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Abstract
The objective of this work1 is to automatically generate a

large number of images for a specified object class (for ex-
ample, penguin). A multi-modal approach employing both
text, meta data and visual features is used to gather many,
high-quality images from the web.

Candidate images are obtained by a text based web
search querying on the object identifier (the word penguin).
The web pages and the images they contain are down-
loaded. The task is then to remove irrelevant images and
re-rank the remainder. First, the images are re-ranked using
a Bayes posterior estimator trained on the text surrounding
the image and meta data features (such as the image alter-
native tag, image title tag, and image filename). No visual
information is used at this stage. Second, the top-ranked
images are used as (noisy) training data and a SVM visual
classifier is learnt to improve the ranking further. The prin-
cipal novelty is in combining text/meta-data and visual fea-
tures in order to achieve a completely automatic ranking of
the images.

Examples are given for a selection of animals (e.g.
camels, sharks, penguins), vehicles (cars, airplanes, bikes)
and other classes (guitar, wristwatch), totalling 18 classes.
The results are assessed by precision/recall curves on
ground truth annotated data and by comparison to previ-
ous approaches including those of Berg et al. [5] (on an
additional six classes) and Fergus et al. [9].

1. Introduction
The availability of image databases has proved invalu-

able for training and testing object class models during the
recent surge of interest in object recognition. However, pro-
ducing such databases containing a large number of images
and with high precision is still an arduous manual task. Im-
age search engines apparently provide an effortless route,
but currently are limited by poor precision of the returned
images and restrictions on the total number of images pro-
vided. For example, with Google Image Search the pre-
cision is as low as 32% on one of the classes tested here

1This work was supported in part by Microsoft Research through the
European PhD Scholarship Programme and by EU project CLASS.

(shark) and averages at 39%, and downloads are restricted
to 1000 images.

Fergus et al. [9, 10], Lin et al. [16] and Li et al. [15] dealt
with the precision problem by re-ranking the images down-
loaded from an image search. The method in [9] involved
visual clustering of the images by using probabilistic Latent
Semantic Analysis (pLSA) [12] over a visual vocabulary.
[15] used a Hierarchical Dirichlet Process instead of pLSA.
Lin et al. [16] re-ranked using the text on the original page
from which the image was obtained. However, for all three
methods the yield is limited by the restriction on the total
number of images provided by the image search.

Berg et al. [5] overcome the download restriction by
starting from a web search instead of an image search. This
search can generate thousands of images. Their method
then proceeds in two stages: first, topics are discovered
based on words occurring on the web pages using Latent
Dirichlet Allocation (LDA) [6] on text only. Image clus-
ters for each topic are formed by selecting images where
nearby text is top ranked by the topic. A user then parti-
tions the clusters into positive and negative for the class.
Second, images and the associated text from these clusters
are used as exemplars to train a classifier based on voting on
visual (shape, colour, texture) and text features. The clas-
sifier is then used to re-rank the downloaded dataset. Note,
the user labelling of clusters avoids the problem of poly-
semy, as well as providing good training data for the classi-
fier. The method succeeds in achieving a greater yield, but
at the cost of manual intervention.

Our objective in this work is to harvest a large number
of images of a particular class automatically, and to achieve
this with high precision. Our motivation is to provide train-
ing databases so that a new object model can be learnt ef-
fortlessly. Following [5] we also use web search to obtain a
large pool of images and the web pages that contain them.
The low precision does not allow us to learn a class model
from such images using vision alone. The challenge then is
how best to combine text, meta-data and visual information
in order to achieve the best image re-ranking.

