
Object Class Segmentation using Random
Forests

F. Schroff1, A. Criminisi2, A. Zisserman1

1Dept. of Engineering Science, University of Oxford
{schroff,az}@robots.ox.ac.uk

2Microsoft Research Ltd., antcrim@microsoft.com

Abstract

This work investigates the use of Random Forests for class based pixel-wise
segmentation of images.

The contribution of this paper is three-fold. First, we show that ap-
parently quite dissimilar classifiers (such as nearest neighbour matching to
texton class histograms) can be mapped onto a Random Forest architecture.
Second, based on this insight, we show that the performance of such classi-
fiers can be improved by incorporating the spatial context and discriminative
learning that arises naturally in the Random Forest framework. Finally, we
show that the ability of Random Forests to combine multiple features leads
to a further increase in performance when textons, colour, filterbanks, and
HOG features are used simultaneously.

The benefit of the multi-feature classifier is demonstrated with extensive
experimentation on existing labelled image datasets. The method equals or
exceeds the state of the art on these datasets.

1 Introduction
This paper addresses the problem of simultaneously segmenting an image into its con-
stituent semantic regions and automatically labelling each region as belonging to a class,
out of a predetermined set of classes. The core discriminative classifier employed here is
a modification of Random Forests.

Random Forests (often also referred to as Randomized Trees) were introduced in the
machine learning community by [1, 4]. Their popularity in the computer vision commu-
nity arose mainly from the work of Lepetit et al. in [12, 15], and a large number of papers
have applied them to various supervised classification tasks [2, 5, 8, 13, 14, 18, 24, 25].

Appealing features of Random Forests include: (i) their computational efficiency in
both training and classification, (ii) their probabilistic output, (iii) the seamless handling
of a large variety of visual features (e.g. colour, texture, shape, depth etc.), and (iv) the
inherent feature sharing of a multi-class classifier (see also [20] for feature sharing in
boosting).

Previous work on class based image segmentation has often used quite simple local
features for node tests (or weak classifiers), such as pixel differences, or differences be-
tween sums of filter responses accumulated over local rectangular regions [18, 19, 22, 24].
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Figure 1: The MSRC labelled image dataset. (a–c) Example images from the MSRC dataset
and (a’–c’) their ground-truth class segmentation maps. The colour indicates the object class, with
different kinds of grass, for example, associated with a common “grass” label. Note the presence of
unlabelled (black) pixels.

In contrast, Schroff et al. [17] achieved pixel-wise classification by comparing histograms
estimated over sliding windows to pre-learned, global “single-histogram class models”’
(SHCM).

This paper connects Random Forest classifiers using local features to classifiers using
nearest neighbour matching class models, such as Schroff et al. [17]. We show that a
Random Forest classifier can improve over the classification performance of pre-learned
class models, since the local features can incorporate spatial context, and the forest allows
multi-class discriminative learning. Experiments carried out on standard labelled datasets
demonstrate that our results are state of the art or better.
Datasets. The validity of our approach is demonstrated by extensive quantitative exper-
imentation on two datasets. The initial experiments and the comparison with [17, 21] are
performed on the 9-class MSRC dataset ([6]). This is a subset of the 21-class version [6],
which is used for comparisons with [19]. Both these datasets consist of natural images
and their corresponding ground truth object class maps (see fig. 1). We also report the
performance on the challenging VOC2007 [9] data.
Paper outline. Section 2 describes the core Random Forest classifier. Section 3 presents
the main contribution, describing the mapping of global class models into Random Forests,
and section 4 shows how relaxing constraints on the node functions yields improved clas-
sification. Section 5 extends the set of visual features further. Finally, section 6 imposes
spatial smoothing via a Conditional Random Field (CRF) model. Next we introduce the
Random Forests classifier.

