause the
sampling of “source” pixel values from incorrect lo-
cations in the input images — theresetartefact (cf.
fig. 22). Accurate detection of occlusion is clearly
paramount.
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Fig. 9. The reset effect.(a) The fronto-parallel approxima-
tion used for filling occluded regions. For the left occlusion
marked in red (dashed), the regionAv in the cyclopean im-
age is copied from the corresponding regionAr in the right
image. See also fig. 7c. (b) A small error in the detection
of the occluded region,e.g.a small matched region inside a
large occlusion, produces a large error in the cyclopean syn-
thesized scanline. In fact, the “source” regionsBr andCr

are quite different fromAr and far apart from each other.
This produces visible artefacts as illustrated later.

The next two sections introduce our improved DP
algorithm for accurate occlusion detection.

3. Extending the set of basic moves for un-
ambiguous occlusion modelling

In the standard DP approach slanted (i.e. non fronto-
parallel) surfaces in space are modelled as a combi-
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a b c

Fig. 10. The proposed four-state model for DP.The graph associated with our new DP algorithm occupiesfour planes, with
14 allowed state transitions: (a) state-preserving transitions and (b,c) between-state transitions. Each permitted state transition
(shown by arrows) has been labelled with the associated cost — see text.
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Fig. 11. The four-move model for Dynamic Program-
ming allows two matched moves (marked in magenta and
cyan), and two occluded moves (green and red).

nation of diagonal and horizontal or vertical moves in
the matching graph. In order to disambiguate between
horizontal/verticalmatchedmoves and true occlusion
events, the new model has two types of horizontal
moves and two types of vertical moves, matched and
occluded. Since a line at any orientation can always be
approximated by a sequence of horizontal and vertical
matched moves, the diagonal matched move of the ba-
sic DP model is eliminated without loss. This defines
the four-move modelof fig. 11, to be compared with
fig. 5b.

In recent work [CSBT03] we have tried the five-
move model, including a matched diagonal move, as
suggested also by Ishikawaet al. [IG98]; but we have
found the four-move model as reliable as the five-
move model and simpler. In the four-move model,
every possible path through the cost space has equal
length (Manhattan distance) so that the costs of alter-
native paths are truly comparable. Finally, the four
move model lends itself to a proper statistical inter-
pretation [KCB+05b].

4. Imposing constraints on occlusions by
DP on a four-stategraph

Thanks to the four-move model, matches and oc-
clusions are now unambiguously labelled here, un-
like the conventional three-move model. This sec-
tion describes another evolution of our DP model
which imposes prior constraints on runs of occluded
and matched pixels. This is achieved by a four-state
matching graph with two occluded statesL0 (occluded
in left image) andR0 (occluded in right image) and
two matched statesLm (left-matched) andRm (right-
matched) (see fig. 10 and fig. 13). In contrast, conven-
tional DP runs on a single planar graph.

The four-state model reflects naturally the persis-
tence of each of the states. For instance long runs of
occlusions can be favoured by setting a high cost for
entering or leaving an occluded state (Lo or Ro). Sim-
ilarly, it is desirable to biasagainstruns of matched
moves inRm or Lm, ensuring that surfaces close to
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Fig. 12. Finite State Machine Representation.Our 4-state
algorithm can be represented as a finite state machine. The
four states correspond to the basic four permitted matched
and occluded moves. The edge labels represent the costs
associated to the14 different transitions between states.

fronto-parallel are preferred, as in the conventional
DP. Slanted surfaces are thus described by oscillations
of the optimal path between theLm and Rm states
(fig. 13). The 4-states framework includes four dif-
ferent cumulative cost matrices:CLo, CRo, CLm and
CRm, one for each state in the graph. The elements
of the cumulative cost matrices are initialised to+∞
everywhere except in one row of the right occluded
plane, where:

CRo[i, 0] = iα ∀i = 0 . . . W − 1 . (2)

The forward step of 4-state DP computes the four
cumulative cost matrices according to the following
recursion:

CLo[l, r] = min





CLo[l, r − 1] + α
CLm[l, r − 1] + β
CRm[l, r − 1] + β

(3)

CLm[l, r] = M(l, r) + min





CLo[l, r − 1] + β′

CLm[l, r − 1] + γ
CRm[l, r − 1]
CRo[l, r − 1] + β′

whereM(l, r) is the cost of matching thelth pixel in
the left scanline with therth pixel in the right scanline.
In this section we assume given the matching costs
M(l, r) and focus on the DP algorithm only. Section 5
will describe how the cost function is computed.

The two other cost matricesCRo[l, r] andCRm[l, r]
are defined by invoking symmetry on the definitions
of CLo andCLm above. Note that there are14 allowed
state transitions, as illustrated in fig. 10. The cost
structure defined by the four-state DP algorithm and
the related state transitions can be represented com-
pactly as a finite state machine as in figure 12.

In the forward pass, the computation of the four
cumulative cost matrices proceeds from the corner
(l = 0, r = 0) in the left occluded state (Lo) and
continues up to(l = W − 1, r = W − 1) in the
right occluded state (Ro), whereW is the image width.
At each iteration, as the cumulative costs matrices are
built, backward pointers to the nodes with minimum
cumulative cost are stored, similarly to conventional
DP. In the backward pass, the minimum-cost path is
recovered by following the fourteen different kinds of
back-pointers from the(l = W − 1, r = W − 1) cor-
ner on the left occluded stateLo to (l = 0, r = 0) on
theRo state.

