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Abstract

Worms — programs that self-replicate automatically over computer networks

— are a serious threat to hosts connected to the Internet. They infect hosts

by exploiting software vulnerabilities, and they can use their victims for many

malicious activities. Past outbreaks show that worms can spread too fast for

humans to respond, hence worm containment must be automatic.

Recent work proposed network-level techniques to automate worm contain-

ment, but these techniques have limitations because there is no information about

vulnerabilities at the network level. We propose Vigilante: a new end-to-end ar-

chitecture to contain worms automatically that addresses these limitations.

In Vigilante, hosts detect worms by instrumenting vulnerable programs to

analyze infection attempts. We introduce dynamic data-flow analysis: a broad-

coverage host-based algorithm that can detect unknown worms, by tracking the

flow of data from network messages, and disallowing unsafe uses of that data.

We also show how to integrate other host-based detection mechanisms into the

Vigilante architecture.

Upon detection, hosts generate self-certifying alerts (SCAs), a new type of

security alert that can be inexpensively verified by any vulnerable host. Using

SCAs, hosts can cooperate to contain an outbreak, without having to trust each

other. Vigilante broadcasts SCAs over an overlay network that propagates alerts

rapidly and resiliently.

Hosts receiving an SCA protect themselves by generating filters with vul-

nerability condition slicing: an algorithm that performs dynamic analysis of the

vulnerable program to identify control-flow conditions that lead to successful at-

tacks. These filters block the worm attack, including all mutations that follow the

execution path identified by the SCA, while introducing a negligible performance

overhead.

Our results show that Vigilante can contain fast spreading worms that exploit

unknown vulnerabilities without false positives. Vigilante does not require any

changes to hardware, compilers, operating systems or the source code of vulner-

able programs; therefore, it can be used to protect software as it exists today in

binary form.
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Chapter 1

Introduction

Worms — programs that self-replicate automatically over computer networks —

are a serious threat to computers connected to the Internet. They spread by

exploiting low-level software defects, and they can use their victims for illicit

activities, such as corrupting data, sending unsolicited electronic mail messages,

generating traffic for distributed denial of service attacks, or stealing information.

Past outbreaks show that worms can rapidly infect hundreds of thousands of

computers. For instance, Slammer [MPS+03] infected 90% of all the vulnerable

machines in the Internet (approximately 75,000 computers), in 10 minutes. While

Slammer didn’t have a particularly malicious behaviour, the consequences would

have been disastrous if the worm had chosen to erase the disks of the infected

machines. Incidents such as this make it clear that we cannot leave network-

connected computers unprotected from worm attacks.

One avenue to deal with this problem is prevention. Since worms need to

exploit software defects, by eliminating all software defects we would eradicate

worms. Although significant progress has been made on software development,

testing, and verification, empirical evidence [CER05] suggests that we are still

far from producing defect-free software. Figure 1.1 shows that for the last five

years exploitable software defects (also referred to as vulnerabilities) have been

discovered at a rate of several thousands per year.

Another avenue to solve the worm problem is containment. Containment

systems accept that software has defects that can be exploited by worms, and

they strive to contain a worm epidemic to a small fraction of the vulnerable
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Figure 1.1: Number of new vulnerabilities reported to CERT from the year 2000

to the year 2005.

machines. The main challenge in designing containment systems is that they need

to be completely automatic, because worms can spread far faster than humans

can respond [MSVS03; SPW02]. Recent work on automatic containment [KK04;

SEVS04; KC03; WSP04] has explored network-level approaches. These rely on

heuristics to analyze network traffic and derive a packet classifier that blocks or

rate-limits forwarding of worm packets. It is hard to provide guarantees on the

rate of false positives and false negatives with these approaches because there

is no information about the software vulnerabilities exploited by worms at the

network level. False negatives allow worms to escape containment, while false

positives may cause network outages by blocking normal traffic. We believe that

automatic containment systems will not be widely deployed unless they have a

negligible false positive rate.

This thesis proposes Vigilante, a new worm containment architecture that

addresses these limitations by using an end-to-end approach. Vigilante’s design

is fully automatic, has no false positives, provides broad coverage of worm attacks,

and allows vulnerable software services to continue to run efficiently while being

attacked. Rather than relying only on network-level information, Vigilante uses

information available at end-hosts. Since hosts run the software that is vulnerable

to infection by worms, they can analyze the software to gather information that is

not available to network-level approaches. Vigilante leverages this information to

contain worms that escape network-level detection and to eliminate false positives.

2
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Figure 1.2 illustrates automatic worm containment with Vigilante. In Vig-

ilante, hosts detect worms by instrumenting network-facing services to analyze

infection attempts. Vigilante introduces dynamic data-flow analysis: a host-based

algorithm that can detect worms that exploit unknown vulnerabilities with broad

coverage. Dynamic data-flow analysis tracks the flow of data from network mes-

sages inside the vulnerable program, and disallows unsafe uses of the data. The

algorithm detects the three most common infection techniques used by worms:

code injection, edge injection and data injection on unmodified binaries. We also

show how to integrate other detection mechanisms into the Vigilante architecture.

