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Abstract. This paper introduces a new, efficient, probabilistic algo-
rithm for the automatic analysis of 3D medical images. Given an in-
put CT volume our algorithm automatically detects and localizes the
anatomical structures within, accurately and efficiently.

Our technique builds upon randomized decision forests, which are enjoy-
ing much success in the machine learning and computer vision communi-
ties. Decision forests are enriched here with learned visual features which
capture long-range spatial context. In this paper we focus on the detec-
tion of human organs, but our general-purpose classifier might be trained
instead to detect anomalies. Applications include (and are not limited
to) efficient visualization and navigation through 3D medical scans.
The output of our algorithm is probabilistic thus enabling the modeling
of uncertainty as well as fusion of multiple sources of information (e.g.
multiple modalities). The high level of generalization offered by decision
forests yields accurate posterior probabilities for the localization of the
structures of interest. High computational efficiency is achieved thanks
both to the massive level of parallelism of the classifier as well as the use
of integral volumes for feature extraction.

The validity of our method is assessed quantitatively on a ground-truth
database which has been sanitized by medical experts.

1 Introduction

This paper presents a new, efficient algorithm for the accurate detection and
localization of anatomical structures within CT scans. This work represents a
significant step towards automatic parsing and understanding of medical images.

Our effort is motivated by recent studies which indicate how the great ma-
jority of a radiologist’s time is spent searching through scanned volumes (often
slice by slice) and navigating through visual data. Even with modern 3D visual-
ization tools locating the organ(s) of interest and selecting optimal views is time
consuming. Automatic tools for localizing major anatomical structures within
3D scans promises to speed up navigation and improve the user’s work-flow [1].
For instance, a cardiologist may just click on a button to take him/her to the
most appropriate view of the heart and its valves. Robust and efficient, proba-
bilistic organ detection is also useful as input to other, more specialized tasks,
e.g. detecting the heart to initialize a coronary tree tracer tool.

The two main contributions are: 1) We introduce an efficient algorithm for
organ detection and localization which negates the need for atlas registration;



thus overcoming issues related to, e.g. : i) possible lack of atlases, and ii) selecting
the optimal model for geometric registration. 2) We introduce new, context-
rich visual features which capture long-range spatial correlations efficiently. The
simplicity of our features combined with the intrinsic parallelism of our classifier
yield high computational efficiency. Finally, our algorithm produces probabilistic
output, useful for instance to keep track of uncertainty in the results, to take
into account prior information (e.g. about global location of organs) or to fuse
multiple sources of information (e.g. different acquisition modalities).

The proposed algorithm is applied here to the task of localizing nine anatomi-
cal structures (head, heart, left eye, right eye, 1. kidney, r. kidney,
1. lung, r. lung, and liver) in CT volumes with varying resolution, vary-
ing cropping, different patients, different scanner types and settings, contrast
enhanced and not etc. Quantitative assessment is executed on a number of man-
ually labelled ground-truth CT volumes.

Previous work. In the last few years research in object detection and recogni-
tion has made huge progress. The published work which is relevant to medical
applications may be broadly categorized into the following three groups:

Geometric methods include template matching, and convolution techniques [2].
Geometrically meaningful features are used in [3, 4] for the segmentation of the
aorta and the airway tree, respectively. Such geometric approaches often have
problems capturing invariance with respect to deformations (e.g. due to patholo-
gies), changes in viewing geometry (e.g. cropping) and changes in intensity. Tech-
niques built upon “softer” geometric models with learned spatial correlations
have been demonstrated to work well both for rigid and deformable objects [5].

Atlas-based techniques have enjoyed much popularity. Recent techniques for sin-
gle and multiple organ detection and segmentation based on the use of probabilis-
tic atlases include [6-10]. The apparent conceptual simplicity of such algorithms
is in contrast to the need for accurate, deformable registration algorithms. The
major problem with n-dimensional registration is in selecting the appropriate
number of degrees of freedom of the underlying geometric transformation; espe-
cially as it depends on the level of rigidity of each organ/tissue.

