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Abstract

Online camera recalibration is necessary for long-term

deployment of computer vision systems. Existing algorithms

assume that the source of recalibration information is a

set of features in a general 3D scene; and that enough

features are observed that the calibration problem is well-

constrained. However, these assumptions are frequently in-

valid outside the laboratory. Real-world scenes often lack

texture, contain repeated texture, or are mostly planar, mak-

ing calibration difficult or impossible.

In this paper we consider the calibration of families of

stereo cameras, where each camera is assumed to have pa-

rameters drawn from a common but unknown prior dis-

tribution. We show how estimation of this prior using a

small-number of offline-calibrated cameras (e.g. from the

same production line) allows online calibration of addi-

tional cameras using a small number of point correspon-

dences; and that using the estimated prior significantly in-

creases the accuracy and robustness of stereo camera cali-

bration.

1. Introduction

Computer vision systems are increasingly deployed in

mass-market and consumer applications, where high per-

formance is desired in a wide range of uncontrolled and un-

prepared environments. In such contexts, the problem of

camera calibration is especially challenging. Here, we con-

sider stereo webcams [8, 10, 12], where the calibration of

the epipolar geometry is an important prerequisite for many

useful applications. One possibility is to calibrate cameras

in the factory. However, this is expensive, particularly for

high production volumes, and might be insufficient if the

stereo geometry changes over time, e.g. due to thermal or

mechanical phenomena. For these reasons, the preferred

approach is usually to calibrate the camera online, i.e. us-

ing correspondence data obtained directly from the scene—

either when the user installs the camera or at regular inter-

vals thereafter.

A significant limitation of conventional calibration algo-

rithms is the assumption of rich 3D scene structure, which

may not be available in a significant proportion of real-

world scenes, particularly in homes and offices. Even if

the user is provided with a calibration target, obtaining a

suitably rich set of correspondences throughout a camera’s

working volume can prove surprisingly difficult. In this

paper we argue that better calibration results can be ob-

tained more easily by employing strong priors in a Bayesian

framework (figure 1). In such a framework, the prior cali-

bration is combined with the data likelihood (possibly com-

puted from only a small number of degenerate scene corre-

spondences) to obtain an accurate posterior camera calibra-

tion. This approach will be shown to be more robust (i.e.

it works in structure-poor scenes) and more accurate (i.e.

it produces smaller errors) than calibration by conventional

means.

This paper’s main concern is with how to estimate pri-

ors for camera calibration parameters given a small num-

ber of stereo cameras from the same production line and

their associated offline calibrations. It is well known how

to incorporate priors into camera calibration [17, 21], but

the problem of obtaining the prior in the first place has seen

little or no attention.

The contributions of this paper are as follows: first, in-

troducing the problem of finding good priors for stereo rig

calibration; second, estimation of the covariance matrix of

a small number of uncertainly-known points; third, the ex-

perimental comparison of various priors for stereo camera

calibration.

1.1. Background

Two strands of literature are relevant to our investigation:

first is Bayesian tracking of camera motion [1, 3, 5, 9, 14];

second is the work on degeneracy in structure and motion

recovery [13, 20].

Bayesian tracking of camera calibration and motion has

largely been addressed in the context of mobile robotics,

where a camera moves through a 3D scene, maintaining

an estimate of the probability distribution over its camera



Figure 1. Stereo camera calibration results in typical structure-poor scenes. Four image pairs were obtained by a single stereo camera

(only right-eye views are shown) and stereo correspondences were obtained by robust feature matching. Without a prior, standard camera

calibration techniques fail and the recovered epipolar geometry (shown using epipolar lines) is inaccurate (top row). By using a prior

learned by the method described in this paper, accurate (and consistent) calibration is obtained (bottom row).

parameters and position. Research has focussed on effi-

cient maintenance of the distributions, e.g. by Kalman fil-

ter [1, 3, 5, 9], or particle filter [14], rather than on the con-

struction of the prior, which at the initial time step is either

generic [5, 9] or obtained by a batch process [3]. The for-

mer case is close to our problem, because the estimate of

calibration is only weakly constrained for the initial steps.