Setting the transition costs. The penalty parame-
tersα, β, β′ andγ are chosen as follows:

• The parameterα is set to1/2, a value chosen just
sufficient to exceed the typical costM(l, r) (0 ≤
M(l, r) ≤ 1) of a good match.

• The penalty costβ is set to1.0 – large enough to
avoid erroneous labelling of weak true matches as
occlusions, but not so large as to prevent the min-
imum cost path ever entering an occluded state.

• The parameterβ′ is set to1.0 – large enough to
avoid reset artefacts (leaving an occluded state too
soon), but not so large as to prevent the minimum
cost path ever entering a matched state.

• The costγ is set to 1/4 to bias against runs
of transitions within the samematchedstate.
Clearly we do not want to disallow these tran-
sitions as these are used to approximate slanted
surfaces, but it is envisioned that in most cases,
the minimum cost path will oscillate between the
left and right matched states, approximating a
roughly fronto-parallel surface in a stair-step fash-
ion (fig. 13d).

It can be proven that the optimal path solution de-
pends only on the sumβ + β′. Therefore, we can
setβ = β′ without loss of generality, thus reducing
the number of parameters to three. Optimal values for
all these parameters may be learnt from input ground-
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a b

c d

Fig. 13. Minimum-cost 3D path in the four-state graph for DP. (a,b,c) Different views of the 3D minimum-cost path es-
timated for a pair of input scanlines. The rapid oscillations between the two matched states (Lm andRm) illustrate the way
matched, slanted surfaces are represented as alternate horizontal and verticalmatchedmoves. (d) A detail from (c) highlighting
the matched oscillations.

truth data [KCB+05b]. Sensitivity of our algorithm
with respect to its parameters is discussed in sec. 6.5.

Figure 13 shows an example of the recovered
minimum-cost 3D path for a pair of corresponding
scanlines extracted from real stereo images. The 3D
minimum cost path resulting from the application of
our DP algorithm weaves its way through the four
states of the graph. Note the two large occlusions
(red and green segments) lying on the correspond-
ing occluded states. As expected, slanted surfaces
are tracked as series of oscillations between the two
matched states.

Next, we discuss the details of the cost function con-
struction and cost aggregation.

5. Matching cost definition and aggrega-
tion

This section describes the computation of matching
costs between pixels pairs and their aggregation to im-
prove inter-scanline consistency.

Computation of matching costs. The use of neigh-
bourhood windows in computing the cost of match-
ing two pixels has already been shown to help reduce
streaky artefacts [SS02]. The matching costM(l, r)
we employ in this paper is calculated for every pair
of pixels along corresponding epipolar lines with a
windowed Normalised Sum of Squared Differences
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(NSSD), defined as:

M(l, r) = (4)

1
2

∑
δ∈Ω

[
(I l

pl+δ − I l
pl

)− (Ir
pr+δ − Ir

pr
)
]2

∑
δ∈Ω(I l

pl+δ − I l
pl

)2 +
∑

δ∈Ω(Ir
pr+δ − Ir

pr
)2

whereΩ is ann × m (n is number of rows) generic
template patch centred at the origin of the coordinate
system;pl andpr are the pixels positions (2-vectors)
in the left and right images, respectively; andδ is a
variable 2D displacement vector. The bar indicates the
mean operator.

The mean subtraction and rescaling operations
in (13) help deal with changes in the photomet-
ric settings of the two input cameras and possibly
with limited non-Lambertian effects. Our experi-
ments showed that for horizontally rectified images
taller neighborhood windows (e.g.7 × 3) help incor-
porate inter-scanline information better than square
windows of similar area, with obvious advantages in
terms of speed. Furthermore, the costsM(l, r) can
be computed efficiently using moving average tech-
niques [SS02]. The normalization property of (13)
(0 ≤ M(l, r) ≤ 1 ∀l, r) will turn out to be ex-
tremely convenient when setting the costs of the graph
edges defined in the next sections.

In our experiments we have compared the Normal-
ized SSD cost with the Normalized Cross-Correlation
(NCC) matching cost defined as:

Mncc(l, r) =
1
2
× (5)


1−

∑
δ∈Ω(I l

pl+δ − I l
pl

)(Ir
pr+δ − Ir

pr )√∑
δ∈Ω(I l

pl+δ − I l
pl

)2
∑

δ∈Ω(Ir
pr+δ − Ir

pr )2




We have found little difference, in terms of results, be-
tween the two implementations but NSSD is consider-
ably faster than NCC (despite our efforts to improve
the efficiency of the NCC code5). Interesting linearity
and consistency properties of the NSSD cost function
are discussed in [KCB+05b].

One of the biggest problems of dynamic program-
ming, dense stereo algorithms is that scanlines are
treated independently. This induces visible “streaky”
artefacts in the output disparity maps and related syn-
thesized images. This issue is addressed here by filter-
ing the matching cost matrix across scanlines, over a
three-dimensional cost space.

a

b

Fig. 14. The 3D cost space for a pair of stereo images.(a)
Match cost space, as fig. 5a, now shown for full 3D volume.
(b) In order to propagate cost information across scanlines a
2D Gaussian filter (represented by the red ellipse) parallel to
the virtual image plane is applied to the 3D cost space.

5.1. Inter-scanline consistency and cost aggrega-
tion

A solution to the issue of inter-scanline consis-
tency [OK85] is to propagate information across scan-
lines by detecting and matching vertical edges. This
has two drawbacks however: (i) the robust matching
of edges is an open issue, especially for occluding con-
tours (precisely where we need most accuracy); (ii)
edge detection and matching algorithms are slow. Our
solution to the problem of encouraging the propaga-
tion of information across scanlines efficiently is to
use small window neighborhoods in the cost computa-
tion step followed by a separate cost aggregation step.