The two main contributions are: first, we show in sec-
tion 3 that meta-data and text attributes on the web page
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Figure 1. Text & visual ranking vs. unranked-baseline: preci-
sion recall plot for the text re-ranking, the visual ranking trained on
the text ranking, and the unranked images, for the “shark” query.

containing the image provide a useful estimate of the prob-
ability that the image is in class, and thence can be used to
successfully rank images in the downloaded pool. Second,
we show in section 4 that this probability is sufficient to
provide (noisy) training data for a visual classifier, and that
this classifier delivers a superior re-ranking to that produced
by text alone. Figure 1 visualises this two stage improve-
ment over the initially downloaded images (not-ranked).
The class independent text ranker significantly improves
this baseline and is itself improved by quite a margin when
the vision based ranker (trained on the text ranker results) is
employed.

Others have used text and images together, however in
a slightly different setting. For example, Barnard et al. [2]
use ground truth annotated images as opposed to noisy an-
notation stemming from web pages, as in our case. Other
work of Berg et al. [4] uses text from the Internet, but fo-
cused on identifying a specific class rather than general ob-
ject classes.

We show in section 5 that our automatic method achieves
superior ranking results to those produced by the method of
Berg et al. [5] and also to that of Google Image Search.

2. The Databases
This section describes the methods for downloading the

initial pool of images (together with associated meta-data)
from the Internet, and the initial filtering that is applied. For
the purposes of training classifiers and for assessing preci-
sion and recall the downloaded images are annotated man-
ually for 18 classes: airplane (ap), beaver (bv), bikes (bk),
boat (bt), camel (cm), car (cr), dolphin (dp), elephant (ep),
giraffe (gf), guitar (gr), horse (hs), kangaroo (kg), motor-
bikes (mb), penguin (pg), shark (sk), tiger (tr), wristwatch
(ww), zebra (zb).

Data collection. We compare three different approaches
to downloading images from the web. The first approach,
named WebSearch, submits the query word to Google

in-class non-class
good ok

non-abst. abstract non-abst. abstract

Figure 2. Image annotations: Example images corresponding to
annotation categories for the class penguin.

web search and all images that are linked within the re-
turned web pages are downloaded. Google limits the
number of returned web pages to 1000, but many of the
web pages contain multiple images, so in this manner
thousands of images are obtained. The second approach,
ImageSearch, starts from Google image search (rather
than web search). Google image search limits the number
of returned images to 1000, but here each of the returned
images is treated as a “seed” – further images are down-
loaded from the web page from where the seed image origi-
nated. The third approach, GoogleImages, includes only
the images directly returned by Google image search (a sub-
set of those returned by ImageSearch). The query can
consist of a single word or more specific descriptions such
as “penguin animal” or “penguin OR penguins”. Images
smaller than 120× 120 are discarded. In addition to the im-
ages, text surrounding the image HTML tag is downloaded
together with other meta-data such as the image filename.

Ground truth annotation. In a similar manner to Fergus
et al. [9], images are divided into three categories:
in-class-good: Images that contain one or many class in-
stances in a clearly visible way (without major occlusion,
lighting deterioration or background clutter and of sufficient
size).
in-class-ok: Images that show parts of a class instance, or
obfuscated views of the object due to lighting, clutter, oc-
clusion and the like.
non-class: Images not belonging to in-class.
The good and ok sets are further divided into two sub-
classes:
abstract: Images that don’t look like realistic natural im-
ages (e.g. drawings, non realistic paintings, comics, casts or
statues).
non-abstract: Images not belonging to the previous class.

Example annotations for the class penguin are shown in



Service in-class non-class precision
WebSearch 8773 25252 26%
ImageSearch 5963 135432 4%
GoogleImages 4416 6766 39%

Table 1. Statistics by source: The statistics of downloaded images
for different retrieval techniques.

figure 2. As is usual in annotation there are ambiguous
cases, e.g. deciding when occlusion is sufficiently severe
to classify as ok rather than good, or when the objects are
too small. Note, the abstract vs. non-abstract categorisa-
tion is not general but is suitable for the object classes we
consider in this paper. For example, it would not be useful
if the class of interest was “graph” or “statue” or a similar
more abstract category.