2 Random Forests
Decision tree classifiers have been known for a long time [16] but they have shown prob-
lems related to over-fitting and lack of generalization. The main idea behind Random For-
est is to try and mitigate such problems by: (i) injecting randomness into the training of the
trees, and (ii) combining the output of multiple randomized trees into a single classifier.
Random Forests have been demonstrated to produce lower test errors than conventional
decision trees [25] and performance comparable to SVMs in multi-class problems [2],
while maintaining high computational efficiency.
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Figure 2: Decision trees and node functions: (a) Binary decision tree with its node functions t.
(b) A node function can be based on filter responses accumulated over a single rectangular region
as in [19]. (c) Alternatively, responses accumulated over two rectangles can also be used [25]. The
pixel differences in [12] and Haar-like responses in [22] are special cases.

2.1 Decision trees
In this work we consider binary trees (fig. 2a), with their structure and decision nodes
learned discriminatively as follows. Starting from the root, given the labelled training
data, the function t and threshold λ which maximize the information gain are found.
Then training proceeds down to the children nodes.

Note that the underlying features can be of general nature, e.g.: RGB, HOG [7], the
output of a filter bank etc. Also the function t is of a very general nature: it could be a
sum of feature responses in a defined spatial extent (fig. 2b), a linear classifier, the output
of another tree, the output of AdaBoost etc.

For a pixel in position p, the node function tp may be described as:

tp = ∑
r∈S

wr · fr (1)

where r indexes one or two rectangles as described in fig. 2(b,c) (i.e. S = {1} or
{1,2}), wr describes a filter selecting the pixels in the rectangle Rr and a weighting for
each dimension of the feature vector fr (a concatenation of all (used) feature channels and
pixels in Rr, e.g. f1 = [G1 G2 · · ·Gn], if R1 accumulates over the green channel G, and n is
the number of pixels in R1).

In this work we use two types of node functions (see fig. 2b,c): (i) abstest [19]
consists of the accumulated response in one feature channel in a single rectangle (S =
{1}). This is described in (1) where wr is 1 for all pixels; (ii) difftest [24] is defined
by two rectangles (S = {1,2}), positioned relative to the test-pixel p. Each of them
defines an area for which the cumulative response of a specific channel is computed. The
node function t is the difference of the aggregated values from the two rectangles. This is
described in (1) where the weight vector is +1 for all pixels in R1 and −1 for all pixels in
R2. fr is a concatenation of the values of one specific feature channel for all pixels in Rr.

2.2 Training and testing Random Forests
Random Forests are composed of multiple independently learnt random decision trees.



During training of the tree each node has available only a randomly chosen subset of
the entire pool P of possible node functions (i.e. variously shaped non-centred rectangles
accumulating different channels). Training is achieved by finding the node function and
threshold λ which yields maximum information gain within such restricted, randomized
search space [2, 24]. Note, [12, 14] do not optimize λ . The training data is subsampled
to increase independence of the trees [4] and reduce training time. During training the
empirical class posterior distributions are stored in the leaf nodes.

Testing proceeds by applying all trees to each input pixel in the test image. The output
per-pixel class posterior is achieved as the average of the posteriors across all trees.

3 Fusing global and local cues into Random Forests
The previous section has given a general model for the kinds of node functions typically
used in Random Forests. This section extends the node function to incorporate global
knowledge about the object classes. First we review the single-histogram class models
(SHCM) introduced in [17] and then show how those can effectively be mapped within
an efficient Random Forests classifier.

3.1 Global class modeling via SHCM
In [17] it is shown that given an image patch, the MAP estimate of its class is equivalent
to a nearest neighbour classifier to single class histograms, where similarity is measured
using KL divergence. In [17] a texton representation is used, and each class SHCM is
computed as the average of texton distributions across all training exemplar images. In
the implementation, the textons are computed on dense 5×5 color patches using k-means
clustering, resulting in a 8000 texton dictionary.

The resulting SHCMs are used to segment a test image into classes by a sliding win-
dow classifier. In detail, a sliding window s is used to assign the object class î to the
centre pixel p of s. With h being the distribution over textons in window s and qi being
the SHCMs the classification result for p is î:

qî = argmin
qi

(
KL(h||qi)

)
(2)

Note that the NN classifier in [17] is not learnt discriminatively and does not learn
spatial information about the object classes.

