
Entangled Decision Forests and their Application for 

Semantic Segmentation of CT Images 

Albert Montillo
1,2

, Jamie Shotton
2
, John Winn2, Juan Eugenio Iglesias

2,3
,  

Dimitri Metaxas
4
, and Antonio Criminisi2  

 
1 GE Global Research Center, Niskayuna, NY, USA    montillo@ge.com, 

2 Microsoft Research, Cambridge, UK  

{jamie.shotton, jwinn, antcrim}@microsoft.com, 
3 University of California, Los Angeles, USA    jeiglesias@ucla.edu, 

4 Rutgers Univeristy, Piscataway, NJ USA   dnm@rutgers.edu 

Abstract. This work addresses the challenging problem of simultaneously 

segmenting multiple anatomical structures in highly varied CT scans. We 

propose the entangled decision forest (EDF) as a new discriminative classifier 

which augments the state of the art decision forest, resulting in higher 

prediction accuracy and shortened decision time. Our main contribution is two-

fold. First, we propose entangling the binary tests applied at each tree node in 

the forest, such that the test result can depend on the result of tests applied 

earlier in the same tree and at image points offset from the voxel to be 

classified. This is demonstrated to improve accuracy and capture long-range 

semantic context. Second, during training, we propose injecting randomness in 

a guided way, in which node feature types and parameters are randomly drawn 

from a learned (non-uniform) distribution. This further improves classification 

accuracy. We assess our probabilistic anatomy segmentation technique using a 

labeled database of CT image volumes of 250 different patients from various 

scan protocols and scanner vendors.  In each volume, 12 anatomical structures 

have been manually segmented. The database comprises highly varied body 

shapes and sizes, a wide array of pathologies, scan resolutions, and diverse 

contrast agents. Quantitative comparisons with state of the art algorithms 

demonstrate both superior test accuracy and computational efficiency.  
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1   Introduction 

This paper addresses the challenging problem of automatically parsing a 3D 

Computed Tomography (CT) scan into its basic components. Specifically, we wish to 

recognize and segment organs and anatomical structures as varied as the aorta, pelvis, 

and the lungs, simultaneously and fully automatically. This task is cast as a voxel 

classification problem and is addressed via novel modifications to the popular 

decision forest classifier [1,2]. 

Background. The decision forest is experiencing rapid adoption in a wide array of 

information processing applications [3-8]. It can be used for clustering, regression, 



and as in this paper, for classification. The classifier has many attractive qualities that 

make it well suited for practical problems and close to an ideal universal learner [9]. It 

scales well computationally to large training sets, handles multi-class classification in 

a natural way, and the knowledge it has learned can be inspected and interpreted.  In a 

typical image classification task [5], each pixel is classified separately.  To improve 

segmentation results, constraints in the form of local consistency or semantic (e.g. 

anatomical) context are applied, but this requires either a separate random field [10] 

or multi-pass processing [5,11]. 

Our contributions. In this paper, we extend the decision forest classifier to 

directly enforce local consistency and semantic context without applying additional 

methods or passes. We show how this extension also speeds training and improves 

test accuracy.  The two main contributions are as follows.  First, to construct a tree 

node, n, at level, L, in the forest, we design new entanglement features which exploits 

the uncertain partial semantic information learned (or at test time, inferred) by the 

previous L-1 levels of the forest about the classification of voxels in a neighborhood.  

Since the nodes in the resulting classifier share information with each other, we call 

the new classifier an entangled decision forest. Second, during training we randomly 

sample feature types and parameters from a learned, non-uniform proposal 

distribution rather than from the uniform distribution used (implicitly) in previous 

decision forest research [1,2,5,6,7,14,20]. The random draws select, with greater 

probability, the feature types and parameters that tend to be relevant for classification, 

allowing higher accuracy for the same number of features tested.  We show how these 

two contributions allow faster training and prediction, more accurate prediction, and 

how the combination of these contributions yields best performance. 

Further relevant literature. In [5], a separate decision forest is grown in each 

successive round of classifier training. The forest grown in each round uses semantic 

information learned during a previous round encoded in the form of a bag of textons 

that characterize decision paths down the tree of the previous round’s forest. 

Similarly, in [11], a separate probabilistic boosting tree (PBT) [12] is constructed in 

each successive round. The classifier grown in each round uses semantic information 

from a previous round encoded as the most likely class label in a spatially offset 

region. These works inspired our development of EDF to use the semantic 

information learned in previous levels, in a single round of classifier construction. 