Table 1 details the statistics for each of the three
retrieval techniques (WebSearch, ImageSearch and
GoogleImages). Note that some images are common be-
tween the methods. ImageSearch gives a very low pre-
cision (only about 4%) and is not used for the harvesting
experiments. Only WebSearch and GoogleImages are
used, and their images are merged into one dataset per ob-
ject class. Table 2 lists the 18 categories downloaded and
the corresponding statistics for in-class and non-class im-
ages. The overall precision of the images downloaded for
all 18 classes is about 29%.

Due to the great diversity of images available on the In-
ternet and because of how we retrieve the images, it is dif-
ficult to make general observations on how these databases
look. However, it is clear that polysemy affects the returned
images. Interestingly, this is not a problem that could be
predicted directly from the English word, since most of the
classes we search for don’t have direct polysemous mean-
ings, i.e. they are not polysemous in the sense of “bank”
(as in place to get money, or river bank) for example. It is
rather that the words correspond to brands or product names
(“leopard tank”) or team names (the NHL ice hockey team
“San Jose Sharks”) or are used as attributes (“tiger shark”).
Apart from that, the in-class images occur in almost all vari-
ations imaginable, as sharks crashed into houses or other
oddities. Even though context [22] can clearly be important
in re-ranking the images (e.g. camel and kangaroo in desert-
like images), it will have its limitations due to the variety of
occurrences of the object.

2.1. Removing Drawings & Symbolic Images
Since we are mostly interested in building databases for

natural image recognition, we ideally would like to remove
all abstract images from the downloaded images. However,
separating abstract images from all others automatically is
very challenging for classifiers based on visual features. In-
stead we tackle the easier visual task of removing drawings
& symbolic images. These include: comics, graphs, plots,
maps, charts, drawings and sketches, where the images can
be fairly simply characterised by their visual features (see

downloaded images after filtering
Class in-cl. non-cl. prec. in-cl. non-cl. prec.

airplane (ap) 843 1720 32.89% 531 975 35.26%
beaver (bv) 201 3156 5.99% 149 2126 6.55%
bikes (bk) 1236 1963 38.64% 909 1057 46.24%
boat (bt) 861 2170 28.41% 726 1310 35.66%

camel (cm) 492 1910 20.48% 393 1329 22.82%
car (cr) 1125 1045 51.84% 949 554 63.14%

dolphin (dp) 663 1544 30.04% 448 917 32.82%
elephant (ep) 660 1835 26.45% 548 1175 31.80%
giraffe (gf) 779 1433 35.22% 641 792 44.73%
guitar (gr) 1261 1993 38.75% 903 821 52.38%
horse (hs) 963 1986 32.66% 809 1143 41.44%

kangaroo (kg) 295 1886 13.53% 240 1144 17.34%
motorbikes (mb) 704 981 41.78% 571 593 49.05%

penguin (pg) 664 1484 30.91% 391 784 33.28%
shark (sk) 522 1771 22.76% 311 1075 22.44%
tiger (tr) 333 2114 13.61% 275 1262 17.89%

wristwatch (ww) 916 982 48.26% 658 478 57.92%
zebra (wb) 427 1718 19.91% 351 985 26.27%

total 12945 31691 29.00% 9803 18520 34.61%

Table 2. Image class statistics of the original downloaded images
using WebSearch&GoogleImages only, and after applying
the drawing&symbolic images removal filter.

below). Example images are shown in figure 3. Their re-
moval significantly reduces the number of non-class im-
ages improving the resulting precision of the object class
datasets as shown in table 2 (overall precision goes from
29% to 35%). Filtering out such images also has the aim
of removing this type of abstract image from the in-class
images.

Learning the filter. We train a radial basis function Sup-
port Vector Machine (SVM) on a hand labelled dataset (ex-
amples in figure 3). After the initial training no further
user interaction is required. In order to obtain this dataset,
images were downloaded using ImageSearch with one
level of recursion (i.e. web pages linked from “seed” web
pages are also used) with queries such as “sketch” or “draw-
ing” or “draft”. The goal was to retrieve many images and
then select suitable training images manually. The resulting
dataset consists of approximately 1400 drawings&symbolic
images, and 2000 non drawings&symbolic images.