Using host-based infection detectors enables Vigilante to detect worms that have

normal network traffic patterns, since at some point they still need to infect their

victims.

Network

Detection
Engine

SCA 
Generation

SCA 
Verification

SCA Distribution

Detector Host

SCA 
Verification

Protection

Vulnerable Host

SCA Distribution

Filter

Vulnerable
Application

Network Network

Figure 1.2: Automatic worm containment in Vigilante.

Vigilante relies on collaborative worm detection at end hosts, but does not

require hosts to trust each other. Upon detection, hosts generate self-certifying

alerts (SCAs). An SCA is a machine-verifiable proof of vulnerability: it proves

the existence of a vulnerability in a service and can be inexpensively verified. By

verifying an SCA, a host can determine with certainty that a software service

is vulnerable; the verification procedure has no false positives. SCAs enable co-

operative worm detection with many detectors distributed all over the network,

thereby making it hard for the worm to avoid detectors or to disable them with
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denial-of-service attacks. Additionally, cooperation allows hosts to run expensive

detection engines with high accuracy, because it spreads detection load. For ex-

ample, a host that does not run a database server can run a version of the server

instrumented to detect infection attempts in a virtual machine. This instru-

mented version is a honeypot; it should not normally receive traffic. Therefore,

the host will incur little overhead for running the detection engine, whereas a

production database server could incur an unacceptable overhead.

SCAs also provide a common language to describe vulnerabilities and a com-

mon verification mechanism, which can be reused by many different detection

engines to keep the trusted computing base small. SCAs could be verified using

the detection engine that generated them but this would require all vulnerable

hosts to run and trust the code of all detection engines. SCAs make it possible to

increase aggregate detection coverage by running many distinct detection engines

and by deploying new engines quickly.

In Vigilante, detectors distribute SCAs to other hosts using an overlay network

that propagates alerts rapidly and resiliently. Before a host distributes an SCA or

after it receives an SCA from another host, it verifies the SCA by reproducing the

infection process described in the SCA in a sandbox. If verification is successful,

the host initiates the process of protecting the vulnerable service.

Alerted hosts protect themselves by generating filters that block worm mes-

sages before they are delivered to a vulnerable service. These filters are generated

automatically using dynamic data and control flow analysis of the execution path

followed by a worm when exploiting the vulnerability described in an SCA. This

procedure, called vulnerability condition slicing, identifies a set of instructions in

the program that define control-flow conditions that lead to successful attacks.

Filters block messages that satisfy these conditions. Each vulnerable host runs

this procedure locally and installs the filter to protect itself from the worm.

Since this procedure runs locally, hosts don’t need to trust external entities

to produce correct filters. Furthermore, analyzing the vulnerable code, instead

of the worm attack messages, allows hosts to generalize the attack beyond what

they observed. It also avoids interference by the worm, since the vulnerable code

is not controlled by the worm, while the attack messages are.

4



1.1 Contributions

The filters generated by vulnerability condition slicing introduce low overhead,

have no false positives, and block all worm mutations that follow the same exe-

cution path to gain control.

1.1 Contributions

This thesis presents Vigilante, a new system to contain worm epidemics auto-

matically with an end-to-end architecture. An end-to-end architecture can use

information about the vulnerable software services running at end-hosts, which is

not available to network-level approaches. This information can be leveraged to

detect worms even when they exhibit normal traffic patterns, to verify unequiv-

ocally that a host is running vulnerable software and to guide the generation of

filters that block mutations of a worm attack. An end-to-end architecture ensures

that the containment system will react only when real worm outbreaks happen,

and it can contain worms that escape network-level containment.

The contributions of this thesis are:

• an end-to-end architecture for automatic worm containment based on high-

coverage host-based detectors, security alerts that can be verified, an over-

lay network for fast and resilient dissemination of alerts, and automatic

generation of filters to prevent infection at end-hosts,

• a dynamic data-flow analysis algorithm that provides automatic high-coverage

detection of worm infection attempts for unknown vulnerabilities,

• the concept of self-certifying alerts (SCAs) and mechanisms to generate,

verify, and distribute SCAs automatically,

• a vulnerability condition slicing algorithm to automatically generate host-

based filters that block worm infections, and

• experimental evaluation of the architecture and algorithms through mea-

surements of a prototype implementation and large scale simulation.

5



1.2 Organization

To validate the system, we implemented the algorithms on Intel IA-32 ma-

chines running the Windows operating system. We tested Vigilante with a broad

range of synthetic attacks and also with three infamous real worms: Slammer,

CodeRed, and Blaster. We also simulated the overall behaviour of the system

when deployed on the Internet. We parameterized the simulations with mea-

surements from our implementation and with data from Internet measurements

of notorious worm outbreaks. Our results show that Vigilante can contain fast

spreading worms that exploit unknown vulnerabilities, even when only a small

fraction of the vulnerable hosts can detect the attack. The results also show a

negligible performance impact on the vulnerable software services protected by

Vigilante.

Furthermore, Vigilante does not require any changes to hardware, compilers,

operating systems or the source code of vulnerable programs; therefore, it can be

used to protect software as it exists today in binary form.