The algorithm proceeds as follows: Firstly the cost
matricesM(l, r), associated with each pair of scan-
lines, are built and stacked to form a three-dimensional
cost space as in fig. 14a. Secondly, a 2D Gaussian
filter is applied with principal axesa parallel to the
virtual image plane (fig. 14b). The axisa of the
Gaussian kernel orthogonal to the left and right scan-
line axes is responsible for enforcing inter-scanline
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a
 b


c
 d


Conventional DP
 4-state DP
Input stereo pair


Fig. 15. Comparing the different DP models. (a,b) Occlusion maps obtained from the conventional DP and the 4-state DP algorithms,
respectively. Red indicates left occlusions and right occlusions are green. (a) In conventional DP numerous matched pixels are incorrectly
classified as occluded. True occlusions around the head show as broken up maps of ambiguous labels, and would cause “reset” artefacts in the
synthesized cyclopean view. (b) In 4-state DP true occlusions around the head are correctly detected as unfragmented regions. Throughout,
7 × 3 window patches were used in the computation of matching costs; a value ofσa = 2.0 has been used for the cost filtering step. (c,d)
Disparities corresponding to (a,b), respectively. Removal of spurious occlusion labels helps also to clean up the disparity map. The disparity
values have been scaled up1.5 times for ease of visualization.

consistency of the costs; the other axisa′ produces ad-
ditional smoothing of sharp corners in the occlusion
map by encouraging fronto-parallel surfaces [SS02].
Typical values for Gaussian smoothing parameters are:
σa = 3 pixels along thea axis andσa′ = 2 pixels
along thea′ axis.

Cost-filtering acts directly on the matching cost
function rather than on the final matching path or the
disparity map. In fact, cost aggregation precedes the
optimal path finding step. The result is effective in-
formation propagation across scanlines with improved
occlusion positioning without necessarily smoothing
disparities (fig. 16). Furthermore, the cost filtering
step, being a separable 2D convolution can be imple-
mented efficiently by using two 1D convolutions.

Note that if we had used standard, un-normalized
SSD in the cost computation step, then the use of
large window neighborhoods (with Gaussian weight-
ing) would have been equivalent to the cost aggrega-
tion performed in this section. Furthermore, we have
found that normalized SSD costs on small windows
works considerably better than standard SSD. Further

research is necessary here to assess an optimal match-
ing cost function.

The output of the cost aggregation process is the
new set ofM(l, r) costs used, as input to the 4-state
DP algorithm already described in section 4.

6. Evaluating the estimated disparity and
occlusion maps

The goal of this section is two-fold: i) demonstrating
the advantages of our new DP algorithm with respect
to other techniques and, ii) defining measures of accu-
racy of occlusion detection for comparison with state
of the art Graph-Cut techniques.

6.1. Advantages of four-state model for DP

Four-state vs conventional DP. Figure 15 demon-
strates the effect of moving from the conventional
DP algorithm to the four-state DP one. Comparing
fig. 15a and fig. 15b one can see that the four-state
model removes most of the incorrect occlusion events
which occur in the background of fig. 15a (isolated
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Fig. 16. Inter-scanline consistency by cost filtering. Occlusion maps obtained by 4-state DP for different values ofσa

(section 5.1). In this experiment the value ofσa′ has been kept fixed atσa′ = 2 pixel. Cost filtering helps achieve more
“compact” occlusion regions.

red and green points). The black pixels in fig. 15a,b
correspond to matched moves. The four-state model
correctly classifies small jumps in disparity levels as
matched moves discretizing slanted surfaces (e.g. the
face or the slanted walls in the background). Fur-
thermore, this new graph structure is used to favour
long runs of occlusions. In fig. 15b the occlusions are:
(i) correctly located along the boundary of the fore-
ground object, and (ii) detected as compact, solid re-
gions. This, in turn, leads to better occlusion maps and
more convincing synthesis, as will be demonstrated in
section 9.

The effect of cost-space smoothing on inter-
scanline consistency. Figure 16 shows the effect
of varying theσa parameter for cost-space smooth-
ing. As the value of the standard deviationσa of the
Gaussian kernel increases the runs of occlusions be-
come correctly aligned with the outline of the fore-
ground head. Importantly, above a certain value ofσa

the results become quite stable.

6.2. Evaluating accuracy of disparities

Here we compare the computed disparities with those
in the standard Middlebury database. Fig. 17 shows a
snapshot of the stereo algorithm evaluation table in
http://www.middlebury.edu/stereo/ . The
Middlebury error metrics show our algorithm amongst
the most accurate of the efficient techniques (e.g.
Tree DP , Comp. win , Realtime ). Proper han-
dling of occlusions vs slanted surfaces in large-
disparity images is an advantage of 4-state DP. In this
evaluation identical parameters have been used for all
four tests. Due to its thin structures the “tsukuba”
image pair presents most difficulties. This problem
is typical of scanline dynamic programming tech-
niques which impose the ordering constraint. How-

ever, thin structures do not seem to appear often in
video-conferencing kind of images.

While we cannot expect 4-state DP to beat the fully
two-dimensional MRF techniques, its near real-time
performance and accurate occlusion modelling present
considerable advantages, especially for live view syn-
thesis applications. Since realistic new view synthesis
is the main objective of this paper the next sections
will focus on evaluating the accuracy of the recovered
occlusion maps.