Three simple visual only features are used: (i) a colour-
histogram; (ii) a histogram of the L2-norm of the gradi-
ent; (iii) a histogram of the angles (0 . . . π) weighted by the
L2-norm of the corresponding gradient. In all cases 1000
equally spaced bins are used. The motivation behind this
choice of features is that drawings&symbolic images are
characterised by sharp edges in certain orientations and or a
distinctive colour distribution (e.g. only few colours in large
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Figure 3. Drawings&symbolic images: Examples of positive and
negative training images.

areas). The method achieves around 90% classification ac-
curacy on the drawings&symbolic images database (using
two-fold cross-validation).

This classifier is applied to the entire downloaded im-
age dataset to filter out drawing&symbolic images, before
further processing. The total number of images that are
removed for each class is shown in table 2. In total 42%
of non-class images are removed over all classes. The re-
maining images are those used in our experiments. As well
as successfully removing non-class images, the filter also
succeeds in removing an average of 60% (123 images) in-
class abstract images, with a range between 45% (for mo-
torbikes, 40 images) and 85% (for wristwatch, 11 images).
There is some loss of the desired in-class non-abstract im-
ages, with on average 13% (90 images) removed, though
particular classes lose a relatively high percentage (28% for
shark and wristwatch). Even though this seems to be a high
loss the precision of the resulting datasets is improved in all
cases except for the class shark.

3. Ranking on Textual Features
We now describe the re-ranking of the returned images

based on text and meta-data alone. Here we follow and ex-
tend the method proposed by Frankel et al. [11] in using a
set of textual attributes whose presence is a strong indica-
tion of the image content.

Textual features. We use seven features from the text and
HTML-tags on the web page: contextR, context10, filedir,
filename, imagealt, imagetitle, websitetitle.

Filedir, filename and websitetitle are self-explanatory.
Context10 includes the ten words on either side of the
image-link. ContextR describes the words on the web-page
between eleven and 50 words away from the image-link.
Imagealt and imagetitle refer to the “alt” and “title” tag of
the image-tag. The features are intended to be conditionally
independent, given the image content (we address this inde-
pendence below). It is difficult to compare directly with the
features in [11], since no precise definition of the features
actually used is given.

Context here is defined by the HTML source, not by the

rendered page since the latter depends on screen resolution
and browser type and is an expensive operation. In the text
processing a standard stop list [20] and the Porter stemmer
[21] are used. In addition HTML-tags and domain specific
stop words (such as “html” or “&nbsp;”) are ignored.

We also experimented with a number of other features,
such as the image MIME type (‘gif’, ‘jpeg’ etc.), but found
that they did not help discrimination.
Image ranking. Using these seven textual features, the
goal is to re-rank the retrieved images. Each feature is
treated as binary: “True” if it contains the query word (e.g.
penguin) and “False” otherwise. The seven features define
a binary feature vector for each image a = (a1, . . . , a7),
and the ranking is then based on the posterior probabil-
ity, P (y = in-class|a), of the image being in-class, where
y ∈ {in-class,non-class} is the class-label of an image. We
learn a class independent ranker in order to re-rank the im-
ages based on those seven features; i.e. the ranker is not
learnt or tuned for each class separately, but is learnt once
and can then be applied to any new class.

A simple Bayesian posterior estimation
P (y|a) = P (a|y)P (y)/P (a) is used, with

P (a|y) = P (a1, . . . , a4|y)
7∏
5

P (ai|y) (1)

where P (a1, . . . , a4|y) is the joint probability of the first
four textual features (contextR, context10, filedir, filename).
This choice resulted from a comparison of several differ-
ent factorisations of the likelihood P (a|y), including naı̈ve
Bayes [8] P (a|y) =

∏7
i=1 P (ai|y). The mixed model (1)

gave slightly better performance than other factorisations,
and reflects the fact that the first four features are less inde-
pendent from each other than the remaining three.