However, the essential assumption of Bayesian tracking is

that the scene geometry is rich enough that the estimate will

be constrained after a relatively small number of time steps.

In home and office scenes, however, we cannot assume that

this will ever be the case.

More directly related to our study of structure-deficient

calibration is the work on coping with degeneracy in struc-

ture and motion recovery. Torr et al. [20] took earlier the-

oretical work on degeneracy and showed how detection of

structure-poor sections of an image sequence allowed point

tracking to be maintained through degeneracy, specifically

low-relief scenes. Pollefeys et al. [13] went further, show-

ing how 3D structure could be recovered despite planar sub-

sequences, but only if the camera eventually views some

rich 3D structure.

Many publications specifically deal with “online calibra-

tion”, e.g. [4, 16]. In all the works of which we are aware,

the online calibration requires the same rich 3D structure

as the above-cited works, or requires additional information

such as controlled motion, vanishing points, or other manu-

ally supplied information. Thus no existing work deals with

the case of sequences which are structure-poor throughout.

Indeed we have been unable to find any work which deals

with building priors for camera calibration. The existing

mentions [1, 9] all assume generic priors which are not ad-

equate for this problem, as the experiments in this paper

show.

1.2. Notation

We begin by defining notation for the problem. A camera

system1 is characterized by a vector of parameters θ. The

parameters might be, for example, the seven parameters de-

scribing the focal length and 3D position of a security cam-

era. In this work, θ will contain the intrinsic and extrinsic

parameters of a stereo rig. The choice of parameterization

will be discussed in Section 3.

The cameras are drawn from a prior distribution (a cam-

era family) that will be approximated by a Gaussian with

parameters µ and Σ, giving a prior pdf

p(θ|µ,Σ) = N (θ|µ,Σ). (1)

Before any estimation, we have a-priori estimates of

the values of (µ,Σ), for example from the manufacturing

blueprints, which we shall denote by (µ0,Σ0). As the goal

of the paper is to compute an estimate of µ,Σ, we also in-

troduce a hyper-prior on these parameters. The hyper-prior

on µ is taken to be a broad Gaussian with mean µ0 and pre-

cision γ, and the hyper-prior on Σ to be an inverse Wishart

distribution [2] with mean Σ0. We shall work in a scaled

space, so that Σ0 is the identity, meaning that the hyper-

prior simplifies to

p(Σ|Σ0)
∣

∣

∣

∣

Σ0=I

∝ |Σ|−
1

2
(ν−d−1) exp

(

−
1

2
Tr(Σ−1)

)

(2)

1Note that we use the word camera in the generalized sense of [6, 18],

to refer to any ray-gathering device. Throughout this paper, “camera” and

“stereo rig” may be considered to be interchangeable terms.



where d is the dimensionality of θ and ν is the degrees of

freedom of the Wishart distribution.

Image measurements are a set of observations Z =
{zi}

N
i=1, where the zi are point correspondences between

two images, represented as 4-vectors z = (u, v, u′, v′). As-

sociated with each observation is a latent variable xi, which

here will be the 3D point which gave rise to the correspon-

dence. Finally there is a projection function f(θ,x) which

generates noiseless observations, to which are added noise

η drawn from a Gaussian noise distribution with density

function p(η) ∝ exp(− 1
2‖η‖

2/σ2), where image coordi-

nates are assumed scaled so that σ = 1. Thus

z = f(θ,x) + η (3)

is our observation model.