6.3. Assessing the quality of occlusions.

Figure 18a-d illustrates the results of applying 4-state
DP to four of the Middlebury test image pairs. Oc-
clusions are recovered correctly only where they oc-
cur, while slanted surfaces are modelled by matched
moves only. In all the above experiments the parame-
ters were kept fixed for all image pairs and identical to
those used in sec. 6.2. For comparison, ground-truth
occlusion maps for the Middlebury datasets (fig. 18a’-
d’) were computed by taking the left and the right dis-
parity maps and cross-projecting them. The presence
of both disparity maps enabled un-ambiguous detec-
tion of true occlusion while correctly modeling slanted
surfaces.

The results of estimating (left) occlusion and dis-
parity maps are quite convincing, even for non
videoconferencing-like images. However, our algo-
rithm has been designed to cope with situations in-
volving much greater disparity ranges than the ones
shown in [SS02]. For the next experiment we have cre-
ated our own test stereo pair, characterized by a much
larger disparity and occlusion range.
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Fig. 17. Evaluating 4-state DP with respect to the disparity error metrics in [SS02]. A snapshot of the evaluation table in
http://www.middlebury.edu/stereo/ . The red stars indicate different levels of reported algorithmic efficiency: double star for
high efficiency (> 1fps), single star for medium (< 1fps) and no star for either low (<< 1fps) or un-reported frame-rate. Four-state DP ranks
amongst the best of the fast techniques. Additionally, proper handling of occlusions vs slanted surfaces (missing for example inTree DP ) is
provided. However, being at the top of this table is not the main objective of this paper; while accurate new-view synthesis is.

a b c d

a’ b’ c’ d’

Fig. 18. Accuracy of occlusion estimation on Middlebury stereo pairs.(a-d) Estimated occlusions and disparities for the left view ofMap,
Sawtooth , Cones andTeddy pairs, respectively. (a’-d’) Corresponding ground-truth occlusions and disparities (blue denotes unlabelled
pixels). Good correspondence between the ground-truth occlusions and those estimated by 4-state DP is evident. Measured occlusion detection

accuracy
(

n. correctly detected occlusions
n. all detected occlusions

)
for the four cases is: (a)93%, (b) 90%, (c) 79%, (d) 85%. The maximum occlusion gap of55

pixels (12% of image width) occurs at the edge of theCones image. The maximum occlusion forMap is about9% of the image width.

6.4. Quantitative assessment of occlusion errors.

Figure 19 compares our results with the ones obtained
by three well known graph-cut techniques which es-
timate occlusions [BGCM02, IG98, KZ01] and the

conventional 3-move DP [CHRM96]. Excepting the
graph-cut method in [KZ01]6, the other algorithms are
based on our own implementations.

Figure 19a,b are the two input images used in this
experiment. The photographed scene is made of two
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a b

c d

e f

g h

Fig. 19. Comparing the occlusion maps returned by dif-
ferent algorithms. (a,b) Input left and right images, re-
spectively. (c) Ground-truth occlusion (and disparity) map
with reference to the left camera. As usual, green indicates
right-occlusion. (d-h) Left-referenced occlusion maps re-
covered by using: (d) 4-state DP; (e) Buehleret al. graph-
cut algorithm [BGCM02]; (f) Kolmogorovet al. graph-
cut algorithm [KZ01]; (g) Ishikawaet al. graph-cut algo-
rithm [IG98]; (h) Cox et al. dynamic-programming algo-
rithm [CHRM96].

background slanted planes and one foreground fronto-
parallel plane. The stereo pair is characterized by a
maximum disparity range of90 pixels and a maxi-
mum occlusion gap of72 pixels which corresponds
to 22.5% of the image width (image dimensions are
320 × 240); more than twice the occlusion gap of the
Map stereo pair in fig. 18. The ground truth disparity
and occlusion map (fig. 19c) was obtained by least-
square fitting of the two planes in the background and
the planar surface of the foreground object. The fitting

Algorithm Misclass. rate Runtime

4-state DP 2.61% 1.57s
Buehleret al. [BGCM02] 6.45% 468 s
Kolmogorovet al. [KZ01] 6.57% 65 s
Ishikawaet al. [IG98] 6.61% 912 s
Coxet al. [CHRM96] 8.17% 0.31 s

Fig. 20. Accuracy of occlusion detection. Comparing accuracy
and performance of different state-of-the-art dense stereo algorithm
in estimating occlusion maps.

process was initialised by dense matches produced by
DP. The segmentation of the foreground object was
perfomed manually and the correctness of the result-
ing ground truth was verified by manual inspection.
Some graph-cut algorithms such as [KZ01] produce
left and right occlusion maps and not the cyclopean
map. Therefore, in order to reduce the possibility of
error we have decided to compare the performance of
the selected algorithms always with reference to the
left camera. Fig. 19d-h show the results of computing
the left-referenced occlusion and disparity maps via
different algorithms.

In order to quantify the occlusion accuracy we de-
fine a new error measure, theMisclassification rate.

Misclassification rate is estimated by comparing
the occlusion maps recovered by each algorithm with
ground truth (fig. 19c) and counting the numberNm

of misclassified pixels (both false positives and false
negatives).

Comparative results. The misclassification rate has
been measured for all the occlusion maps in fig. 19d-h
and the results collected in the table in fig. 20.