3.1. Text re-ranking results
Images are ranked using the text based posterior P (y|a)

to provide an ordering. We assess the performance by re-
porting precision at various points of recall as well as av-
erage precision. To re-rank images for one particular class
(e.g. penguin) we do not employ the ground truth data for
that class. Instead, we train the Bayes classifier (specifi-
cally we learn P (a|y), P (y) and P (a)) using all available
annotations, except the class we want to re-rank. This way
we evaluate performance as a completely automatic class
independent image ranker; i.e. for any new and unknown
class, the images can be re-ranked without ever using la-
belled ground truth knowledge of that class.

Figure 4 shows the precision-recall curves for selected
classes and table 3 (text) gives the precision at 15% recall
for all classes. It can clearly be seen that precision is highly
increased at the lower recall levels, compared to the average
precision of table 2.

A separate set of experiments was carried out to mea-
sure how the performance of the text ranker varies with the
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Figure 4. Text based re-ranking: precision vs. recall estimated
for each class with abstract images considered in-class. The labels
are shown in decreasing order of precision at 15% recall. The re-
call precision curves are only shown for selected classes for clarity.
The average over all 18 classes is also shown.

number and choice of classes used for training. Ideally we
would like to compare P (a|y), P (y) and P (a) learnt us-
ing different numbers of training classes. However, given
our goal of ranking images we instead compare these prob-
abilities indirectly by assessing precision at 15% recall. We
find that the performance is almost unaltered by the choice
of training classes provided more than five classes (chosen
randomly) are used for training.

Discussion. As can be seen from figure 4 our text-re-
ranker performs well on average, and significantly improves
the precision up to quite a high recall level. In section 4 we
will show that this is sufficient to train a visual classifier. For
some classes the text ranker performs very well (e.g. wrist-
watch, giraffe) for others it performs rather poorly (e.g. air-
plane, beaver, camel, tiger). Visual inspection of the highly
ranked “outlier” (non-class) images in the text ranked lists
gives some explanation for these performances. Classes that
perform well (wristwatch, giraffe) generally have outliers
that are unrelated to each other. In contrast for the classes
that perform poorly the outlier images are related and result
from lack of discriminativity of the query word – for exam-
ple for airplanes there are images of airplane food, airports,
toy airplanes, paper airplanes, airplane interiors, and adver-
tisements with comic airplanes. Other classes suffer from
the type of polysemy described in section 2: for camels
there are brand and cigarette related outliers; and for tiger
there is the attribute problem with images of helicopters,
tanks, fish (sharks), boxing, golf, stones, and butterflies.
Despite these problems we are able to train a good visual
classifier for most classes (see next section), with the main
exception of beaver.

4. Ranking on Visual Features
The text re-ranking of section 3 associates a posterior

probability with each image as to whether it contains the
query class or not. The problem we are now faced with is
how to use this information to train a visual classifier which
would improve the ranking further. The problem is one of
training from noisy data: we need to decide which images
to use for positive and negative training data and how to
select a validation set in order to optimise the parameters of
the classifier.