In both offline and online calibration, we will optimize

image measurements under a Gaussian prior in order to ap-

proximate the distribution p(θ|Z). Expanding p(θ|Z) to

the product of likelihood and prior,

p(θ|Z,µ,Σ) ∝ p(Z|θ)p(θ|µ,Σ). (4)

The likelihood p(Z|θ) is obtained by optimizing over the

latent variables x in (3):

p(Z|θ) = exp

{

−
1

2

N
∑

i=1

min
x

‖zi − f(θ,x)‖2

}

, (5)

and the prior is the Gaussian p(θ|µ,Σ) =

det(2πΣ)−
1

2 exp

{

−
1

2
(θ − µ)⊤Σ

−1(θ − µ)

}

. (6)

The negative log posterior –log p(θ|Z) then becomes

ǫ(θ;Z,µ,Σ) =
N

∑

i=1

min
x

‖zi − f(θ,x)‖2
+

+ (θ − µ)⊤Σ
−1(θ − µ) (7)

where immaterial constants have been omitted. Minimizing

this negative log posterior is a standard problem, solved by

bundle adjustment algorithms [7, 21]. For online calibra-

tion, we will be interested in the minimum, under a suitable

prior.

For offline calibration, in which the prior is computed,

we will also require a Laplace-like approximation [2,

p214ff] to the likelihood (5), as a function of θ, in which

p(Z|θ) ≈ ζN (θ|µLaplace,ΣLaplace) (8)

where ζ removes the scale factor which normalizes for Z
rather than θ. Then

µLaplace := argmin
θ

ǫ(θ;Z,µ0,Σ0) (9)

ΣLaplace := H
−1 (10)

and H is the Hessian of − log p(Z|θ) evaluated at µLaplace,

with ijth entry Hij = ∂
∂θj

∂ǫ
∂θj

.

2. Algorithm overview

With the mathematical preliminaries in place, we are

now in a position to outline the calibration strategy pro-

posed in this paper. Recall that the goal is to compute prior

parameters (µ,Σ) in an offline stage so that online calibra-

tion using a small number of correspondences is accurate

despite degeneracy in the scene.

2.1. Offline phase: estimating the prior

The offline process is the primary focus of this pa-

per. In principle this is straightforward: we are given

M cameras, and for each camera, indexed by m, we ob-

tain a large, space-filling set of correspondences Zm =
{zmi}

M
i=1. From each set of correspondences, compute

θm = argmaxθ p(θ|Zm, µ0,Σ0) from (5). Then the

estimate of the prior mean is the sample mean µ =
1
M

∑

m θm, and the prior covariance is the sample covari-

ance Σ̄ = 1
M−1

∑

m(θm−µ)(θm−µ)⊤. In practice there

are a number of factors that make this a challenging prob-

lem, rendering these estimates essentially useless.

The primary difficulty is that obtaining and calibrating

enough cameras to compute a reliable covariance matrix us-

ing these standard estimators is a considerable effort. For a

stereo rig with pinhole cameras, the minimum number of

parameters needed to characterize the rig is seven, for the

seven degrees of freedom of the fundamental matrix. Es-

timation of the 28 parameters of the prior covariance ma-

trix Σ requires at least eight cameras, and in practice con-

siderably more. Furthermore, parametrizing the geometry

by a minimal parametrization will generally mean that the

distribution of camera parameters (i.e. fundamental matri-

ces) in R
7 is highly nonlinear, and thus unlikely to be well

modelled by a Gaussian. In this work we choose instead to

parametrize the geometry in R
12 as described in §3, leading

to a distribution which is better approximated by a Gaus-

sian, but now requires many tens of offline calibrations in

order to estimate Σ using conventional techniques. Indeed

the sample covariance matrix will often not even be of full

rank.

In practice we are limited to being able to calibrate only

a small number of cameras—in the experiments here we

used ten. This is largely because accurate camera calibra-

tion is nontrivial, even in a laboratory setting. Svoboda [19],

for example, describes how point correspondences are gen-

erated between the cameras by moving a target such as a

light source, so as to densely sample the 3D workspace, and

then the camera parameters are found by maximizing the

above likelihood. In our experience, such calibrations are

surprisingly difficult, and are rarely successful on the first



Figure 2. Graphical model. Illustrating the estimation of the prior

from the offline calibrations. The offline calibration parameter

vectors θ1..M , one vector per camera, are hidden variables which

are integrated out to give a direct estimate of the prior parameters

from the calibration data.

capture, even for technically adept users. Our offline proce-

dure (§3) is simpler, but still requires considerable physical

movement of the calibration target to get a good calibration.