Supervised, discriminative classification. Discriminative classification algorithms
such as Support Vector Machines (SVM), AdaBoost and Probabilistic Boosting
Trees have been applied successfully to tasks such as: automatic detection of tu-
mors [11-14], pulmonary emphysema [15], organs in whole-body scans [19] and
brain segmentation [16-18]. Our approach is also a discriminative classification
technique. It achieves multi-class recognition efficiently and probabilistically. The
classifier employed here is a random decision forest which, in non-medical do-
mains has been shown to be better suited to multi-class problems than SVMs,
as well as being more effective than boosting [20, 21]. A model of spatial context
is learned by automatically selecting visual features which capture the relative
position of visual patterns. Next we describe the details of our technique.
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Fig. 1. Constructing labelled ground-truth databases. Organs within 3D CT
scans are labelled via 3D, axis-aligned bounding boxes; different colours indicating
different organs. Note that the fact that the boxes overlap is not a problem as they are
used to indicate the position of the organ centre and the organ’s approximate extent.

2 Automatic Parsing of CT Volumes

This section presents our ground-truth database, describes the decision forest
classifier in the context of CT images and illustrates the visual features employed.

2.1 Labelled ground-truth database and exemplars

We have 39 CT volumes which have been annotated with 3D bounding boxes cen-
tred on each organ using our own annotator tool (shown in fig. 1). The user loads
a CT scan, locates the organ of interest and draws a 3D box tightly around the or-
gan. The database is split randomly into training and test sets as outlined in sec-
tion 3. We focus on the following nine organs: head, heart, left eye, right
eye, 1. kidney, r. kidney, 1. lung, r. lung, and liver. The use of axis-
aligned boxes enables speedy manual annotation and is sufficient for tasks such as
detection!. Our dataset comprises both contrasted and non-contrasted CT data,
from different patients, cropped in different ways, with different resolutions and
acquired from different scanners.

The goal is to determine the centre of each organ in previously unseen CT
scans. A supervised technique such as ours needs to be trained from positive and
negative examples of organ centres. Exemplars are provided from the annotation
boxes as follows (cf. fig. 2). For each organ (e.g. the right kidney in fig. 2) we
denote its annotation box with B®. The set of positive training example points
for the organ centre are defined as the set of points within a small box B*: with
BT of fixed size and located in the centre of B®. Similarly, negative examples
are all points outside the box B~ with same centre and aspect ratio as B* but
50% in size. The region between B~ and B7 is ignored.

! 2D annotation boxes (with no pixel-wise annotation) are used extensively in the PAS-
CAL VOC challenges: pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/



a .
B® : Ground-truth annotation box.

B~ Negative examples for centre
of organ outside the larger box.

B+ : Positive examples for centre
of organ (kidney in this example)
inside small box.

Fig. 2. Positive and negative training examples. (a) A 3D view illustrating the
ground truth annotation box B®, the box of positive examples BT and the box of
negative examples B~. (a) A 2D view further clarifying the regions where exemplars
for the organ centre are taken. Positive examples are sampled within the box Bt (in
green). Negative example points are sampled outside the box B~ (in red).

2.2 Decision forests for recognition in 3D medical images

This section describes our adaptation of decision forests to the task of organ
detection and localization in 3D CT scans.

A random decision forest [23, 24] is a collection of deterministic decision trees.
Decision trees are popular classification algorithms which are known to suffer
from over-fitting (poor generalization). Recently, it has been shown that the
ensemble of many randomly trained decision trees (a random forest) yields much
better generalization while maintaining the advantages of conventional decision
trees [23]. Intuitively, where one tree fails the others do well.