The three graph-cut algorithms [BGCM02, IG98,
KZ01] perform comparably and considerably better
than conventional DP. The reduced misclassification
error obtained by 4-state DP is due to the extended
four-label pixel classification and the enforcement of
occlusion-run constraints. While the GC framework
in [KZ01] supports runs of occlusions, these are not
correctly modeled in the sense that occluded moves are
used to approximate slanted surfaces. Furthermore,
right and left occlusions are not differentiated. An al-
ternative GC algorithm [IG98] that does use explicit
labels for occlusion produces poor results for lack of
constraint enforcement. The effect of approximating
slanted surfaces with occluded moves can be observed
in figs. 19e,f,h; where the background is constellated
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Fig. 21. Sensitivity to parameters. (a) Sensitivity of the
“percentage of bad pixels” error metric with respect toα.
Note the flat behaviour forα > 0.35. (b) Sensitivity of oc-
clusion misclassification rate with respect toα. In all cases
errors are measured on standard Middlebury stereo pairs.
Occlusion errors are measured on the two stereo pairs with
the largest occlusions. 4-state DP is not particularly sensitive
to values ofα varying within a reasonable range.

by a large number of vertically aligned occluded pixels
(marked in green). These results show that the combi-
nation of both an extended occlusion model for correct
pixel classification and the enforcement of constraints
on occluded areas achieves the best results. Figure 20
also shows our algorithm being the second fastest, im-
mediately after the very efficient (but relatively poor
quality) Cox DP.

Further notes on our experimental procedure.
The different energy minimization algorithms analysed

in this section have been applied toexactlythe same
cost space, which was computed only once7. This was
done to eliminate variability due to different matching
cost functions or cost smoothing parameters. Further-
more, for each algorithm we have selected the combi-
nation of parameters which has lead to the best results
for that specific algorithm. In the case of the algorithm
in [KZ01] the parameters were automatically selected
by the original implementation. Finally, all algorithms
were run on the same machine, a 3GHz, 1Gb RAM
Pentium IV desktop computer.

Our results place 4-state DP amongst the most ac-
curate efficient algorithms for shapeand occlusionre-
covery from large-disparity image stereo pairs. Fur-
thermore, we propose a novel error metric (for occlu-
sions) which should be added to the set of metrics de-
fined in [SS02].

6.5. Parameter sensitivity.

In order to assess the sensitivity of our algorithm with
respect to its parameters we have measured the “per-
centage of bad pixels” [SS02] and misclassification
rate for different values ofα, β andγ. Fig. 21 shows
some exemplary error plots illustrating sensitivity of
α. Both disparity-based (fig. 21a) and occlusion-based
(fig. 21b) error metrics show a flat behaviour in the
rangeα ∈ [0.35, 0.65]. Sensitivity with respect to
the β and γ parameters has been found to be about
ten times lower. Generally, good stability of the out-
put errors has been found for relatively large ranges
of parameter values and for both disparity-based and
occlusion-based error metrics.

The previous sections have: i) illustrated 4-state DP
for the reliable estimation of occlusion and disparity
maps and ii) evaluated our algorithm against state of
the art techniques. The next sections focus on the new-
view rendering problem, how to best make use of the
extracted geometric information for the purposes of ef-
ficient virtual-image generation.

7. Rendering occlusions

High-quality virtual image generation requires effec-
tive synthesis over occluded regions. We have investi-
gated two strategies for occlusion filling:staticfilling,
which applies to single pairs of stereo images andtem-
poral filling which, instead, models what lies behind
the occlusions from long sequences of stereo images.
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Conventional Dynamic Programming
 4-State Dynamic Programming
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Synthetic cyclopean
 Synthetic cyclopean
Disparity
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Fig. 22. Eliminating the reset artefact. (a) Occlusion map and reconstructed cyclopean view for conventional DP. Small
islands of spurious matched pixels inside occlusion regions cause the reconstruction of the occluded areas to fail. Note also that
many pixels on slanted surfaces have been incorrectly classified as occluded. (b) Occlusion map and reconstructed cyclopean
view for the proposed four-state DP. The compactness of the recovered occlusion regions produces a more accurate cyclopean
reconstruction: the background door frame is now straight and almost completely artefact-free.

Static occlusion filling. Given an input stereo pair
of images ‘fronto-parallel’ synthesis of the occluded
regions is done via the algorithm illustrated in fig. 7c.
As discussed in section 2.2 effective filling of the oc-
clusions is disrupted by inaccurate labelling. Fig-
ure 22b shows an example of realistic occlusion syn-
thesis achieved by 4-state DP. Note that fig. 22b is free
from any “halo” or “reset” artefacts.

Temporal occlusion filling. When the static filling
algorithm is applied to long image sequences, tem-
poral artefacts become visible in occluded regions.
Moreover, because of the lack of pixel correspon-
dence, stability of synthesis is a particular issue in the
occluded areas. One solution to this problem is the
construction and dynamic update of a model of the
background used to fill in the regions of missing in-
formation. The algorithm is in two steps: the first
step segments the foreground from the background at
each time instance; the second step uses the newly un-
covered (disoccluded) pixels of the background to im-
prove the background model.

The segmentation step, performed at each time in-
stance, proceeds as follows:

Given the estimated min-cost surfaceS:

1. Along each scanline in the min-cost surface, for
each run of occlusions, the disparity at the highest
disparity end of the run is histogrammed (fig. 24).

2. The valley in the resulting bimodal histogram de-
termines the adaptive threshold disparity valued̂
that is used for the background/foreground seg-
mentation.