This yields a simpler, more efficient classifier than sequences of forests or PBTs and 

enables higher accuracy, faster training and prediction, and requires less memory. 

Problem statement. We demonstrate the utility of our solution to segment 12 

anatomical structures in large field of view CT. We are given density and ground truth 

labels at each voxel in a set of training volumes. Our goal is to infer the probability of 

each organ label for each voxel of unseen test scans. The task is challenging due to 

the extremely large variations of both healthy structures and pathology in the 

abdominal-thoracic region. Variations include organ location and shape, contrast 

agent presence/absence, scanner field of view, and image resolution. 

The most closely related work for high-speed CT segmentation is non-rigid 

marginal space learning (MSL) [13] which uses a boosted classifier to predict the 

parameters of an active shape model. MSL can segment the liver boundary in 10 

seconds; in contrast, our method requires only 12 seconds to segment 12 organs 

simultaneously. The active shape model of MSL offers resilience to noise; our method  



 

 
Fig. 1. Decision forest overview. During training, multiple trees are grown, using all 

training data for each tree. During testing, to classify a voxel it is initialized at the root 

node of each tree, and recursively sent left or right (red arrows) according to binary 

tests stored at each node. The voxel is classified using the average of the T posterior 

label distributions, with one coming from the leaf reached in each of the T trees. 

 

also offers flexibility to handle organs only partially visible within the scanner field of 

view or which have topological changes due to pathology (cists, tumors) as 

demonstrated in the results section. 

The EDF is a new discriminative classifier which improves the accuracy and speed 

of the state of the art decision forest for image analysis. Our methodology may be 

used to improve results for other applications that reply upon the decision forest 

classifier, including MS lesion segmentation [8], brain segmentation [6], myocardium 

delineation [7], and beyond these medical applications for broad applicability in the 

field of computer vision, such as for object recognition [10]. 

2   Methods 

2.1 Decision forest background 

We begin with a brief review of randomized decision forests [1,2]. A decision forest 

is an ensemble of T decision trees. During training, the data (Fig. 1), consists of the 

set of data points from all training images, 
1{ , }N

i iS v l . Each data point, si, consists of 

the voxel position, vi, and its label, li. Tree ti, receives the full set S and its root node 

selects a test to split S into two subsets to maximize information gain. A test consists 

of a feature (e.g. an image feature) and a feature response threshold.  The left and 

right child nodes receive their respective subsets of S and the process is repeated at 

each child node to grow the next level of the tree. Growth stops when one or more 

stopping criteria, such as minimal information gain or a maximum tree depth occur. 

Each tree is unique because each tree node selects a random subset of the features and 

thresholds to try. During testing, the data (Fig. 1) consists of the voxel positions in a 

test image. The voxels are routed to one leaf in each tree by applying the test (selected 

during training) which is stored in each node. The test is applied to the voxel in the 

test image. The test result guides the voxel to the left or right child node, and this is  



  b  c     
Fig. 2. Intensity and MAPClass features. (a) Intensity features measure image 

information from regions offset from the voxel to classify at x. (b) MAPClass feature 

retrieves the label that the classifier currently predicts at location P1 offset from x. 

Implementation-wise, we maintain a node index array which associates with each 

voxel the current tree node ID (represented by the number in each voxel). (c, top) This 

allows us to determine the current label posterior in the tree for the voxel at location 

P1. (c, bottom) Conceptually, the tree induces a vector image of class posteriors which 

we used when developing the MAPClass and TopNClasses features.  

 

repeated until a leaf node is reached. An empirical distribution over classes learned 

from the training data is stored at each leaf. The voxel is classified by averaging the 

class distributions from the set of leaves it reached. The following section describes 

the features we use to define the node tests of our decision forest.  

2.2 Context rich, long-range visual features 

It has been shown [22] that to classify a voxel at a given location anatomical context 

from regions up to 200mm away are often very helpful. Therefore we do not use 

traditional features such as Haar wavelets [15] whose range is too short. Instead we 

construct two types of long-range, context-rich features. The first capture “appearance 

context”, the later capture “semantic context”. This will be explained next.  