We use the following notation. A voxel in a volume V is defined by its coordi-
nates x = (z,y, z). The forest is composed of T trees denoted ¥y, - -+, Wy, - -, Ur;
with ¢ indexing each tree (fig. 3). In each tree, each internal node (split node)
performs a binary test on the input data and based on the result directs the
data to the left or right child. The leaf nodes do not perform any action, they
just store probability distributions over the organs of interest. Next we describe
how the split functions are chosen and how the leaf probabilities are computed.
Forest training. Each point x of each training volume is associated with a
known (manually obtained) class label Y (x). The label indicates whether the
point x belongs to the positive set of organ centres (see fig. 2) or not. Thus,
Y (x) € { head, heart, left eye, right eye, 1. kidney, r. kidney, 1.
lung, r. lung, liver, background }, where the background label indicates
that the point x is not an organ centre.

During training 7T is fixed (we use T = 10). Then, each point x is pushed
through each of the trees starting at the root. Each split node applies the follow-
ing binary test: £ > f(x;60) > 7 and sends the data to the respective child node.
f(+) is a function applied to x with parameters 8. The parameters 6 identify the
visual features which needs be computed. Features are described in the next sec-
tion; for now it suffices to say that f computes some scalar filter response at x.
¢ and T are parameters of the split node. The purpose of training is to optimize
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Fig. 3. Random Decision Forests. (a) An example random decision forest made of
3 trees. In each tree the internal nodes (shown with ellipses) perform simple tests on
the input data while the leaf nodes (shown as squares) store the posterior probabilities
over the classes being trained. During testing, a data point is pushed simultaneously
through all T" trees until it reaches T leaf nodes. The probability assigned to that point
is the average of the probabilities of all the reached leaves (see text). (b) Each internal
node performs a simple binary tests on the input data x, based on the feature response
f(x;0). The quantities &, 7 and @ are parameters of the splitting test in that node.

the values of 0, &, 7 of each split node by maximizing the data information gain,
just like in the standard C4.5 tree training algorithm [25].

Injecting randomness for improved generalization. However, unlike standard tree
training methods, here the parameters of each split node are optimized only over
a randomly sampled subset © of all possible features (here |©| = 500, details in
section 2.3). This is an effective and simple way of injecting randomness into the
trees, and it has been shown to improve generalization.

During node optimization all available features 6; € @ are tried one after
the other, in combination with many discrete values for the parameters £ and
7. The combination £*,7*,8" corresponding to the maximum information gain
is then stored in the node for future use. The expansion of a node is stopped
when the maximum information gain is below a fixed threshold. This gives rise
to asymmetrical trees which naturally stop growing when no further nodes are
needed. In this work the maximum tree depth D is fixed at D = 15 levels.

Finally, by simply counting the labels of all the training points which reach

each leaf node we can associate each tree leaf with the empirical distributions over
classes P}, x) (Y (x) = ¢), where l; indexes the leaf node in the t'" tree (fig. 4f).
This training procedure is repeated for all T component trees.
Testing. During testing each point x of a previously unseen CT volume is
simultaneously pushed through each of the T trees until it reaches a leaf node.
Thus, the same input point x will end up in T different leaf nodes, each associated
with a different posterior probability. The output of the forest, for the point x,
is the mean of all such posteriors, i.e. :

P =) = 5 P (V(x)=0). (1)



Other ways of combining the tree posteriors have been explored and simple
averaging appears to be the most effective (as demonstrated also in the vast
literature). Also, analyzing the variability of individual tree posteriors carries
useful information about the uncertainty of the final forest posterior.

Organ detection. At this point detecting the presence/absence of an organ c is
done simply by looking at the max probability P. = maxyx P (Y (x) = ¢). The
organ c is considered present in the volume if P, > 3, with 8 = 0.5.

Organ localization. The centre of the organ c is estimated by marginalization
over the volume V:

XC:/ x p(x|e) dx, (2)
1%

where the likelihood p(x|c) = P (Y (x) = ¢) by using Bayes rule and assuming
uniform? distribution for organs. Furthermore, maximum a-posteriori classifi-
cation for each voxel x may also be obtained as: ¢* = argmax, P (Y (x) = ¢).
After having described our classification algorithm, next we provide details of
the visual features employed.

2.3 Visual features and learned spatial context

The problem with identifying anatomical structures in CT images is that differ-
ent organs may share similar intensity values. Thus, local intensity information
is not sufficiently discriminative and further information such as texture, spatial
context and topological cues must be used to have any chance of success. The
problem then is how to capture and model such information efficiently.