As a result of these constraints, it is desirable to use this

calibration data as efficiently as possible in estimating the

prior. One way is to consider only a restricted class of

covariance matrices, for example zeroing the off-diagonal

terms of the sample covariance matrix to obtain a diagonal

sample covariance Σd = diag(Σ̄). This avoids the prob-

lems of rank-deficiency, but the number of samples avail-

able may still be too small to obtain a reliable estimate (as

our experiments show).

Bayesian estimate of the prior

Rather than estimate the prior from the small number of

samples θm, we return to the initial correspondence sets

Z1..M . By directly optimizing the likelihood of the offline

calibration data with respect to the prior parameters, a more

robust estimate of the prior can be obtained. The likeli-

hood of all correspondences sets is illustrated in the graphi-

cal model of figure 2, and is as follows.

Each camera has a set of parameters θm, drawn from the

prior with parameters (µ,Σ), i.e. from the distribution

p(θm|µ,Σ) (11)

Then each correspondence set Zm is dependent on the cam-

era parameters, yielding a total likelihood of the form

p(Zm|θm,µ,Σ) = p(Zm|θm)p(θm|µ,Σ) (12)

In order to estimate (µ,Σ), we first marginalize over θm,

yielding

p(Zm|µ,Σ) =

∫

p(Zm|θm)p(θm|µ,Σ)dθm, (13)

Given: M cameras, hyper-prior parameters µ0,Σ0.

Compute: Prior parameters (µ,Σ).
Procedure:

A. For each camera m = 1..M

1. Identify point correspondences Zm.

2. Optimize (7) with priors µ0,Σ0 using bundle adjust-

ment, giving µm.

3. Compute Σm from the bundle Hessian (10).

B. Compute (µ,Σ) by minimizing (17).

Figure 3. Computing the prior. Summary of the algorithm for

offline computation of the prior calibration (µ,Σ).

and then optimize for (µ,Σ), under the prior (2):

(µ,Σ) = argmax
(µ,Σ)

∏

m

p(Zm|µ,Σ)p(µ|µ0)p(Σ|Σ0).

(14)

Given a Gaussian approximation to p(Zm|θm) of the form

ζN (θm|µm,Σm), the integral (13) has the form of a prod-

uct of Gaussians

p(Zm|µ,Σ) =

∫

ζN (θm|µm,Σm)N (θm|µ,Σ)dθm

(15)

= ζN (0|µm − µ,Σm + Σ), (16)

a function of µ and Σ. The maximization (14) becomes

(after taking logs and discarding constants) a minimization

of the negative log posterior L(µ,Σ) given by

L(µ,Σ) =
M
∑

m=1

log det(Σm + Σ)+

+ (θm − µ)⊤(Σm + Σ)−1(θm − µ)+

+ γ‖µ − µ0‖
2 − 2 log p(Σ|Σ0), (17)

where p(Σ|Σ0) is the Wishart prior (2). Minimization of

this function is discussed in §3. The offline algorithm is

summarized in figure 3.

Having computed an offline prior, online calibration may

be performed using a far smaller set of correspondences (in-

cluding coplanar correspondences). During online calibra-

tion, camera parameters are obtained by minimizing (7) us-

ing the offline-computed prior.

3. Implementation

The previous sections have given a high-level overview

of the procedure, the details of which will be filled out in
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Figure 4. Fitting a Gaussian to Gaussian samples. (Left) Four

samples and (right) two samples, represented by their modes µ
m

and associated covariances Σm are used to estimate a Gaussian in

2D. The sample covariance (blue) of the modes is overestimated

if the number of samples is sufficent to estimate it, and cannot

be estimated for small numbers of samples (blue × on the right).

The Bayesian estimate derived in this paper (red) is robust in both

cases.

this section. Important issues are the choice of parametriza-

tion, acquiring correspondences, initialization of the mini-

mizer, and the setting of the hyper-prior covariance Σ0.