 

Appearance features. We construct intensity features that are spatially defined by (1) 

their position, x, centered on the voxel to be labeled (Fig. 2a), and (2) one or two 

rectangular probe regions, R1 and R2, offset from x by displacements ∆1 and ∆2 which 

can be up to 200mm in each dimension (x,y,z). We construct two categories of 

intensity features. The first category consists of the mean CT intensity at a probed 

region, R1 (Fig 2a, left), while the second consists of the difference in the mean 

intensity at probed regions, R1 and R2 (Fig 2a, right). These are defined as follows:  

    ; ,Intensityf I 
1 1 1 1

x Δ R R x Δ       (1) 

       2 2; , , ,IntensityDifff I I   
1 1 2 2 1 1

x Δ R Δ R R x Δ R x Δ     (2) 

During training, the features to try at each node are parameterized by dimensions of 

R1 and R2, offsets ∆1 and ∆2 and an intensity threshold α. These parameters are 

chosen randomly to define the intensity test: (.)f  . Once training has finished, the 

max information gain node test along with its optimal features are frozen and stored 

within the node for later use during testing. 
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Fig. 3.  Additional entanglement features. (a) Node index array associates voxels with 

intensity and tree node indices (same format as Fig. 2b but for a deeper tree level).  

(b) NodeDescendant feature tests whether probe voxel at P1 descends from a node (T0 

in this case). (c) AncestorNodePair feature tests whether the nodes of voxels P1 and 

P2 have a common ancestor < τ levels away.  

 

Semantic context entanglement features. We now describe the first contribution of 

our paper. The basic idea is that during testing on novel images, we exploit the 

confident voxel label predictions (peaked distributions) that can be found using just 

early levels of the forest to aid the labelling of nearby voxels. This provides semantic 

context similar to auto-context [5,11], but does so within the same forest. We define 

four types of long range entanglement features to help train the node currently being 

grown using knowledge learned in already trained split nodes of the forest. Two 

features (MAPClass and TopNClasses) are based on the posterior class 

distribution of the nodes corresponding to probed voxels, and two 

(NodeDescendant and AncestorNodePair) are based on the location of the 

nodes within the trees. 

     MAPClass entanglement features. As the name suggests, this type of feature uses 

the maximum a posteriori label of a neighboring voxel at P1 in order to reduce 

uncertainty about the label at x (Fig 2b). When such semantic context is helpful to 

classify the voxel at x the feature yields high information gain and may become the 

winning feature for the node during tree growth. MAPClass tests whether the MAP 

class in the posterior of a probed voxel 
1 1

P = x +Δ  is equal to a particular class, C:  

arg max ( ; ) 1
( ; , , )

otherwise 0
MAPClass

c
p c n C

f C


 


1p

1 1
x Δ P

                             (3) 

where ( ; )p c n
1p  

is the posterior class distribution of the node of P1.  This posterior can 

be retrieved from the tree because we (1) train and test voxels in breadth first fashion 

and (2) maintain an association between voxels and the tree node ID at which they 

reside while moving down the tree. This association is a node index array (Fig 2b).  

     TopNClasses entanglement features. Similarly we define features, called 

TopNClasses, where {2,3, 4}N 
 

that generalize the MAPClass feature. A 

TopNClass feature tests whether a particular class C is in the top N classes of the 

posterior class distribution of the probe voxel at
1 1

P = x +Δ . The feature is defined as: 



 
Fig. 4. Learned parameter distributions are clearly non-uniform. (left) Learned 

displacement and anatomical class distributions for MAPClass feature. (right) 

Displacement and intensity difference distributions for IntensityDiff feature. 

 

top Nclassesof ( ; ) 1
( ; , , , )

otherwise 0
TopNClasses

C p c n
f N C


 


1p

1 1x Δ P                          (4) 

     NodeDescendant entanglement features. This type of feature tests whether a 

region near voxel x has a particular appearance. The neighboring region is centered at 

voxel P1 (Fig. 3a,b). The test is whether the node currently corresponding to P1 

descends from a particular tree node, T0. If it does, then we know P1 has satisfied the 

appearance test (T1… Tk) above T0 in the tree in a particular way to arrive at T0. 

     AncestorNodePair entanglement features. This type of feature tests whether two 

regions near voxel x have passed similar appearance and semantic tests. The 

neighboring regions are centered at voxels P1 and P2 (Fig 3a). The test is whether the 

nodes currently corresponding to P1 and P2 have their first common ancestor < τ tree 

levels above the current level (Fig. 3c). The threshold controls the required degree of 

similarity: the lower τ, the greater the required appearance and context similarity 

needed to pass the test, because the lower τ, the greater the number of tests, (T1… Tk), 

above the common ancestor. 