Figure 24b shows a typical histogram. The peak
near the origin is due to the long and thin occlusion
bands at the edges of the image, while the peak at
higher disparity values is due to the foreground ob-
ject and is the one we are mostly interested in. This
kind of bimodal histogram turns out to be character-
istic of sequences of talking heads scenes. This ap-
proach for automatic threshold detection works better
than histogramming the whole set of estimated dispar-
ities. This is because the selected pixels (marked in
white in fig. 24a) are more representative of the fore-
ground object. The technique has been proven to work
also in situations where part of the background are
very close (in depth) to the foreground talking head
(e.g.a receding wall).
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frame number 0 70 170

synth. cyc. image
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Fig. 23. Temporal background generation. (top row) Synthesized cyclopean views for different frames. More examples
of synthesised cyclopean views are provided in the results section. (bottom row) Corresponding background models. As new
regions of the background are discovered the background model is updated and the blank region (occlusion) progressively filled.

In the second step of the algorithm a background
model is constructed and updated at each time in-
stance. The background model is made of three ele-
ments: its disparity mapDB in cyclopean coordinates,
and the corresponding left and right imagesI l

B andIr
B ,

respectively. At each time instancet the background
model is updated by the following rule:

Dt
B(p) = φDt−1

B (p) + (1− φ)Dt(p)

I lt

B(pl) = φI lt−1

B (pl) + (1− φ)I lt(pl)

Irt

B (pr) = φIrt−1

B (pr) + (1− φ)Irt

(pr) (6)

where p is a pixel whose disparityD(p) falls be-
low the automatically computed foreground threshold
d̂ (and thus belongs to the background). The points
pl andpr are the corresponding positions on left and
right input images, respectively.Dt

B(p) is the dispar-
ity of the pixelp in the current background model at
time t. The scalar factorφ represents a decay constant
(0 ≤ φ ≤ 1). The update rule in (6) applies to all the
pixels which belong to the background and are visible
and does not apply to occluded pixels. The use of the
exponential memory parameterφ allows for a relax-
ation of the static background assumption. In our ex-
perimentsφ = 0.9 achieves a good balance between
keeping the previous values of the background pixels

and updating them in the case of dynamic events on
the background.

Figure 23 illustrates the results of the temporal
background filling algorithm. During the video-
communication session the head moves and disoc-
cludes portions of the background. The background
model is updated and, after a few frames, if the head
moves substantially, the background is completely re-
constructed.

Advantages and disadvantages of static and tem-
poral filling strategies. The static occlusion filling
strategy is based on the assumption of a fronto-parallel
background, which, although most of the time pro-
duces good results, may not make sense for scenes
with very slanted surfaces. Furthermore, the static
occlusion filling requires solid and accurate occlu-
sion areas which are achieved by four-state DP but
are not in conventional DP or graph-cut techniques.
On the other hand, in temporal occlusion filling, the
background model is learnt from the disocclusions of
previous frames. This introduces the need for back-
ground/foreground segmentation and the assumption
of a quasi-static background.

Temporal occlusion filling and background model-
ing is especially useful in the next section which in-
troduces the three-dimensional motion of the virtual
camera. In fact, as the virtual camera centre moves
away from the baseline of the two input cameras less
information is available from the current pair of stereo
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Fig. 24. Foreground/background segmentation.(a) The
pixels corresponding to the higher-disparity end in each hor-
izontal run of occlusion is marked in white. (b) The his-
togram corresponding to the disparities extracted in (a).

frames about the occluded regions, and temporally
acquired background information becomes extremely
useful for reconstructing unseen regions. Overall, we
have found that a combination of the two techniques
works best: we use static filling in the half-occluded
areas which have not yet been observed, and tempo-
ral filling in those occluded regions which have been
disoccluded in previous frames.

8. Rendering from variable viewpoint

The ability to create virtual images from generic view-
points is of considerable interest both for interactive
video and teleconferencing applications. Convention-
ally, one way of generating novel views from virtual
camera locations is by: (i) transforming the computed
disparity map into a 3D surface (e.g.by means of a tri-
angle mesh), (ii) texture mapping it with one of the
two images, (iii) projecting the texture-mapped sur-
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Fig. 25. Notation for virtual image generation. Ol, Or

andOv are the optical centres of left, right and virtual cam-
eras respectively. The optical centre of the virtual camera
can be placed anywhere in space and the corresponding vir-
tual image is synthesized by our algorithm.

face into the plane of the virtual camera. This sec-
tion describes a novel, compact technique for render-
ing virtual views directly from the estimated disparity
surface, thus overriding the need to construct an ex-
plicit 3D model of the scene.

The geometry of the virtual camera. Figure 25
shows a plan view of the system with the optical centre
of the virtual camera being placed in the generic loca-
tion denotedOv. A 3D scene pointP is projected on
the left and right images into the pointspl = (xl, yl)>

and pr = (xr, yr)>, respectively. Also,P is pro-
jected on the cyclopean camera (with optical centre
in Oc = O) in the pointpc = (xc, yc)> (not shown
in the figure) and on the virtual camera in the point
pv = (xv, yv)>. The disparity between the cor-
responding left and right image points is easily com-
puted as

d = xl − xr = f
B

Z
. (7)

In the cyclopean camera, by triangle similarity we
can compute

xc = f
X

Z
. (8)

For a virtual camera with optical center inOv =
(Tx, Ty, Tz)> we can write:(X − Tx) : xv = (Z −
Tz) : f , from which

xv = f
X − Tx

Z − Tz
. (9)

By substituting (7) and (8) into (9) we obtain:
xv = xc−dTx/B

1−dTz/(fB) which, together with the analo-
gous equation for theyv coordinate, can be rewritten



18 A.Criminisi, J.Shotton, A.Blake, C.Rother, P.H.S.Torr

Left image


R
i
g
h
t
 
i
m

a
g
e


V
i
r
t
u
a
l
 
i
m

a
g
e


Q


M

i
n


-
c

o
s
t




s
u

r
f
a


c
e

x
c


y
c


d


p


p
v


Left image


R
i
g
h
t
 
i
m

a
g
e


V
i
r
t
u
a
l
 
i
m

a
g
e


Q


M

i
n


-
c

o
s
t




s
u

r
f
a


c
e



Left image


R
i
g
h
t
 
i
m

a
g
e


Q


8



+


8

-


M

i
n


-
c

o
s
t




s
u

r
f
a


c
e



V
i
r
t
u
a
l
 
i
m

a
g
e


a b c

Legend:
Inwards virtual


camera motion,

Outwards,
 Upwards,
 Downwards,
 Right,
 Left.