Parameterization. Our primary goal in choosing a pa-

rameterization for the stereo rig is to select a representa-

tion wherein the prior over camera parameters may be well

modelled by a Gaussian. Rather than choosing a minimal

parameterization (e.g. seven parameters for the fundamental

matrix), we opt for an overparameterization, which is more

likely to be smooth, and to allow the optimizer and prior to

deal with gauge freedom. In the following experiments, we

consider both Euclidean and projective parameterizations of

the stereo camera geometry.

The Euclidean parameterization uses the following in-

trinsic parameters for each camera: focal length α, principal

point (px, py). Optionally, one or two radial distortion co-

efficients can be included—for the cameras we tested, do-

ing so makes no significant difference to our results. We

assume the aspect ratio is known, and that the pixel skew

is zero. The motion between the two cameras in a stereo

rig is given by 3 rotational and 2 translational parameters.

The rotation is represented by a three-parameter Rodrigues

vector ω, with which is typically associated a base rotation

matrix R0 as described in [21]. Let function rod(ω) de-

note the 3 × 3 matrix representation of the rotation defined

by ω. Translation is modelled as a three-vector t. Three-

dimensional points x are parameterized by homogeneous

4-vectors. Thus, the 12-element parameter vector is

θ =
[

α, px, py, α′, p′x, p′y, ω1, ω2, ω3, tx, ty, tz
]⊤

(18)

where primed quantities are in the second camera. The ob-

servation function f may now be defined. This function

takes parameters θ and a 3D point x, and generates a single

a b

Figure 5. Stereo webcams. (a) “gluecam”: one of 10 stereo we-

bcams made by glueing together a pair of mono webcams. (b)

“Hydra”: a commercially available stereo webcam [10].

correspondence (x, y, x′, y′), which is defined by

f(θ,x) =







π
([ α 0 px

0 α py

0 0 1

]

[ I |0 ] x

)

π

([

α′ 0 p′

x

0 α′ p′

y

0 0 1

]

[rod(ω)R0 |t ] x

)






(19)

where π([x, y, z]) := [x/z, y/z].

The projective parameterization is that used for the

“Gold Standard” calibration algorithm described in [7].

Here, the first and second cameras are represented by 3 × 4
projection matrices P and P

′ where P = [ I | 0 ] is fixed

and P
′ is allowed to vary. The parameter vector θ com-

prises simply the 12 elements of P
′, and the observation

function f = [π(Px), π(P′
x)].

Acquiring correspondences. In the offline calibration of

the mth stereo camera, we obtain dense correspondences by

moving a large textured planar target relative to the camera.

Correspondences are obtained for each target position by

detecting Harris corners, matching local 7 × 7 pixel image

patches by normalized cross correlation, and robustly fitting

a plane using RANSAC [7]. This gives reliable correspon-

dences for each target position.

Hyper-prior parameters. The “blueprint” or ambient

prior is defined by considering the geometry of the stereo

camera, typically by inspection of datasheets and estima-

tion of manufacturing tolerances. For example, the ambi-

ent prior for the first of the cameras used in our experi-

ments, described below, was a diagonal Gaussian with mean

µ0 = [960,320,240,960,320,240,0,0,0,-1,0,0] and covariance ma-

trix Σ0 =diag(400, 100, 100, 400, 100, 100, 0.001, 0.001, 0.001,

0.001, 0.001, 0.002). These quantities are expressed in pixel

coordinates, but calculations are scaled so as to work in co-

ordinates such that µ0 = 0 and Σ0 is the identity. The

Wishart parameter ν is set in all cases to 3000, being ap-

proximately the number of data points used to compute the

offline estimates.



Minimization. The negative log posterior (17) is not con-

vex with respect to Σ, and its minimization by gradient-

based methods therefore requires that an initial estimate be

provided. For our experiments, we searched not over all

positive definite matrices, but over a one-parameter family

which is simply a scalar t times the diagonal of the sample

covariance matrix Σ(t) = tΣd. We also experimented with

another one-parameter family which is a regularized sample

covariance matrix Σ(t) = (1 − t)Σ̄ + tΣ0.