Here we consider visual features which capture both the appearance of anatom-
ical structures as well as their relative position (context) within the decision
forest framework. For each location x context is modeled by integrating infor-
mation coming from multiple regions which are offset by a quantity A in a
given direction. Figures 4 explains the main concepts with a 2D illustration.
A feature 0 is defined as a reference point o paired with two boxes Fi, Fo
and two signal channels Cy,C5. The shapes F; are just 3D boxes displaced
with respect to o. The channels C; could be for example the CT intensity
(C(x) = I(x)), or the magnitude of the 3D gradient (C(x) = |VI(x)|). Given
a point x in a volume, computing the feature response f(x;0) corresponds to
aligning the reference point o of the feature 8 with the point x and computing
f(x:0) = > qer Ci(a) — b3k, C2(a). The parameter b € {0,1} indicates
whether both feature boxes are used or only one (in fig. 4 b = 0 for simplicity).

As shown in fig. 4 these features tends to capture the relative layout of visual
patterns (e.g. kidney patterns tend to occur a certain distance away, in a certain
direction, from liver patterns, fig. 4d). The use of rectangular regions enables
efficient integral volume processing [29,30,16]. Our features may be thought
of as a generalization of the Haar-like features used in [26, 30,16, 17]. In fact,
we do not use manually predefined Haar subdivisions of a canonical cuboid.
Our classifier is free to select features with very large offsets A, which enables

2 Alternatively one can weight each class based on its own volume in the training set
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Fig. 4. Context-rich visual features, a 2D illustration. (a) Coronal view of a
patient’s abdomen. (b) Features (denoted ;) are defined as the rigid pairing between
a box I' and a reference point o. Here we show only some of the infinite possible features.
In practice we use 3D axis-aligned boxes. (¢) Computing the feature response f(x;8)
at position x within a volume corresponds to aligning o with x and computing the sum
f(x;0) = quF 1(q) (cf. text. For simplicity here we use intensity as the channel and
only one rectangle). For feature 613 when o is on the kidney the rectangle F' is in a
region of low density (air). Thus the value of f(x;8) is small for those points. During
training the algorithm will learn that feature 613 is discriminative for the position of
the right kidney when associated with a small, positive value of the threshold &3 (with
713 = —00). The region for which the condition &13 > f(x;60) > 73 is true is shown
in green. (d,e) Similar to (c) but with different features. (f) Training associates each
node with optimal values of &, 7,0. In this example, a data point which follows the
highlighted path (in blue) gets assigned a high probability of being the centre of a
kidney. (g) The points which satisfy all three conditions in (f) lie in the intersection
of the three regions (c, d, e), highlighted in dark green, inside the organ of interest.

capturing very long-range spatial interactions. Inspection of the trained trees
reveals that often the A of selected features can be as large as the image width.
For simplicity, in this paper we only consider intensity and gradient as channels.
However, our features are more flexible and general than that as they allow to
incorporate complex filters such as SIFT, HOG etc. Multiple modalities may
also be exploited; e.g. in the case of MR one may use T1, T2, FLAIR etc. More
complex visual cues such as the ones described in [27,28] or differently shaped
aggregation regions may also be employed.

During training, for each split node the set © is obtained by randomly gener-
ating for each feature the two boxes Fy, Fy (e.g. their centre and dimensions are
randomly selected) and the corresponding channels Cy, Cy. Then all nodes are
optimized and once training completes the trees, their nodes and the selected
features are frozen and the testing phase proceeds deterministically.



2.4 Discussion and comparisons

The classifier used here is related to the Probabilistic Boosting Tree in [16]. In
our case, the tree nodes contain test functions that are simpler than the boosters
used in [16], with advantages in terms of speed both during training and testing.
Furthermore, as shown in [20], a collection of simple, randomized trees tends to
yield better generalization than a single tree of boosters.