Fig. 26. Virtual camera motion. (a) The 3D motion of the virtual camera is achieved by direct projections of points on the
minimum cost surface onto the virtual image plane. The reference coordinate system (xc, yc, d) has origin in the centre of the
virtual image plane. (b) The virtual image is generated directly by projecting points from the minimum-cost surfaceS into
the virtual image plane. (c) Moving the centre of projectionQ corresponds to translating the virtual camera. The coloured
arrows indicate the mapping between moving the centre of projectionQ in our diagram and the corresponding translations of
the virtual camera in the scene.
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Fig. 27. Occlusion filling for generic virtual camera
placement. The only difference with respect to the cyclo-
pean occlusion filling illustrated in fig. 7c is that now the
generic direction of projection is dictated by the position of
the centreQ.

in homogeneous coordinates as:




xv

yv

w


 =




1 0 −Tx/B 0
0 1 −Ty/B 0
0 0 −Tz/(fB) 1







xc

yc

d
1


 (10)

Equation (10) represents a projection of 3D points into
a plane [HZ00]. It can be proven that (10) corresponds
to projecting points of the min-cost surface into the
corresponding points on the plane of the virtual im-
age (up to a scale, diagonal matrix) as illustrated in
fig. 26a.

From (10) the centre of projectionQ is readily com-
puted as the null vector of the projection matrix, thus

yielding: Q =
(

Tx

B
Ty

B 1 Tz

fB

)>
. Note that for

Tz = 0 the transformation (10) is aparallel projection
(Q is at infinity). This, in turn means that sidewise
motion (in theX direction) and up/down motion (in
the Y direction) of the virtual camera can be easily
simulated by projecting points of the disparity surface
S onto the virtual image plane via parallel rays. On
the contrary, the inwards/outwards translation of the
virtual camera (Tz 6= 0) is achieved by means of a
central projection withfinite centre of projectionQ.
The simple mapping between the motion of the centre
of projectionQ and the corresponding translation of
the virtual camera is illustrated in 26c,d. For instance,
inwards camera translation (not zoom) is achieved by
moving the centreQ from +∞ towards the plane of
the virtual image.

Note that forQ = (−1/2, 0, 1, 0)> (i.e. Ov =
(−B/2, 0, 0)>) the virtual image corresponds to the
input left image, forQ = (1/2, 0, 1, 0)> (i.e. Ov =
(B/2, 0, 0)>) the virtual image corresponds to the in-
put right image, and forQ = (0, 0, 1, 0)> (i.e. Ov =
(0, 0, 0)>) the virtual image corresponds to the cyclo-
pean image.

Synthesizing virtual images from generic view-
points. Given a pointp on the minimum-cost sur-
face and its corresponding virtual positionpv (fig. 26a
andcf. fig. 7a), the corresponding pixel value (inten-
sity or colour) is given by a combination of the pixel
values of the corresponding pixelspl andpr in the
input images according to the following equation8:

Iv(pv) = (1− µ)I l(pl) + µIr(pr) (11)
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a b

Fig. 28. Example of gaze correction. (a) Cyclopean im-
age synthesized via the algorithm in [COL93]. This image
is identical to that in fig. 3b and is repeated here for clar-
ity. The input left and right images are shown in fig. 3a,c,
respectively. (b) The cyclopean, gaze-corrected view gener-
ated by our algorithm. The gaze has been corrected while
eliminating the artefacts of (a).

a b c

Fig. 29. Another example ofgaze correction. The central
image, (b) has been generated from the two input views (a,c)
and shows correct gaze (the person is looking at us). There
are no significant “halo” effects or streaky artefacts.

with µ = |Ov
x−Ol

x|
B ; where the subscript indicates thex

component of optical centres of the two input cameras.

Occlusion filling and rendering. The filling of oc-
clusions for generic virtual view placement is very
similar to the cyclopean case illustrated in fig. 7c. As
shown in fig. 27 now the direction of projection is dic-
tated by the position of the centreQ, the cyclopean
case being a special case of this general projection.

The rendering algorithm described here is an ex-
tension of the cyclopean rendering presented in sec-
tion 2.2. By inspection of (11) one can see that in
the cases whereOv = Ol or Ov = Or, the origi-
nal left and right views are resynthesisedexactly, and
independently from the recovered disparities, as ex-
pected. Further advantages of our rendering technique
are: (i) direct view-dependent texture rendering which
negates the need for surface triangulation and (ii) ef-
fortless occlusion reconstruction by simple projection
of the minimum-cost surface. High-quality output im-
ages are obtained by standard reverse mapping and

bilinear interpolation techniques. Note that rotations
of the virtual camera have not been considered here.
Rotations may be achieved by homography-based im-
age warping. However, virtual-camera rotation does
not seem to be an important requirement in video-
conferencing.