2.3 Feature selection is guided by learned proposal distributions  

This section describes the second contribution of our paper. We match the distribution 

of feature types and their parameters proposed at each tree node during training to the 

ones that tend to be most useful for training. The decision forest still chooses the 

winning feature, but each node chooses from features sets that are likely to be useful 

based on prior experience. The basic idea is to help the classifier explore more of the 

sweet spot of feature space and hopefully find superior features. Since our features 

contain several parameters, the joint feature space is too large to search exhaustively. 

However, only a small subset of feature space tends to be relevant. Therefore, rather 

than drawing feature parameters from a uniform distribution over parameter space, we 

draw from a learned distribution. Specifically, we train an initial decision forest, Ftemp, 

on our training data and record the distribution of accepted ( winning )  feature  
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Fig. 5.  (a) Example of learned feature type distribution by level. (b-d) See results 

section: (b) right lung is only partially visible in the scan. (c) EDF correctly assigns 

high posterior probability and (d) segments visible portion (3D rendering) 

 

parameters and feature types across all its tree nodes. Ftemp is then discarded, and we 

then use parameter distributions as the proposal distributions in a subsequent training 

of a final decision forest. While this requires additional training, it imposes no time 

penalty for prediction. 

Parameter proposal distribution. The learned distribution of displacements tends to 

be Gaussian distributed and centered on the voxel to be labeled (Fig. 4 top row). 

Acceptance distributions of the remaining parameters also have non-uniform 

distributions (Fig. 4 bottom row). We draw feature parameters from these 

distributions during training. This tends to provide the forest with more useful 

features to choose from at each node and can improve final classifier accuracy.  

Feature type proposal distributions. Similarly, the distribution of feature types for 

each tree level is learned. Drawing feature types from this distribution can also 

improve classifier accuracy. Fig. 5a shows how the ratio of feature types varies with 

tree depth if we construct a forest using just MAPClass and IntensityDiff 

features. Early in tree growth appearance features dominate, while entanglement 

features dominate deeper levels. As more information gets inferred from intensity, 

entanglement features exploit semantic context and neighborhood consistency.  

3   Results 

3.1 Experimental setup 

We evaluate our EDF model on a database which consists of 250 large field of view 

CT scans in which each voxel has an intensity and is assigned one of 12 labels from a 

set of very diverse anatomical structures {heart, liver, spleen, aorta, left/right lung, 

left/right femur, left/right pelvis, left/right kidney} or the background class label. This 

database was chosen because it was designed to include wide variations in patient 

health and scan protocol. We randomly selected 200 volumes for training and 50 for 

testing.  

3.2 Qualitative results  

The EDF achieves a visually accurate segmentation of organs throughout the 50 test 

volumes. Example segmentations are shown in Fig. 6a where the first column is the 

ground truth organ segmentation, and the second column is the  EDF  segmentation  



Entg. + Learned
Prop Distns 

Ground 
truth

No Entg. + 
Unif. Prop Distns 

Left Lung, enlarged 
aorta, isotropic voxels

Right lung, large tumor, 
anisotropic voxels

c

a

b

Fig. 6.  Qualitative segmentation results. (a) Entanglement and learned proposal 

distributions (column 2) provide marked improvement compared to not using them 

(column 3). Four different subjects shown with axial slices (rows 1,4), and coronal 

(rows 2,3). (b) 2x2 panel showing intensities of voxels comprising an EDF segmented 

left lung distorted by enlarged aorta; volume rendering in lower right quadrant (c) 

EDF accurately segments despite severe anomaly and voxel anisotropy. 

 

result. We see good agreement for the lungs (blue) shown in rows 1, 2 and 4, for the 

liver (orange), spleen (green), and kidneys (purple) shown in row 2, for the femur 

bones (tan) in row 3, and for the heart (dark brown) in row 4. Column 3 shows the 

result using our decision forest but without entanglement features and without the 

learned proposal distributions. Node entanglement noticeably improve the lungs in 

row 1, the aorta (red), kidneys, and spleen in row 2, the femurs in row 3 and the lungs 

and heart in row 4. 

