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Abstract. In this paper we present a new method for fully automatic
left ventricle segmentation from 4D cardiac MR datasets. To deal with
the diverse dataset, we propose a fully automatic machine learning ap-
proach using two layers of spatio-temporal decision forests with almost
no assumptions on the data or segmentation problem. We introduce 3D
spatio-temporal features to classi�cation with decision forests and pro-
pose a method for context aware MR intensity standardization and image
alignment. The second layer is then used for the �nal image segmenta-
tion. We present our �rst results on the STACOM LV Segmentation
Challenge 2011 validation datasets.

1 Introduction

The left ventricle plays a fundamental role in circulation of oxygenated blood
to the body. To assess its function, several indicators are often calculated in
clinical practice. Many of these are based on ventricular volume and mass mea-
surements at reference cardiac phases. To calculate these an accurate delineation
of the myocardium and the cavity is necessary. To remove the bias and variance
of manual segmentation, and obtain reproducible measurements, an automatic
segmentation technique is desirable.

Compared to computed tomography (CT), cardiac magnetic resonance imag-
ing (cMRI) o�ers superior temporal resolution, soft tissue contrast, no ionizing
radiation, and a vast �exibility in image acquisition characteristics. As a dis-
advantage, cMRI scans often yield signi�cantly lower resolution in the plane
orthogonal to the plane of acquisition, the images can su�er from magnetic �eld
inhomogeneities and respiration artifacts can manifest as slice shifts. Moreover,
the lack of standard units (compared to the Houns�eld scale in CT) makes it
di�cult to directly apply most of the intensity based segmentation techniques.

Motivated by the success of Lempitsky et al. [1] in myocardium segmentation
from 3D ultrasound sequences in near real time and Geremia et al.[2] for multiple
sclerosis lesion segmentation, we propose a fully automated voxel-wise segmen-
tation method based on decision forests (DF) with no assumptions on shape,
appearance, motion (except for periodicity and temporal ordering) or knowl-
edge about the cardiac phase of the images in the sequence. The left ventricle
segmentation problem is de�ned as the classi�cation of voxels into myocardium
and background.



Instead of robustly registering to an atlas [3], building a model [4] or running
a highly specialized segmentation algorithm we leave the learning algorithm to
automatically decide the relevant features for solving the segmentation prob-
lem using the provided ground-truth only. In principle, any pathology can be
learnt once a similar example is represented within the training dataset. The
previously used decision forests [1][2] rely on features that work the best when
image intensities and orientations are very similar. To tackle the highly variable
dataset, we propose a layered learning approach, where the output of each layer
serves a di�erent purpose. The �rst layer is used to prepare the data for a more
semantically meaningful and accurate segmentation task in the second layer.

The main contributions of this paper are: a method to use decision forests
to solve the MR intensity standardization problem (Section 3.1) and, similarly,
perform a context sensitive rigid registration (Section 3.2) to align all images to
a reference pose. We also suggest a way to introduce temporal dimension into
the currently used 3D random features (Section 2.2). Finally, on the intensity
standardized and pose normalized images, we then train a second forest layer
(Section 4) using also the spatial information. This helps the trees to automati-
cally build their own latent shape representation.

Dataset. STACOM 2011 LV segmentation challenge data [5] were divided into
two sets. Training set (100 3D+t short axis (SA) volumes with manually delin-
eated myocardia at each cardiac phase) and validations sets ( 5 × 20 3D+t SA
volumes with no delineation provided).

This dataset clearly shows the anatomical variability of heart shape and
appearance and some of the main issues of cMRI mentioned above.

2 Layered spatio-temporal decision forests

Decision forests are an ensemble supervised learning method consisting of boost-
ing a set of binary decision trees. The training set contains a set of feature
measurements and associated labels (myocardium/background) for each of the
voxels in the set.

The trees are built in a top-down fashion, from the root, down to the leaves.
At each node, local features and a randomly sampled subset of context-rich
features are considered for feature selection. Random sampling of the features
leads to increased inter-node and inter-tree variability to improve generalization.
Each feature θ can be regarded as a binary decision (in our case τl < θ < τh)
that splits the original set into two disjoint subsets. The trees then select the
most discriminative features for each split such that the information gain is
maximized. The data division then recursively continues until a signi�cant part
of the voxels at the node belongs to a single class and the node becomes a
leaf. The averaged class distributions of all the leaves in the forest reached by
the voxel then represent the posterior probabilities of it belonging to either the
myocardium or the background. See Geremia et al. [2] for more details.