We first describe the visual features used, and then how
the classifier is trained.
Visual features. We follow the approach of [9] and use
a variety of region detectors with a common visual vo-
cabulary. All images are first resized to 300 pixels in
width. Regions are detected using: difference of Gaussians,
Multiscale-Harris [18], Kadir’s saliency operator [14], and
points sampled from Canny edge points. Each image region
is represented as a 72 dimensional SIFT [17] descriptor. A
separate vocabulary consisting of 100 visual words is learnt
for each detector using k-means, and these vocabularies are
then combined into a single one of 400 words. Finally, the
descriptor of each region is assigned to the vocabulary. The
software for the detectors is obtained from [23]. Fuller im-
plementation details are given in [9], and are reproduced in
our implementation.
Text based training of a visual classifier. At this point
we can select n+ positive training images from the top of
the text ranked list, or those that have a posterior probability
above some threshold, but a subset of these positive images
will be “noisy”, i.e. will not be in-class. Table 3 (text) gives
an idea of the noise from the proportion of outliers. It aver-
ages at 45% if n+ = 100. However, we can assume that the
non-class images are not visually consistent – an assump-
tion verified to some extent by the results in section 4.1.
The case of negative images is more favourable: we select
n– images at random from all downloaded images (i.e. from
all 18 classes, tens of thousands of images) and the chances
of any image being of a particular class is very low. We
did not choose to select the n– images from the low ranked
images of the text-ranker output, because the probability of
finding in-class images there is higher than finding them in
the set of all downloaded images.

Given this situation we choose to use a SVM classifier,
since it has the potential to train despite noise in the data.
The SVM training minimizes the following sum [19]:

min
w,b,ξ

1
2
wT w + C+

∑
i:yi=1

ξi + C−
∑

j:yj=−1

ξj (2)

subject to yl

(
wT Φ(xl) + b

)
≥ 1− ξl, (3)

ξl ≥ 0, l = 1, . . . , (n+ + n–) . (4)

Where xl are the training vectors and yl ∈ {1,−1} the class



1. Download images and meta-data for new class (e.g. “lion”)
using WebSearch &GoogleImages (section 2).

2. Filter images: remove drawings&symbolic images
(section 2.1).

3. Rank images based on text-attributes using the Bayes classi-
fier (section 3).

4. Train visual SVM classifier on text-ranked images
(section 4).

5. Rank all images from 1. using the visual classifier.

Figure 5. Overview of the text+vision (t+v) image harvesting
algorithm.

labels. C+ and C– are the false classification penalties for
the positive and negative images, with ξ being the corre-
sponding slack-variables.

To implement the SVM we use the publicly-available
SVMlight software [13] (with the option to remove incon-
sistent training data enabled). Given two input images Ii

and Ij and their corresponding normalized histograms of
visual words Si and Sj this implementation uses the fol-
lowing χ2, radial basis function (RBF) kernel: K(Si, Sj) =
exp(−γ ·χ2(Si, Sj)) [24]. With γ the free kernel parameter.

Thus, γ, C+ and C– are the three parameters that can be
varied. The optimal value for these parameters is obtained
by training the SVM using ten-fold cross validation. We
require a performance measure for the cross-validation and
use precision at 15% recall – the SVM re-ranks the valida-
tion images and we measure precision on this. Note, we do
not use the ground truth at any stage of training.

Sometimes C+ and C– are used to correct unbalanced
training data [19]. In our case, however, the SVM is very
sensitive to these parameters, probably due to the huge
amount of noise in the data, and the optimal value does not
directly correspond to the ratio of positive to negative im-
ages.

Finally, the trained SVM is used to re-rank the filtered
image set based on the SVM classification score. The entire
image harvesting algorithm is summarised in figure 5.

4.1. Results for textual/visual image ranking
In this section we evaluate different combinations of

training and testing. If not stated otherwise the text+vision
system of figure 5 was used. Results are given in table 3 for
various choices of n+ and n−. For each choice, five dif-
ferent random selections are made for the sets used in the
ten-fold cross-validation, and mean and standard deviation
are reported. The clear improvement brought by the visual
classifier over the text based ranking for most classes is ob-
vious. Figure 6 shows example high ranked images using
text+vision.

We first investigate how the classification performance
is affected by the choice of n+ and n–. It can be seen that
increasing the n– tends to improve performance. It is, how-
ever, difficult to select optimal values for n+ and n– since
these numbers are very class dependent.

We next determine how much the performance is af-
fected by the noise in the training data by training the SVM
on ground truth positive data, i.e. instead of selecting n+

images from the text ranked images, we select n+ in-class
images using the ground truth labelling. We find that the
ground truth performs, as to be expected, better for most
classes and similar or even worse on those classes where
the text+vision system performs well.