4. Results

We tested the calibration algorithm described in this pa-

per using two different kinds of stereo camera. Firstly, we

constructed ten stereo “gluecams” by taking low-cost web-

cams, all of the same make and model, and glueing them to-

gether (see figure 5a). The webcams were roughly cuboidal

in shape so the glueing process was reasonably repeatable.

Additionally, we obtained 10 commercially available stereo

webcams [10] (see figure 5b). These “Hydra” cameras are

made with two imaging arrays mounted on a single printed

circuit board, which is in fixed position relative to the two

lenses mounted into the aluminium case.

For each stereo camera we collected 2D point correspon-

dences by placing a large, textured, planar target in four po-

sitions (facing the camera and approximately 10, 20, 30, and

40 baselines away). Concatenating correspondences over

these plane positions yielded about 3000 in total, distributed

throughout the working volume of each camera. Then of-

fline calibration was performed using the method described

in section 3.

To report on calibration results requires an error metric

that can compare a given calibration θonline to the ground

truth. In what follows, we evaluate the calibration of stereo

cameras for which we have several thousand left-out cor-

respondences as well as “ground truth” camera parameters

θoffline. One metric that might be considered is to compare

the parameter vectors, but this implies that one has a rea-

sonable model of the expected errors on these vectors. We

prefer a metric that relates to the intended application of

the stereo cameras, which is dense 3D reconstruction. In

this context, performance is strongly correlated with the ac-

curacy of the rectification, and hence with the distance of

points to their corresponding epipolar lines. Thus in each

case, we quote the “rectification error”, denoted RFE, de-

fined as the root mean square of the symmetric transfer dis-

tance defined by Hartley and Zisserman [7].

Experiment 1: Calibration from small numbers of cor-

respondences. The first experiment tests the hypothesis

that estimating the prior as proposed in this paper allows

online camera calibration using only a small number of cor-

respondences. This is important because typical home and

office scenes may be relatively devoid of structure and tex-

ture, as the examples in figure 1 show.

Our test procedure is as follows. For each set of 10 cam-

eras, the prior is computed using a subset of nine cameras,

leaving one camera out in “round-robin” fashion. A small

number of points (0–20) is drawn at random without repeti-

tion from the correspondence set of the left-out camera, and

used to estimate the camera parameters under the computed

prior. Then RFE is computed for all (e.g. 3000) correspon-

dences for the left-out camera (we take the RMS value).

For a given number of points (0–20), we compute median

RFE over 50 samples then take the mean over the 10 left-out

cameras.

The experiment varies several different factors:

parametrization (projective or Euclidean), camera (gluecam

or hydra), and prior (datasheet Σ0, sample covariance Σ̄,

diagonal sample covariance Σd, and the learned covariance

from §3). Finally, the datasheet prior was tested in “broad”

and “tight” modes. The tight prior represents a specific

prior carefully designed for a particular camera family, as

defined in §3, and the broad prior (Σbroad
0 = 103

Σ0).

Results are shown in figure 6. Mean RFE in the absence

of any correspondence data (i.e. using only the prior) was

6–8 pixels. For large numbers of correspondences, mean

RFE converges to about 0.5 pixels for the Hydra, 0.7 pixels

for the gluecam. The results may be summarized as follows.

1. The learned diagonal prior (green curve) generally gives

better results than the datasheet prior, with two exceptions:

with the carefully constructed Hydra cameras and a tight

datasheet prior, performance is equivalent; and with the Eu-

clidean parametrization on the gluecams the learned diago-

nal prior inhibits bundle adjustment convergence for more

than six correspondences. 2. The simple learned priors Σ̄

(red curve) and Σd (black curve) do not perform as well as

the Bayesian learned prior. 3. For the broad datasheet prior,

calibration improves as the number of correspondences ap-

proaches four, and then disimproves up to a maximum when

the number of correspondences equals seven, the number of

degrees of freedom in the system. This is explained be-

cause with seven or fewer correspondences, there always

exists a parameter vector which yields zero reprojection er-

ror. With a broad prior, this estimate is not constrained to

be anywhere near the space of likely cameras, and thus the

rectification error on the left-out correspondences can be ar-

bitrarily poor. In terms of the epipolar geometries, a broad

prior can be as bad as the “no prior” case in figure 1. The

learned prior corrects for this effect.