2.1 Strategy to learn from spatio-temporal data

The layers are trained one by one, each with the aim to learn to segment. Training
with all the 3D+t data was not feasible within the time limits of the challenge,
therefore a reduced strategy was designed. This strategy is repeated for each
tree:

1. Select a random subset of k 4D volumes from the whole training set
2. Randomly choose a reference 3D frame Ic for each selected 4D volume
3. Select two frames Ic−o, Ic+o with a �xed o�set o on both sides from the

reference cardiac image Ic

4. Train the tree using a set of k triplets (Ic, Ic−o, Ic+o )

To reduce the computational time, the size of the subset for each tree was
set to k = 15, and only one �xed o�set o = 4 is currently used. The choice of o
was made such that the motion between the selected frames is important even
when more stable cardiac phases (end systole and diastole) are selected as the
reference frame and almost a half of the cardiac cycle could be covered.

2.2 Features

We use several features families to generate the random feature pool operating
on the triplets. Their overview can be seen on Figure 2.2).
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Fig. 1. Illustration of image based features extracted from the images. a) Local features
(3×3×3 box average S around the source voxel in the current frame Ic) [2]. b) Context
rich features [2] measuring the di�erence between source box average S and the sum
of remote region averages R1 and R2. c) Components x,y,z of voxel coordinates as
features[1]. d) Spatio-temporal context rich features with the current frame as the
source image and o�set frame Ic±o as the remote. e) Spatio-temporal context rich
features with one of the o�set frames as the source image and the other as remote.



Local features. Proposed in [2] as an average of intensities in the vicinity of
the tested voxel to deal with noise in magnetic resonance imaging:

θlocIc (x) = θlocIc ([x, y, z]) =

x′≤x+1∑
x′=x−1

y′≤y+1∑
y′=y−1

z′≤z+1∑
z′=z−1

Ic([x′, y′, z′]) (1)

Although these features are not intensity invariant, they can still quite well reject
some highly improbable intensities.

Context rich features. De�ned also in [2], for multichannel MR acquisitions
as a di�erence between the local source image intensity IS and box averages of
remote regions in image IR:

θCRIS ,IR(x) = IS(x)− 1

V ol(R1)

∑
x'∈R1

IR(x')− 1

V ol(R2)

∑
x'∈R2

IR(x') (2)

The 3D regions R1 and R2 are randomly sampled in a large neighborhood around
the origin voxel. These capture strong contrast changes and long-range intensity
relationships. In our case we de�ne context-rich features as θCRIc,Ic(x).

Spatio-temporal context rich features. The moving heart can be well
coarsely extracted by just thresholding the temporal di�erence magnitude of the
image. We propose to exploit this wealth of information and extend the previ-
ously context-rich features into the temporal domain by comparing the "current"
3D frame Ic and another frame o�set from c by ±o. The temporal context-rich
features can be de�ned as θTCR1

Ic = θCRIc,Ic+o(x) and θTCR1
Ic = θCRIc,Ic−o(x).

Similarly, we measure the di�erences between the symmetrically o�set frames
contained in the triplet as θTCR2

Ic (x) = θCRIc+o,Ic−o(x) and θTCR2
Ic (x) = θCRIc−o,Ic+o(x).

These spatio-temporal features can be seen as an approximation of a temporal
di�erentiation around the center frame. Note that we use both +o and −o to
keep some symmetry of the remote region distribution.

Voxel coordinates. Finally, as in [1], we can insert voxel coordinates: θXC (x) =
xx, θ

Y
C (x) = xy, θ

Z
C(x) = xz into the feature pool. However, not until these

coordinates have a meaning; which happens later, in the second forest layer
when the images are reoriented into the standard pose.

2.3 Data preprocessing

To use fast evaluation of previously de�ned features based on integral images [6],
it is necessary to have consistent spacing. Therefore, all the volumes were resam-
pled to one of the most common spatial spacings in the dataset (1.56, 1.56, 7.42mm)
and temporal sequence length (20 frames).

Intensity ranges of the images were all linearly rescaled to a �xed range.
Similarly to Nyúl et al. [7], we clamp intensities beyond the 99.8 percentile as
they usually do not convey much useful information.



3 First layer: Decision forests for image intensity

standardization and position normalization

Following the above mentioned training subset selection strategy we can train
the �rst layer of the forests. This is done directly on the images after intensity
rescaling i.e. images are brought into the same intensity range but have their
original poses. Although short axis scans are often acquired close to a position
where the ventricular ring is centered, slice orientation is chosen manually during
the acquisition, and precise alignment cannot be guaranteed. Therefore we skip
the usage of voxel coordinate features at this step.