     The algorithm handles many complexities commonly found in the clinic. Fig. 6b 

shows how our algorithm correctly segmented the lung (physician verified) despite 

the fact that the patient had a severely enlarged aorta which caused a distortion (see 

yellow arrow). Fig. 6c shows how EDF accurately segments despite a large tumor 

(arrows) and severe anisotropy in the voxel dimensions. Fig. 5b shows a case in 

which only a portion of the patient’s lungs were in the scanner’s field of view.  EDF  

correctly assigns high posterior probability to lung pixels (see right lung in Fig. 5c) 

and properly segments the portion in the scanner. 

3.3 Quantitative results including the impact of each of our contributions  

Accuracy measure. For a quantitative analysis we measured the EDF segmentation 

accuracy across all 50 test scans using the average class Jaccard similarity coefficient 

[16]. The metric is the ratio of the intersection size (ground truth and predicted labels)  



 
Fig. 7. Quantitative impact of each contribution. (a) Learning both proposal 

distributions increases accuracy. (b). Entanglement (blue) provides greater accuracy 

and prediction speed than auto-context (green). Note: green curve should be plotted at 

depths 20-38, but for comparison we plot it at depths 1-19. 

 

divided by the size of their union. While the EDF achieves >97% average voxel 

accuracy throughout the volumes in our database, we use the Jaccard metric in this 

section, because we feel it is a more honest and reliable metric for segmentation 

accuracy and is not unduly influenced by the background class.   

 

Measuring the impact of learned proposal distributions.  To understand the impact 

of using the acceptance distribution as proposal distributions (section 2.3), we trained 

the decision forest in four different ways: (1) using uniform feature type and uniform 

feature parameter distributions for baseline performance (light blue curve, Fig. 7a), 

(2) using learned (i.e. accepted) feature type distribution with uniform feature 

parameter distributions (red curve), (3) using uniform feature type distributions with 

learned feature parameter distributions (green curve), (4) using learned feature type 

and learned parameters distributions (dark blue curve). Learning only the feature type 

distribution yields a negligible improvement to baseline (red vs light blue). Learning 

feature parameter distribution boosts accuracy significantly (green vs red). Learning 

both distributions yields the best performance without penalty at lower depths (dark 

blue vs green) and boosts accuracy over baseline by 8% (dark blue vs light blue).  

 

Comparing Entanglement and Auto-context. We compared our method to auto-

context [5, 11], a state of the art approach which has yielded some of the best 

accuracy and speed for multi-structure segmentation. Specifically, we define the same 

auto-context features as [11] for our decision forest. Auto-context requires multiple 

complete decision forests to be constructed. The auto-context feature defines semantic 

context to help classify a voxel at location x by examining the class predicted for a 

probe voxel by a previous decision forest. For our comparison we conducted four 

experiments. First, we trained our decision forest 20 levels deep without 

entanglement and without auto-context for a baseline performance (red curve, Fig. 

7b). Second, we trained a two-round, auto-context decision forest (ADF) using 20 

total levels (light blue curve). Here we constructed a sequence of two decision forests 

with the same total number of levels as the baseline classifier, in order to achieve the 



same prediction time. Specifically, we used the output from the first 10 levels of the 

baseline as the input to the second round, 10 level forest. The second round forest 

uses the prediction from the first round to form auto-context features and also uses 

our intensity based features. Third, we trained another ADF, but this time with an 

equal modeling capacity to the baseline, (i.e. we trained the same number of tree 

nodes, requiring roughly the same amount of memory and training time). For this test, 

we used the final output from the first 19 levels of the baseline classifier as the input 

to train a second round, 19 level forest, for a total of 38 levels in the ADF. In this 

way, the ADF consists of 2*2
19

=2
20

 maximum possible nodes. Fourth, we trained the 

proposed EDF method as a single, 20 level deep forest using entanglement (dark blue 

curve). When the ADF is constrained to give its prediction in the same time as the 

baseline classifier, it yields much lower accuracy (light blue vs red). When the ADF is 

allowed more time for prediction using 38 levels, it beats the baseline (green versus 

red). However, we find considerably better accuracy using the EDF method (dark 

blue curve vs green). In addition to beating the performance of ADF, it reduces the 

prediction time by 47% since the EDF requires 18 fewer levels (20 vs 38). 

     In separate tests, we varied the test:train ratio. We found only minor degradation in 

accuracy. Using 50 images for test and 195 for training, accuracy = 56%; using 75 test 

and 170 train, accuracy = 56%; using 100 test and 145 train, accuracy = 54%. 