Experiment 2: Real-world scenes. To illustrate the effi-

cacy of the proposed camera calibration algorithm in some

typical real world scenes, we used five gluecams to obtain

a variety of photographs of some home and office scenes.

A representative sample of these photographs is shown in
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Figure 6. Calibration accuracy with small numbers of correspondences. Top row: “gluecam”, Bottom row: Hydra. Left: tight datasheet

prior, projective parameterization; Middle: broad datasheet prior, projective parameterization; Right: broad datasheet prior, Euclidean

parameterization. In the legend, “Learned, λ = 0” indicates a learned scaled-diagonal prior, “FullCov” corresponds to the regularized

sample covariance matrix with fixed regularizer t = 10−6, “Learned, λ = 1” corresponds to a learned regularizer. “Diag” is a scaled

diagonal estimate with fixed scale factor λ. Errorbars on all curves are approximately 0.1 pixels.

figure 1. We obtained five photographs per camera, and 25

stereo image pairs in all. Correspondences for each pair of

photographs were obtained by detecting Harris corners and

performing feature matching using the ground truth cam-

era parameters and approximate knowledge of the range of

depths in the scene to constrain the search for correspon-

dences to within a few pixels. Using these correspondences,

each camera was calibrated using the prior learned by of-

fline calibration of the remaining nine cameras. Figures 1

and7 demonstrate that accurate and consistent camera cali-

bration is obtained by using the learned prior. Without the

prior, conventional calibration fails for all the image pairs

in this dataset.

Calibration accuracy was also assessed empirically us-

ing the correspondences obtained during offline calibration

of the test camera. Mean RFE for the tight datasheet prior

was 4.1 pixels, with 44% of calibrations failing. For the

best learned prior, mean RFE was 2.8 pixels, and the failure

rate reduced to 12%. This is a challenging test because the

test correspondences were obtained from photographs of the

calibration target located in four positions throughout the

entire working volume of the camera—whereas the corre-

spondences used for online calibration were often on a sin-

gle plane. Nevertheless, online calibration with the learned

prior gives useful accuracy across a large working volume a

high proportion of the time.

5. Conclusion

Online camera calibration has previously made the hid-

den assumption of rich scene structure, which is not valid

in many application domains, for example home and office

environments. This paper has shown that scene correspon-

dences in these environments can be used for calibration,

but only if a strong prior is available. Such a prior can

be constructed from a small number of examples if care is

taken with choice of parameterization and the prior model.

Although the subsequent estimation problem is simply an

application of standard Bayesian methodology, the contri-

bution of this paper is in identifying the problem, and in

suggesting a practical method to obtain the prior. The re-

sults show that a correctly learned prior generally does bet-

ter than a diagonal prior, and that only the learned prior

generally outperform calibration with a “blueprint” prior,

or with no prior at all.

The optimization for the Bayesian estimate is still some-

what ad-hoc. By restricting to a single-parameter family of

covariance matrices we make finding the global optimum

easy, but it may be that better priors are to be found using

a more general optimization. Our approach may be seen as

a variant of approaches to estimating covariance matrices

from small datasets in computational biology [15], and we

plan to explore this link.

Future work might focus on the automatic identification

of camera families from image context. It might be that

home and office scenes require different models, which can

be identified using object recognition strategies [11]. This

paper has concentrated on a single model for all variations,

both those in manufacturing and those occurring over time.

It would be interesting to see if the parameter space has nat-

ural foliations corresponding to these different variations,

so that repeated calibration of the same camera could be re-



Figure 7. Stereo camera calibration results in an office scene. 30 point matches were obtained by hand and the camera was calibrated

using random samples of 5, 10, 15, 20, 25, and 30 matches. Recovered epipolar geometry is shown (right eye only) for calibration with no

prior (NP), the datasheet prior (P0) and the learned diagonal prior (PD). The ground truth epipolar lines were approximately horizontal.

stricted to correcting for time-varying effects.
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