Fig. 2. Short (top) and long (bottom) axis views on the posterior probabilities after
the �rst layer. Brighter value means higher probability.

Several authors (e.g. [3]) have proposed to use Haar like features to detect the
heart and crop the heart region. Images can be then registered using the cropped
volumes. This removes the in�uence of background structures and improves the
success rate for the registration. However, an extraction of the cropped region
will not be necessary to perform a robust registration in our case. We train the
�rst layer of the forests on a rather general scenario, to end up with at least
a very rough classi�cation performance (see Figure 2). As we show in the next
two sections, using the rough posterior probability map of a tissue belonging to
a ventricle this performance can be already good enough for ventricle detection,
intensity standardization and alignment onto a reference orientation without any
prior knowledge of the data apart from the ground-truth.

3.1 Intensity standardization

MR intensity value di�erences of the same tissue are signi�cant not only be-
tween scanners, acquisition protocols [8] but also for the same followup patients
[7]. Therefore good intensity standardization is crucial for any intensity based
segmentation algorithm. The variance in median intensities of the myocardia
between di�erent cases in the STACOM training set is quite large. There is no



unique mode and the distribution is fairly spread in the whole intensity range
(0, 65535). Median myocardial intensities span range (1954, 36430), with stan-
dard deviation of 5956 and inter-quantile range 7663). This is a serious problem
for any intensity based segmentation method.

Many of the intensity standardization algorithms [9] used today are based on
the methods of Nyúl et al. [7][10] and the alignment of histogram based land-
marks (e.g. modes, percentiles or statistics of homogeneous connected regions)
by rescaling image intensities with a piecewise linear mapping. Many of these
methods to work reasonably well for brain images where the white matter is
clearly the most dominant tissue. In cMRI, the largest homogeneous regions
would most of the time belong to the lungs, liver or cavities, rather than the
myocardium.

However, from the rough image �rst layer classi�cation we already obtain
some information about the strength of the belief in the foreground and back-
ground object. We propose to remap the source image intensities by a piecewise
linear function such that the weighted median (as median is more robust to out-
liers than the mean) M c

source of the images is transformed to a reference value
Mref . The weighted median is de�ned as follows:

M c
source = arg min

µ

∑
x∈Ic

w(x).|Ic(x)− µ| (3)

Where x is the voxel iterator and w(x) are the weights(�rst layer posterior proba-
bilities). We avoid sorting of all volume intensities by approximating the weighted
median with the weighted version of the P 2 algorithm [11][12]. This algorithm
dynamically approximates the cumulative probability density function with a
piece-wise quadratic polynomial by shifting positions of just �ve markers as
the weighted samples are streamed in. Each of these markers are associated with
their position, percentile and an intensity value corresponding to that percentile.
The positions are updated such that they correspond to the sum of weights of
samples whose intensity value is smaller than the value the markers hold.

3.2 Orientation normalization

In the approach of Lempitsky et al. [1] coordinate features are used directly. This
choice cannot be justi�ed without aligning the images onto a reference pose.
Moreover, features we use for classi�cation are not rotation invariant. Therefore
if all the volumes could be registered to have the same orientation, the classi�-
cation would certainly bene�t from it. The interpatient cardiac registration are
generally a di�cult problem due to the high variability in the thoracic cage. Shi
et al. [3] do �rst learning based heart detection and then apply a locally a�ne
registration method which they claim to be robust for large di�erences.

A robust learning based linear inter-patient organ registration was proposed
by Konukoglu et al.[13]. Here, each organ is represented with a smooth probabil-
ity map �t to the bounding boxes obtained as a result from classi�cation. Then,
registration of these probability maps is performed. This sigmoid representation



is however rather limiting since it disregards the orientation that we would like
to correct for.

Without any assumptions on the shape of the distribution, we propose to
use a fast and robust rigid block matching registration technique [14] directly
on the myocardium enhanced �rst layer posterior probability maps instead and
obtain the transformation. The reference we used was chosen randomly among
the images where the apex was at least partially closed. A better choice of the
reference, is currently out of scope of this paper. However, an algorithm similar
to Hoogendoorn et al.[15] or a generative technique similar to [16] could be used.

Note, to reduce the computational time, only frames from the middle of the
sequence are used to estimate the intensity and pose transformations. The same
transformations are then applied to the rest of the frames and also to the ground
truths that will be now needed in the second layer.