 

Efficiency considerations.  With a parallel tree implementation, EDF segments novel 

volumes in just 12 seconds per volume (a typical volume is 512x512x424) using a 

standard Intel Xeon 2.4GHz computer (8 core) with 16GB RAM running Win7 x64. 

A very good, coarse labeling (at 8x downsampling) can be achieved in <1 second. 

Training on the 200 volumes, which need only be done once, requires about 8 hours. 

 

4   Discussion 

     Practical impact. To the best of our knowledge, EDF segments volumetric CT at 

a speed equal to or better than state of the art methods. For example nonrigid marginal 

space learning (MSL) [13] can segment the outer liver surface in 10 seconds; EDF 

simultaneously segments 12 organs, including the liver, in 12 seconds.  

     Our existing implementation of the EDF could be used to automatically measure 

organ properties (e.g. volume, mean density). It could also be used to initialize 

interactive segmentation methods [17, 18] or to identify biologically homologous 

structures that guide non-rigid registration [19]. 

     The EDF is a reusable algorithm. Applying it to segment abdominal-thoracic 

organs requires no specialization for a particular organ, nor any image alignment; we 

only assume the patient is supine. Applying it to CT merely requires normalized 

intensities (i.e. Hounsfield units). This suggests that EDF could be used to segment 

other organs, or to segment other modalities. Our formulations of node entanglement 

and the learning of proposal distribution are generic. These methods amplify the value 

of many hand-crafted, image-based features that have been defined in the literature 

for specific classification problems. EDF could be directly used to improve the results 

of other applications [5,6,8,7,] or combined with complementary methods [21] to 

improve CT image segmentation using decision forests. 



 

a   b  c  
Fig. 8 EDF reveals how and what it learns. (a, b) relative importance of feature types at each 

level of forest growth.  (c) Location and organ class of the top 50 features used to identify heart 

voxels.  The hand-drawn regions here group these locations for different MAPClass classes C. 

 

     Theoretical impact. Compared to black-box learning methods (e.g. neural 

networks), one can query the EDF to understand what it has learned. For example in 

our EDF experiments, we queried the EDF to reveals what features it is using to learn 

at each level of growth. Our tests show that NodeDescendant entanglement 

(purple) achieves peak utilization before AncestorNodePair entanglement (tan) 

shown in Fig. 8a, while MAPClass (black) enjoys an ever increasing utilization rate 

with increasing depth. When we compared MAPClass to TopNClasses (Fig 8b) 

we found that Top4Classes (black) peaks, then Top3Classes (tan), and finally 

MAPClass peaks (light blue).  

     The EDF can also reveal the anatomical context that it has learned for each 

structure. By rendering a scatter plot of the top contributing features for a target 

structure, we can visualize the contextual information learned for that structure. For 

example, Fig. 8c shows how the MAPClass feature learns to segment a heart voxel, 

located at the blue cross-hair intersection. To find the top contributing features, we 

express information gain (5) as a sum of the information gain from each class:  

   1 2

1 2

, , ( ) log ( ) ( ) log ( ) ( ) log ( )
Ac Bc

c c c c c cFc Fc
c

G F A B p F p F p A p A p B p B      
      (5) 

where F is the set of voxels being split into partitions A and B, and c is the index over 

classes. This enables us to rank learned node features based on how much they 

contributed to identifying the voxels of a given class by increasing the information 

gain for that class. Fig 8c shows a projection of the 3D scatter plot onto a coronal 

plane. The semantic context that favors classifying a voxel as heart includes other 

heart pixels nearby (red region), lungs to the right and left (purple regions), and liver 

below the right lung (yellow region). All of this is learned by the EDF automatically.  

5   Conclusions 

This paper has proposed the entangled decision forest (EDF) as a new 

discriminative classifier which achieves higher prediction accuracy and shortened 

decision time. Our first contribution is to entangle the tests applied at each tree node 

with other nodes in the forest. This propagates knowledge from one part of the forest 

to another which speeds learning, improves classifier generalization and captures long 

range-semantic context. Our second contribution is to inject randomness in a guided 



way through the random selection of feature types and parameters drawn from  

learned distributions. Our contributions are an intrinsic improvement to the 

underlying classifier methodology and augment features defined in the literature.          

We demonstrated EDF effectiveness on the very challenging task of 

simultaneously segmenting 12 organs in large field of view CT scans. The EDF 

achieves accurate voxel-level segmentation in 12 seconds per volume. The method 

handles large population variation and protocol variations. We suggest the method 

may be useful in other body regions and modalities. 
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