In [17] the authors capture context by means of an algorithm which at each
iteration uses the posteriors of the previous iteration as features. This produces
good results at a cost of multiple iterations. Our algorithm is not iterative and
captures spatial correlations of visual patterns, namely “appearance context”.
Furthermore, our kernels have much longer range. Finally, we do not require
preregistration of the CT volumes.

Localizing anatomical structures by atlas registration is a popular option.
However, such techniques have to deal with issues such as: i) the optimal choice
of degrees of freedom of the registration model (e.g. both fully rigid and fully
deformable transformations are bad); ii) the optimal choice of the reference tem-
plate (e.g. an adult male body? a child? or a woman? contrast enhanced or not?);
and iii) robustness to anatomical anomalies (training a classifier on data which
presents anomalies allows the system to learn invariance to those).

The work in [19] makes use of information gain to optimize the scheduling
of single-organ boosted detectors. In our work we use information gain at the
level of feature selection, and detection happens via an ensemble of decision trees
simultaneously for all organs. The selected features are organized hierarchically,
with the most discriminative ones in the top layers of each tree. This has the
advantage of “sharing” the most discriminative features amongst classes (organs)
and sets of classes, with positive effects on generalization (e.g. see [31] for details
on feature sharing and [20] for a detailed comparison between AdaBoost, decision
trees and decision forests). Next we quantify the performance of the proposed
algorithm and compare it to some known alternatives.

3 Experimental Results and Validation

This section presents qualitative and quantitative assessment of the accuracy of
our algorithm applied to the tasks of organ detection and localization.

3.1 Automatic organ detection and localization

Qualitative results are shown in fig. 5. Our classifier applied to previously unseen
CT scans produces accurate posteriors for the location of organ centres. In these
visualizations the computed posteriors are used to modulate the transfer function
employed during 3D rendering. For instance, notice how the mass of the heart
probability (in red) is correctly concentrated around the centre of the heart
region. Similarly for the light brown region indicating the liver, etc.

Quantitative evaluation of accuracy. Localization accuracy is assessed here by
running training and testing multiple times. In each round the database is split



Test dataset 1

N o™
4 4
Y] Q
wv v
o o
= =
o o
o o
4+ 4
3 3
~ ~

(0]

Fig. 5. Results of automatic organ detection and localization. (a) The original
3D CT data rendered using a manually-designed colour transfer function. (b) Three
views of the 3D organ posterior probabilities computed by our algorithm for the local-
ization problem. Different colours indicate different organs. Larger opacities indicate
larger probability of a voxel being the organ centre. Notice how well eyes (green), head
(yvellow), heart, lungs, liver and even kidneys (purple) have been localized. A faint body
outline is shown to aid visualization. (c) 3D views of the automatically detected bound-
ing boxes including the heart and left lung. (d,e) Results on two more test datasets.
The different datasets (related to different patients) are cropped differently and have
different resolutions.

randomly into a training and a test set (with approximate ratio of 2 : 1). For
all algorithms evaluated in this section the same 10 random splits are used. The
forest is optimized on the training set only, and then applied on the test set.
Then, the location of each organ centre is computed and compared with ground
truth. Resulting localization errors collected from 10 runs (with D = 15,|60| =
500) are shown below (in mm).

l organ “head[heart[l. eye[r. eye[l. kidney[r. kidney[l. lung[r. lunglliveerean across organs‘

median|[25.58| 18.31 | 24.04 | 25.71 13.52 29.49 22.93 21.94 (19.01 22.28 mm

mean [|29.92]21.32| 28.78 | 27.14 25.42 44.52 27.05 26.75 [22.68 28.18 mm

[ std J[12.80[ 5.67 [ 1888 [18.66 [ 9.82 | 1500 | 725 [ 944 [530] 1142mm |

Standard deviations (computed across the means of all runs) are reported
here only to provide an indication of stability with respect to different train/test
splits. Our algorithm achieves an overall localization error of ~ 2 cm for median.
Eyes show the largest localization uncertainty across different runs (largest std),
probably due to their smaller size. Furthermore, the use of larger training sets
together with global position and shape priors [16] promises to improve general-
ization across different individuals and anatomies (e.g. missing organs etc.), and
increase both the accuracy and its confidence further.