4 Second layer: Learning to segment with the shape

4.1 Using voxel coordinates

Once the images are registered to a reference volume, the voxel coordinates
start to encode spatial relationships with respect to the reference coordinate
frame and the coordinate features can be now included in training of the second
decision forest layer. Moreover, if the intensity standardization step succeeds,
the intensities have more tissue speci�c meaning (at least for the myocardium).

Thanks to the incorporation of coordinate based features, the tree can com-
pletely automatically learn its own latent representation of the possible set of
shapes, regularize the classi�cation, and help to remove objects far away from
the ventricle. However, this step strongly relies on the success of the previous
registration step. Currently, only one reference image is used. Registration to
multiple targets should therefore improve robustness and alleviate this problem.

4.2 Transforming the volumes back

After the classi�cation is done in the reference space, the posterior probability
maps can be transformed back to the original reference frame and be resampled
accordingly. This shows the advantage of a soft classi�cation technique where
the �nal binary mask is obtained by thresholding the transformed non-integer
posterior map, thus avoiding some of the interpolation artifacts.

5 Results

Here we show the preliminary results of our method. The forest parameters for
the �rst layer were �xed as follows: 20 trees with depth 20 each. To train each
tree, 15 frames (+ their corresponding o�set neighbours) from di�erent volumes
were randomly selected from the whole training set (91 volumes in total). For
the second layer: 27 trees each with depth 20. For each tree 12 frames (+ their



Fig. 3. Short (top) and long (bottom) axis views on the posterior probabilities after
the second layer and segmentation results (isocontour of the probability map at 0.5)

corresponding o�set neighbours) from di�erent volumes were randomly selected
from the training set (91 volumes in total). There is a vast reserve in utilisation
of the training set and optimal forest sizes. These parameters were chosen rather
empirically to �t into the computational and time limit of the challenge.

After blind evaluation of our classi�cations on 90 volumes i.e. 25415 slices
from the validation dataset by the STACOM LV segmentation workshop organ-
isers following per slice measurements were obtained.

6 Conclusions

We presented our preliminary results of our fully automatic machine learning
based algorithm for left ventricle segmentation. The algorithm learnt to auto-
matically select discriminative features for the task using the ground-truth only.
The only assumptions we make is that the motion of the object to be segmented
is periodic and that the ideal intensity mapping between two di�erent cases can
be approximated by a monotonically increasing function. We also introduced a
learning based intensity standardization method that allows to do tissue speci�c
remapping of intensities and obtain a more CT like behaviour.

The results were obtained from pure learning, completely automatically, with
no interaction and post-processing, and an important reserve on the search of op-
timal parameters. This should help us to further improve the segmentation (e.g.



sensitivity speci�city accuracy PPV NPV dice jaccard
TP

TP+FN
TN

FP+TN
TP+TN
P+N

TP
TP+FP

TN
TN+FN

2|A∩B|
|A|+|B|

|A∩B|
|A∪B|

mean 0.6857 0.9897 0.9861 0.4791 0.9962 0.5045 0.3730

median 0.8099 0.9907 0.9875 0.5234 0.9978 0.5995 0.4281

σ 0.3137 0.0077 0.0077 0.2069 0.0046 0.2571 0.2098

Table 1. Statistics on the per-slice measures of our segmentation results on 90 vol-
umes from the validation dataset. The per-slice measurements strongly penalize voxel
misclassi�cations in the apical and basal areas where the slices contain only very few
groundtruth voxels which leads to increased variance in the measures. On the other
hand, high speci�city is to be expected given the proportion of background on the im-
age compared to the myocardium. Nevertheless, it shows that the algorithm's abilities
to most of the time correctly identify the background without much clutter.

number of frames used for training per tree, tree count etc.). The classi�cation is
run independently for each voxel with no connectivity nor temporal consistency
constraints. Therefore isolated segmentation islets or holes in the resulting bi-
nary segmentation can occur as a result of misclassi�cation. However, thanks to
the coordinate features, voxels far from the myocardium are normally well dis-
carded. Moreover, in the soft classi�cation, the holes are represented as a drop
in the segmentation con�dence but rarely fall to zero. This information could be
easily considered in the regularization step to further improve the segmentation.

Finally, using a curvature-based iterative hole �lling algorithm [17] on the bi-
narized segmentation, we can automatically calculate volumetric measurements
and detect the main cardiac phases (see Figure 4).
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Fig. 4. a) Automatically calculated volume curve from patient DET0026701 during a
single cardiac cycle with detected end systole (ES) and end diastole (ED) frames at
the volume maximum and minimum respectively. b) Long axis crosssection through
the binarized segmentations at ED and ES.
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