As a baseline comparison, we investigate performance if
no text re-ranking is used, but the n+ images are sampled
uniformly from the filtered images. If the text re-ranking
works well, and hence provides good training data, then
text+vision improves over the baseline. In cases where
the text ranking does not perform well the baseline can
even outperform text+vision. This is due to the fact, that
bad text ranking can provide visually consistent training
data, that does not show the expected class (e.g. for air-
planes it contains many images showing: airplane food, in-
side airplanes/airports, taken out of the window of an air-
plane). However, the uniformly sampled images still con-
sist of about 35% in-class images (table 2) and the n– are
very unlikely to contain in-class images. Thus, the SVM
based classifier is shown to be very noise insensitive and
well suited for this task.

Discussion. We also investigated two alternative visual
classifiers, pLSA (as used as a visual classifier by Fergus
et al. [9]) and feature selection. Both showed inferior per-
formance to the SVM. The pLSA appeared to suffer from
the high variability in the appearance of in-class images and
the high levels of training noise. For feature selection our
intention was to find discriminative visual words and then
use these in a Bayesian framework. The discriminative vi-
sual words were obtained based on the likelihood ratio of a
visual word occurring in the foreground to background im-
ages [7]. However, probably due to the large variation in
both the foreground and background images, together with
the noisy training data, we weren’t able to match the perfor-
mance of the SVM ranker.

We found that combining the vision and text ranked lists
using Borda count [1] or similar methods gave a slight im-
provement on average, but results were very class depen-
dent.

5. Comparison with other approaches
We compare our algorithm with three other approaches.

In all cases results are given for n+ = 250, n− = 1000,
as this is the most stable setting (see table 3). Again we
report mean and standard deviation over five runs of ten-
fold cross-validation.

Comparison with Google image search. Here we re-
rank the images downloaded with GoogleImages in
the fully automatic fashion described earlier. Compara-
tive results between our approach and GoogleImages



prec. 15% ap bv bk bt cm cr dp ep gf gr hs kg mb pg sk tr ww zb avg. std
text 36.9 24.5 69.8 53.9 46.0 63.3 72.2 66.0 77.7 62.7 57.4 47.8 68.5 62.2 41.7 39.2 79.2 40.7 56.1

t+v (250/250) 54.0 36.4 64.8 60.9 53.5 78.5 61.9 77.5 86.5 65.4 60.6 53.5 78.2 55.5 56.8 45.7 81.6 96.8 64.9 9.3 (2.5)
t+v (150/500) 59.1 33.8 69.7 63.4 56.8 91.8 61.6 70.7 83.2 67.3 67.0 50.0 77.4 70.4 69.3 59.6 86.3 85.5 67.9 8.3 (2.0)
t+v (250/500) 58.6 35.0 64.6 65.1 47.8 79.0 60.1 75.4 86.9 51.7 68.4 50.2 77.7 69.7 64.3 39.8 90.4 87.9 65.2 8.8 (2.0)

t+v (150/1000) 61.4 30.6 65.5 61.3 53.8 92.0 67.7 85.8 86.6 66.1 65.7 61.6 82.2 72.4 64.3 46.9 91.8 80.5 68.7 8.1 (2.1)
t+v (250/1000) 63.5 32.3 65.9 62.4 51.6 93.0 61.7 80.2 87.8 62.6 71.2 45.5 84.6 69.6 64.9 53.0 86.6 95.8 68.4 7.9 (1.9)

gt (250/1000) 86.4 – 80.4 73.3 77.7 96.7 63.5 96.1 83.5 73.0 82.6 83.6 79.8 82.8 80.6 87.1 91.2 96.7 83.2 9.3 (2.6)
Basel. (250/1000) 64.2 12.5 65.1 58.0 46.9 76.7 55.6 53.3 86.7 61.1 66.2 36.1 71.3 60.4 56.3 56.7 87.0 81.4 60.9 10.2 (2.6)