3.2 Casting SHCM classification as a node function
We first note that finding the NN class histogram using (2) can be accomplished by a
series of hierarchical tests that compare the test window histogram h to a pair of SHCMs
and select the more likely one. The goal is to combine this pairwise comparison into a
single efficient node function that can be used in a decision tree. This can be achieved by
combining two SHCMs qi and q j into wi, j = log

(
qi

q j

)
. Now we define the node function

which compares the KL-Divergence of a single test-histogram hr (computed from one
rectangle Rr, similar to abstest in fig. 2) to two class models qi and q j in a single test
(3):

KL(hr||qi) < KL(hr||q j) ⇔ tp < 0 with t = wi, j ·hr (3)



Note that unlike in (1) here wi, j is not just 1 or −1, but each feature channel (here texton)
is weighted by the globally induced weights. The node function tp defined in (3) is smaller
than 0, if and only if class model i is more likely to explain the rectangle Rr than class
model j. This equivalence is verified experimentally in sec. 4.

If there are n object classes, i.e. n SHCMs qi with i ∈ {1, . . . ,n}, a tree of depth n−1
can compute argminqi

(
KL(h||qi)

)
, by means of a series of the tests defined in (3). This

scheme is called fixed-tree in the following.
Consider the case where the class distributions qi and q j have identical counts (i.e.

similar occurrence frequencies) in all but one bin/channel. Then wi, j = log
(

qi

q j

)
will be

zero for all but one weight. This is the limiting case of a single discriminative texton
between the two classes. It shows that class histograms can underpin the features used
successfully in two weak detectors/node functions: (i) TextonBoost [18, 19], where tex-
tons that are discriminative for a pair of classes are learnt (in that case using boosting)
i.e. all weights but one are zero in (3); and (ii) the linear classifier (with a set of non-zero
wi, js) used in the node function of [2].

Based on this connection we now use class histograms and the patch classifier of [17]
as a starting point for a Random Forest classifier. By casting such classifiers into the Ran-
dom Forest framework we can introduce discriminative learning, and spatial information
can be learnt by the use of less restricted patches and weightings.

4 From SHCM to local features
One of the main contributions of this work is that of combining the efficiency and dis-
criminative power of decision trees with the descriptive power of global class models.

Here we show that introducing flexibility to the fixed-tree (see sec. 3.2) node functions
which were inspired by global class models improve the performance. This is due to the
fact that the Random Forests are able to learn multiple classes discriminatively (unlike
binary SVMs for example). Additionally, a discriminative selection of the extent of the
spatial support and context awareness result in a performance increase. The following
experiments progressively introduce more freedom into the feature selection process: (i)
Fixed-tree: learn the posterior from the data, (ii) Learnt tree: select the basic test i.e.
the pair (i, j), (iii) Flexible rectangles: explore various aspects of the rectangles position
(shape of the window w and an offset, i.e. the test-pixel not restricted to the centre of the
rectangle).

4.1 Experimental evaluation
All the experiments in this section (except the fixed-tree) use a Random Forest of size 10
and a maximum depth for each tree of 15. During training the one, out of 100 randomly
sampled node functions as in (3), that maximises the information gain is picked for each
node. In this case λ is set to zero following (3). All results are on the 9-class MSRC
dataset.
Fixed-tree. We use the single fixed-tree and just learn the class posteriors, by apply-
ing the tree to each training point. Using this tree gives virtually the same performance
75.2% as reported in [17] with the same features (25×25 pixel wide centred windows).
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Figure 3: Spatial Context: This figure shows how an offset incorporates spatial context. The
classification with a maximum offset of 30 is in the bottom row, the one with the test-pixel centred
in the rectangle in the top row. Next to the classification are shown the posteriors for the object class
(aeroplane) and the car class (marked “purple” in classification) that is confused with aeroplane, if
no context is used.

window size\offset 0 10 20 30
25:25 76.2% 78.8% 81.0% 82.2%
10:35 77.7% 79.3% 80.8% 82.0%

Table 1: Spatial influence: The window size [smallest extent : largest extent] describes the range of
the width and height of the rectangles used in the node function. The offset describes the maximum
distance the centre of the rectangle can have to the test-pixel. Allowing for additional “freedom”
especially a large offset clearly improves the performance.