3.2 Comparisons with other algorithms

Gaussian Mizture Models. For comparison we implemented a GMM-based tech-

nique where each organ is modelled by fitting a Gaussian Mixture Model to

its distribution of CT intensities. During testing, for each voxel x we evaluate

the probability of that point being the centre of a certain organ c. The centre

position is then estimated as in (2). Localization errors are reported below:
l organ H head ‘heart‘l. eye‘r. eye‘l. kidney‘r. kidney‘l. lung‘r. lung‘liveerean acr. organs‘
median|| 53.48 | 88.54 | 81.56 | 85.59 | 133.04 123.38 89.32 | 89.59 |99.63 93.79 mm
mean ||144.27|98.32|174.56 |168.42| 125.55 128.04 104.88 | 100.29 |98.06 126.93 mm
[ std [[95.63]9.55 [121.46][114.19] 1870 [ 1510 [ 848 [ 6.19 [1476]] 4490 mm |

The table above shows much larger errors than with our technique. An analy-
sis of the posteriors shows that some organ labels are almost uniformly scattered
spatially. This induces a bias of the detected centres towards the centre of the
volume (thus incorrect), with at times low variance. The reason for such unsat-
isfactory results is that the GMM approach is based solely on the organs global
appearance and fails to capture spatial context; and ways of integrating spatial
context efficiently within a GMM-based approach are not straightforward. In
this case the use of further features such as gradients did not seem to help much.

Template matching. We also compared our technique with a template based

method. Here, each organ is represented by a set of 3D templates, extracted

from the training volumes and each containing the whole organ. During testing,

for each organ ¢ we convolve the input volume with all exemplars for that organ

and select as centre the point associated with the maximum correlation score

over all exemplar templates. Localization errors are reported below.
l organ “ head [heart[l. eye[r. eye[l. kidney[r. kidney[l. lung[r. lunglliver“mean acr. organs‘
median{|167.53|226.54| 96.00 | 98.53 | 215.31 343.64 | 230.12 | 30.89 |96.18 167.19 mm
mean |[240.31{191.94|238.12|300.05| 229.23 303.29 177.18 | 134.42 |150.46 218.33 mm
[ std [[209.08[24.16 [ 51.33 [ 57.20 [ 33.09 [ 67.33 [ 24.41 | 40.03 [55.15] 6242 mm |

In this case the results are still worse than with our technique. We believe
this is because rigid templates fail to model variations in object’s shape, scale
and cropping. In this case too the use of gradient features did not help. Finally,
as the number of organs of interest increases having to store exemplar templates
becomes prohibitive, and the processing burden shifts from training to test.

3.3 Computational efficiency

Training our decision forest model on ~ 26 datasets currently takes around 10
hours on an 8-core Intel desktop. We are planning to port the algorithm onto a
High Performance Computing cluster which should reduce training to only about
1 hour. Testing is much faster. In fact, a GPU implementation (following [22])
runs in ~ 2 sec for an approximately 5123 volume.



4 Conclusion

This paper has introduced a new algorithm for the efficient detection and local-
ization of anatomical structures within Computed Tomography volumes.

We have presented efficient 3D visual features which capture long-range spa-
tial context and help discrimination accuracy. Those features have been incorpo-
rated within a random decision forest classifier. The algorithm’s parallel nature
and the efficiency of its visual features account for the high computational effi-
ciency. The learned model of context accounts for the good localization accuracy.

Next, we plan to extend our technique to other imaging modalities such as
MRI, PET-CT and ultrasound. Also, adapting our algorithm to perform hier-
archical detection (e.g. thorax — heart — mitral valve) will help dealing with
detailed anatomical structures and will yield richer semantic parsing of medi-
cal images. Finally, we would like to extend our work to producing pixel-wise
segmentation of complex anatomical structures such as elongated blood vessels.
This will necessitate building pixel-wise annotated ground-truth databases and
promises to deliver useful results.
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