9. New view synthesis results

This section presents a number of synthesis results
achieved on real input sequences. In particular, we
demonstrate: gaze correction, cyclopean view genera-
tion, three-dimensional translation of the virtual cam-
era, simple editing such as background substitution.

Gaze correction by cyclopean view synthesis. Fig-
ure 28 shows an example where the input left and right
images of fig. 3 have been used to generate the cy-
clopean view via the proposed algorithm. Note that
the spatial artefacts (streaks in fig. 3b) have been re-
moved. In the output image (fig. 28) the gaze has been
corrected. Another example of gaze correction from
stereo images is illustrated in fig. 29.

3D translation of the virtual camera. Figure 30
shows an example of translating the virtual camera to-
wards and away from the visualized scene. Note that
this is different from simple zooming or cropping of
the output image. Parallax effect may be noticed in
the boundary between the head and the background,
thus providing the correct three-dimensional feel.

Figure 31 shows an example of in-plane translation
(with Ov on theXY plane) of the virtual camera. No-
tice the relative displacement of the head with respect
to the background.

Cyclopean view generation in long sequences.
Figure 32 and 33 demonstrate the effectiveness of
the proposed algorithm for reconstructing cyclo-
pean views of extended temporal sequences. It can
be observed that most of the spatial artefacts (e.g.
streaks, halo) and temporal artefacts (e.g. flicker-
ing) are attenuated. The background close to the
foreground/background transitions is correctly synthe-
sized. Exemplary synthesized videos are available
at http://research.microsoft.com/vision/

cambridge/i2i/movies/4pdp.zip

Basic 3D scene editing. The proposed algorithm
generates novel, virtual views, but also, as a by-
product, a 3D representation of the observed scene.
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Backward
Forward


Input left view
 Input right view


Fig. 30. Forward/backward translation of virtual camera. The bottom row shows the synthesized cyclopean views with
(left) forward virtual camera translation, (centre) no virtual camera translation, (right) backward virtual camera translation.
Notice theparallaxeffect around the head.
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Fig. 31. In-plane translation of virtual camera. The left and right input images are the same as in fig. 30. This table shows
the synthesized images corresponding to translation of the virtual camera along thex andy axes. Notice theparallax effect
around the head. Also, the door frame is reconstructed nicely despite it being partially occluded in the right input view.

The latter can be advantageous for 3D scene edit-
ing. As an example, fig. 34 demonstrates the pos-
sibility of replacing the original background with

a different one, either taken from real photographs
or artificially generated. This is made possible
thanks to the foreground/background segmentation
step described in section 7. Recent developments of
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Fig. 32. Cyclopean image synthesis for long sequences.Some frames of a cyclopean video sequence synthesized by 4-state
DP. The two input left and right sequences are not shown here.

Fig. 33. Another example of virtual image synthesis in sequences.Frames extracted from a reconstructed cyclopean se-
quence. The input images are not shown here. Notice the quality of the synthesized images.

the background substitution technique may be found
in [KCB+05a]. Sophisticated matting techniques for
high-quality layer compositing are not the focus of this
paper.

10. Conclusions and future work

This paper has described an efficient algorithm for the
synthesis and geometric manipulation of high-quality
virtual images generated from a pair of synchronized
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Fig. 34. Background replacement.Four-state DP allows,
amongst other things, for the foreground to be segmented
from the background. This, in turn, allows the real back-
ground to be replaced by alternative images, or videos.

stereo sequences with large disparities. In this paper
we have focused on one-to-one teleconferencing appli-
cations but the techniques are more general and can be
employed in other fields requiring high-quality novel
view generation and dense stereo.

The main contributions of the paper can be summa-
rized as:

• A new four-state DP algorithm for the correct de-
tection and classification of occlusion events;

• A compact geometric technique for the rendering
of novel viewsdirectly from the minimum-cost
surface estimated by the DP algorithm.

The effectiveness of the new algorithmic components
has been demonstrated in a number of examples where
the artefacts typical of DP techniques have been elim-
inated while keeping quite a high frame rate. The
current implementation exploits SSE2 instructions and
produces virtual images at about7 frames per second
(on 320 × 240 images, on a3.0Ghz Pentium IV with
1Gb RAM). The viability of the proposed algorithm
has also been demonstrated by comparing the accuracy
of the estimated occlusion maps with the ones gener-
ated by state of the art techniques amongst which three
of the most recent graph-cut algorithms.

Despite recent progress, the depth maps obtained by
4-state DP still lack the level of accuracy necessary
for seamless background substitution. Fusion of dif-
ferent cues, such as depth, motion, colour ans contrast
seems very promising. Progress to date in this area is
reported in [KCB+05a,KCB+05b].
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Notes

1. e.g.messenger.msn.co.uk/, messenger.yahoo.com/,
www.aol.co.uk/aim/

2. We refer tocyclopean viewas the image generated from a virtual
camera located in the mid-point between the two input cameras.

3. Theminimum-cost surfaceis defined to be the collection of all
the minimum-cost paths estimated (independently) by the DP
algorithm at each scanline.

4. We used the epipolar rectification technique described in [HZ00].

5. www.idiom.com/ ∼zilla/Work/nvisionInterface/

6. Original algorithm available from
www.cs.cornell.edu/People/vnk/software.html

7. Note that we had to adapt the source code in [KZ01] to read our
filtered cost space as input. Then, graph-cut was used for energy
minimization only.

8. Equation 11 is strictly valid only for matched pixels; while val-
ues of occluded pixels are taken only from the image where they
are visible (fig. 7b).
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