This is a nice result indicating that the class histogram qi minimizing
(
KL(h||qi)

)
indeed

corresponds to the MAP of the class.
Learnt tree (fixed rectangles). Instead of using the fixed tree of depth 8 (9 classes -1),
we learn a Random Forest keeping the rectangle size fixed to 25×25 and centred on the
test pixel. Incorporating the flexibility to select the pair (i, j) in each node increases the
performance marginally to 76.2% (see tab. 1).
Flexible rectangles. Allowing for different rectangle shapes/sizes as well as off centre
test-pixels (see fig. 2a) and thereby taking full advantage of the discriminative and spatial
learning of Random Forests results in a dramatic performance boost. The node functions
itself still follow (3).

Tab. 1 shows that allowing different window sizes (smallest edge of rectangle can be
10, largest 35 pixels wide) improves the performance, as these rectangles can adapt to
the objects and encode fine/large grained structures. The rectangles are around 23± 7
pixels each dimension and tend to be slightly smaller towards the bottom of the tree. The
average ratio of small side to long side is 0.69±0.19, i.e. to capture the full shape of the
objects “real” elongated rectangles are advantageous.

However, a significantly larger improvement is achieved by allowing an offset of the
centre of the rectangles to the test-pixel, in which case the context of the test-pixel is
taken into account. The offset is around 15± 8 pixels in the x and y direction. Fig. 3
illustrates that the Random Forest learns that car is unlikely to occur next to aeroplane
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∑c∈{5,20,40}(gc ·b) Figure 4: HOG features: We use
stacked HOG features computed with
different cell-sizes c = {5,20,40} and
gradient binnings g = {6,6,12}. One
block always contains 4 cells (b = 4).
Each rectangle response is computed
by adding the responses for one of the
HOG dimensions of a pixel (also see
fig. 4). Cells partially included in the
rectangle area contribute proportion-
ally to the included area.

and sky. The important observation is that confusions like aeroplane with car are dramat-
ically suppressed. This is indicated by the posterior response for the car class, where the
two high response areas in the top right image. It is worth noting that the classification
obtained by the context features (bottom row) has a less crisp object boundary, which can
be explained by the fact that pixels occurring near the boundary have a higher likelihood
for both classes when context is incorporated (e.g. aeroplane/grass confusion).
Conclusion. Using a priori knowledge (SHCMs) to compute a weighted sum of textons
occurring in a rectangular region near the test-pixel provides strong initial node functions.
The functions are improved by introducing flexibility and this increases performance from
76.2% to 82.0% (see tab. 1), exceeding the performance of the original features in [17]
dramatically.

5 Introducing more visual cues
In the previous section we laid out how “reusing” features suitable for nearest neigh-
bour classification can result in powerful features for Random Forests and by exploiting
properties of these, namely discriminative selection of parameters (window size, offset)
performance can be improved.

Now we relax the restrictions on the features even further and introduce additional
cues. We focus on the node functions described in fig. 2b and apply them first to RGB and
then to HOG [7]. Finally all features will be combined in the decision trees of a Random
Forest, and additionally filterbanks will be used. The optimal most suitable features are
selected by means of the discriminative learning of the decision trees.
RGB features. The node functions are simple differences of rectangles computed over
one of the three channels (R, G, or B) per rectangle (see sec. 2.1). Our baseline classifier
uses single-histogram class models based on pixel-wise colour histograms of size 8000
(20 bins for each colour) and gives a pixel-wise classification performance of 67.3%.
This coincides with the findings of [21], who report 67.1% for simple appearance based
features. Tab. 2 shows the performance of RGB only, and again the flexibility in selecting
the shape and offset of the rectangles results in increased performance (72.2%).
HOG features. As RGB based Random Forests are not strong enough to capture the
spatial variation of classes, we also introduce features based on the HOG descriptor [7].
We compute the HOG for the whole image using various cellsizes c in pixels, blocksizes
b in cells, and number of gradient bins g. This leads to a g ·b dimensional feature vector
for each cell (see fig. 4). The stacked HOG consists of c = {5,20,40} and g = {6,6,12}