Table 3. Comparison of precision at 15% recall: ‘text’ refers to text re-ranking alone; ‘t+v’ is text+vision re-ranking using different
training ratios n+/n−; ‘gt’ is ground truth (only positive images) training of the visual classifier; and ‘Basel.’ is the baseline, where the
visual classifier is trained on n+ = 250 images uniformly sampled from the filtered images of one class, instead of the text re-ranked
images, and n− = 500 background images as before. The second last column (avg.) gives the average over all classes. The last column
states the mean of the classwise standard deviations over five runs of cross-validation, as well as the standard deviation of the means over
all classes, in parantheses.

Figure 6. Top ranked 36 images of zebra, wristwatch and car using the text+vision algorithm of figure 5. Red boxes indicate false positives.
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Figure 7. Comparison with Google image search. Precision at
100 image recall.

are shown in figure 7. As can be observed, our approach
achieves higher average precision for 15 out of 18 classes
with only airplane, beaver and kangaroo being outper-
formed by the Google results. Those are cases where our
text ranker doesn’t perform that well, which increases the
noise in the training data and thus explains the decreased
visual performance.

airplane guitar leopard motorbike wristwatch
our 45± 5 72± 11 72± 6 81± 9 97± 4

our (6ok) 35± 4 29± 4 50± 5 63± 8 93± 7

[9] ( 6ok) 57 50 59 71 88
Google (6ok) 50 30 41 46 70

Table 4. Comparison with Fergus et al. [9]: Average precision
at 15% recall with one standard deviation. The images are from
Google image search and were provided by the author. (6ok) uses
the same annotation as [9]. The first row of the table treats Fergus’
ok class as in-class, unlike [9].

Comparison with Fergus et al. [9]. In this experiment
we re-rank the Google images provided by [9]. It is dif-
ficult to directly compare results in [9] to the text+vision
algorithm, as [9] treats ok images as non-class, whereas our
system is not tuned to distinguish good from ok images.
Due to this our system performs slightly worse than [9],
when measured only on good images. However, it still out-
performs Google image search on most classes even in this
case. Table 4 also shows (first row) the results when ok im-
ages from the [9] data are treated as in-class. As expected
the performance increases significantly for all classes.

Comparison with Berg et al. [5]. Here we run our vi-
sual ranking system on the dataset provided by [5]. In or-
der to do so we downloaded an additional set of six classes
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Figure 8. Comparison with Berg et al. [5]. Precision at 100-
image recall level for the 10 animal classes made available by the
authors of [5]. Note that our automatic algorithm is superior in
many cases, even though the method of [5] involves manual inter-
vention.

(alligator, ant, bear, frog, leopard, monkey) for which no
manual annotation was obtained. Figure 8 compares the
results reported in [5] to re-ranking of the test images avail-
able from [3] using our visual classifier. Note that we are
training on our set of images which might stem from a dif-
ferent distribution than the Berg test set. We compare with
the “classification on test data” category of [5], not to their
“final dataset” which includes ground truth from their man-
ual step. Their provided ground truth, which treats abstract
images as non-class, was used. Note that our automatic al-
gorithm produces results comparable or superior to those of
Berg et al., although their algorithm requires manual inter-
vention.

6. Conclusion
This paper has proposed an automatic algorithm for har-

vesting the web and gathering hundreds of images of a given
query class. Thorough quantitative evaluation has shown
that the proposed algorithm performs similarly to state of
the art systems such as [9], while outperforming both the
widely used Google Image Search and recent techniques
which rely on manual intervention [5].

The algorithm does not rely on the high precision of top
returned images e.g. from Google Image Search. Such im-
ages play a crucial role in [9, 15], and future work could
take advantage of this precision.

Polysemy, a problem with no automatic solution (cur-
rently), does affect our results. However, this paper im-
proves our understanding of the problem in its different
forms.
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