RGB HOG HOG,RGB HOG,RGB,T CRF Others
9-class 72.2% 75.9% 84.5% 84.0% 87.2% 84.9% [21]

21-class 54.0% 56.3% 69.9% 69.7% 71.7% 72.7% [19]

Table 2: Feature combinations: Pixelwise classification performance on the 9 and 21-class
MSRC datasets using RGB, HOG and texton (T) features. For the 9-class dataset the forest consists
of 20 trees, each of a maximum depth 20; each node test is picked as the best of 500 node functions
per feature using information gain. For each node function the threshold λ which maximizes the
information gain is selected. For the 21-class dataset a forest of size 30 was used.

oriented gradient bins for each of the c values (with b = 4 cells in each block). This results
in 6 ·4+6 ·4+12 ·4 = 96 channels for each pixel p. It was important to have cellsizes c
ranging from small 5 to large 40. The performance of HOG alone is shown in tab. 2.
F17 filterbank. The filterbank described in [23] is used as an additional cue in the same
manner as the RGB.

5.1 Combining features
We combine these various feature types, whereby each feature (RGB, stacked HOG, tex-
tons T, F17) is treated as a separate pool and the feature maximising the information gain
is selected for each node.

Tab. 2 show the results of various feature combinations. Using all features combined
by exploiting the feature selection properties of Random Forests gives state of the art
results 84.5% on the MSRC 9-class, and 69.9% on the 21-class ([19] achieved 69.6%
with a boosted classifier). It can clearly be seen that the combination of RGB and HOG
gives a very strong boost in performance. The addition of texton features (although very
strong alone) is not able to increase performance (probably due to redundancy with HOG
and RGB), but the discriminative learning assures that the right features are selected and
performance does not decrease, thus the classifier is able to improve over state of the art.
VOC2007 [9]. On the very challenging VOC data our method using RGB,HOG, and
F17 achieves state state of the art performance ([18] reaches an average class performance
of 20%), and in combination with the CRF is slightly better (see following section).

6 CRF stage
After having learnt the class posteriors using the methods described in section 3, a CRF
[11] stage is applied to the pixel grid, where the state space of each pixel is the number of
classes, e.g. 9 in the case of the 9-class MSRC dataset.

The class posteriors from the Random Forest are used as unary potentials ψ and con-
stitute the most important part of the CRF-model. Additional terms are the contrast sensi-
tive Potts model φ [3] and a colour term π , based on a Gaussian mixture model estimated
from labels inferred using (4) with π = 0, on a per image basis. The colour model is
included to use colours peculiar to that image, rather than simply the colour node tests
learnt over all training images and included already in the posteriors/unary terms.

Given the image I, {i j ∈ I} describes the set of edges (4 neighbourhood in our case)
and gi j ∈ Rd describes the d dimensional colour difference vector, between pixel i and j.

logP(c|I) = ∑
i

(ψi(ci,I)+π(ci,I))+ ∑
i j∈I

φ(ci,c j,gi j) (4)



image MAP posterior CRF w/o colour CRF with colour
acc. 9-class 84.4% 87.2% 84.8%

Figure 5: The CRF helps to retrieve crisper object boundaries. Using an additional per image
colour model improves ‘good’ classifications further, but can hurt certain cases, e.g. last row. The
accuracy for the whole dataset in all three cases. The features used here were stacked HOG and
RGB.

describes the CRF energy with ci being the label for pixel Ii. We use TRW [10] to mini-
mize (4). The results in fig. 5, show that the CRF improves the performance slightly, but
more importantly improves the visual appearance of the segmentation. Using this addi-
tional colour model improves ‘good’ segmentations further see fig. 5 (aeroplane, build-
ing), but can deteriorate ‘bad’ classifications (black cow in the last row). In general the
results are very sensitive to the CRF parameters.

The performance on the 9-classes (87.2% without colour model; 84.8% with colour
model) is shown in fig. 5. For the 21-classes we achieve 71.7% without colour model
and 70.8% with the colour model. On the VOC2007 data we achieve 22% average class
performance. These results exceed state of the art performance or perform equally well
([18, 19, 21]).



7 Conclusion & future work
This paper has shown how to incorporate globally learnt class models into a Random
Forest classifier. It has also investigated the use of various global, local and context-
rich feature types in Random Forests. The features used in other work [2, 12, 18, 19] are
interpreted as special cases of the general family of features introduced here. Furthermore,
we have demonstrated how relaxing different constraints on such features leads to state of
the art classification accuracy on standard image datasets.

Interesting areas for future research include incorporating image level class ‘priors’
(as in [18]) to further boost performance, and moving from direct pixel classification to
an intermediate object detection stage before pixel classification.

References
[1] Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural Computation,

9(7):1545–1588, 1997.
[2] A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In Proc.

ICCV, 2007.
[3] Y. Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of

objects in N-D images. In Proc. ICCV, volume 2, pages 105–112, 2001.
[4] L. Breiman. Random forests. ML Journal, 45(1):5–32, 2001.
[5] H. A. Chipman, E. L. George, and R. E. McCulloch. Bayesian Ensemble Learning. In NIPS, 2006.
[6] A. Criminisi. Microsoft research cambridge object recognition image dataset. version 1.0, 2004.
[7] N. Dalal and B Triggs. Histogram of Oriented Gradients for Human Detection. In Proc. CVPR, volume 2,

pages 886–893, 2005.
[8] T. Deselaers, A. Criminisi, J. Winn, and A. Agarwal. Incorporating On-demand Stereo for Real-Time

Recognition. In Proc. CVPR, 2007.
[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[10] V. Kolmogorov. Convergent Tree-Reweighted Message Passing for Energy Minimization, 2005.
[11] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic Models for Segment-

ing and Labeling Sequence Data. In Proc. ICML, 2001.
[12] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE PAMI, 28(9):1465–1479, 2006.
[13] R. Marée, P. Geurts, J. Piater, and L Wehenkel. Random Subwindows for Robust Image Classification. In

Proc. CVPR, 2005.
[14] F. Moosman, B. Triggs, and F. Jurie. Fast Discriminative Visual Codebook using Randomized Clustering

Forests. In NIPS, 2006.
[15] M. Ozuysal, P. Fua, and V. Lepetit. Fast Keypoint Recognition in Ten Lines of Code. In Proc. CVPR,

2007.
[16] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1993.
[17] F. Schroff, A. Criminisi, and A. Zisserman. Single-Histogram Class Models for Image Segmentation. In

Proc. ICVGIP, 2006.
[18] J. Shotton, M. Johnson, and R. Cipolla. Semantic Texton Forests for Image Categorization and Segmen-

tation. In Proc. CVPR, 2008.
[19] J. Shotton, J. Winn, C. Rother, and A. Criminisi. TextonBoost: Joint appearance, shape and context

modeling for multi-class object recognition and segmentation. In Proc. ECCV, pages 1–15, 2006.
[20] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing features: efficient boosting procedures for multi-

class object detection. In Proc. CVPR, pages 762–769, 2004.
[21] J. Verbeek and Triggs B. Scene Segmentation with CRFs Learned from Partially Labeled Images. In

NIPS, 2008.
[22] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Proc. CVPR,

pages 511–518, 2001.
[23] J. Winn, Criminisi, A., and T. Minka. Object Categorization by Learned Universal Visual Dictionary.

Proc. ICCV, 2005.
[24] J. Winn and A. Criminisi. Object Class Recognition at a Glance. In Proc. CVPR, 2006.
[25] P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree-based Classifiers for Bilayer Video Segmentation. In Proc.

CVPR, 2007.


	Introduction
	Random Forests
	Decision trees
	Training and testing Random Forests

	Fusing global and local cues into Random Forest@let@token s
	Global class modeling via SHCM@let@token 
	Casting SHCM@let@token classification as a node function

	From SHCM@let@token to local features
	Experimental evaluation

	Introducing more visual cues
	Combining features

	CRF stage
	Conclusion & future work