1.2 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes in detail

how worms infect their victims, how they spread on the Internet and how they try

to avoid being detected. In Chapter 2, we also discuss how the characteristics of

worm attacks have guided our design of Vigilante. Chapter 3 describes the design

and implementation of dynamic data-flow analysis, and discusses the importance

of using a diverse set of detection mechanisms. Chapter 4 introduces the con-

cept of SCA and describes procedures to verify, generate, and distribute SCAs.

The design and implementation of the automatic filter generation mechanism is

presented in Chapter 5. Chapter 6 presents our experimental results. Chapter 7

describes related work. We conclude in Chapter 8 and discuss some directions

for future work.

6



Chapter 2

Worm Attacks

Worms1 are computer programs that self-replicate without requiring any human

intervention, by sending copies of their code in network packets and ensuring

the code is executed by the computers that receive it. When computers become

infected, they spread further copies of the worm and possibly perform other ma-

licious activities.

The first experiments with programs similar to modern worms were reported

in 1982 [SH82]. However, worms did not become a major security threat until the

advent of the Internet: by connecting most of the world’s computers, the Inter-

net enabled global worm epidemics. The first recorded Internet worm outbreak

happened in 1988 [Spa89; ER89]; since then, several major incidents have been

reported [MSB02; BCJ+05; MPS+03; SM04].

In this chapter, we analyze how worms infect remote computers, how they

spread on the Internet, and how they try to avoid being detected. We also discuss

how the techniques used by worms guided our design of Vigilante. The many ways

in which worms can change their behaviour in response to containment systems

led us to design Vigilante in a vulnerability-centric way: all the mechanisms

introduced by Vigilante are based on analyzing the vulnerable code infected by

worms. This approach is more effective than analyzing the worm’s code or the

worm’s behaviour, because the vulnerable code is not under the control of the

worm.

1The use of “worm” with this meaning derives from the “tapeworm” programs in John

Brunner’s 1975 novel The Shockwave Rider.

7



2.1 Infection

2.1 Infection

Remotely infecting a computer requires coercing the computer into running the

worm code. To achieve this, worms exploit low-level software defects, also known

as vulnerabilities. Vulnerabilities are common in current software, because it is

large, complex, and mostly written in unsafe programming languages. Several

different classes of vulnerabilities have been discovered over the years. Currently,

buffer overflows [One96], arithmetic overflows [ble02], memory management er-

rors [jp03], and incorrect handling of format strings [gr02] are among the most

common types of vulnerabilities exploitable by worms.

While we should expect new types of vulnerabilities to be discovered in the

future, the mechanisms used by worms to gain control of a program’s execution

should change less frequently. Currently, worms gain control of the execution

of a remote program using one of three mechanisms: injecting new code into

the program, injecting new control-flow edges into the program (e.g. forcing the

program to call functions that shouldn’t be called), and corrupting data used by

the program. Vigilante was designed to detect all three kinds of infection.

The next sections discuss these three infection mechanisms in detail. To fa-

cilitate the discussion, we use a program with simple stack-based buffer overflow

vulnerability [One96], shown in Figure 2.1, but it is important to note that all

the other types of vulnerabilities enable the same types of successful infection.

The program in Figure 2.1 processes a message received from the network. The

ProcessRequest function checks if the first byte in the message is within an allowed

range, and then copies the two subsequent fields in the message to a stack-based

buffer called request and to a buffer supplied in the parameter userid, respectively.

The code assumes fields in the message are separated by the newline character.

The defect in the program is that it does not check that the first field of the mes-

sage will fit the in the request stack-based buffer. Consequently, the worm can

send a message with a large first field and overwrite the stack frame [ASU86].

This defect can be exploited to infect the program in many ways.

8



2.1 Infection

2.1.1 Code injection

The simplest form of infection involves injecting new code into a running process

and coercing the process into executing the new code. To use this type of attack

on the program in Figure 2.1, the worm could craft a packet including its code

at the end of the message and using a first field large enough to overwrite the

return address on the stack frame. Inside the first field, at the position that would

overwrite the return address, the worm would supply the address of its code in

the virtual address space of the program under attack (the code would be there

as part of the message just received). This would ensure that, upon executing the

ret instruction at the end of the function, the process would start to run worm

code.

The details of the attack can be understood by analyzing the vulnerable pro-

gram in assembly language, as shown in Figure 2.2 (Appendix A describes the

instructions used in the example). When the ProcessRequest function starts to

execute, the esp register points to the return address saved by the call instruc-

tion that transferred control to the function. The function starts by saving the

ebp register on the stack, decrementing esp by 4 in the process (the stack grows

towards lower addresses). Instruction 3 moves the first byte of the message into

the al register (the first parameter for the function is passed in the ebx register).

The function then executes the range check on the first byte of the message. In-

struction 7 subtracts 8 from esp, thus allocating 8 bytes on the stack, to hold the

request variable. Therefore the return address is stored at a 12 byte offset from

start of request. This means that the worm should place the value to be used

as return address at offset 13 in the attack message (since the first byte is not

copied). Instruction 16 makes eax point to the start of the request buffer. The

function then enters a loop (lines 21 to 26) that copies the first field of the mes-

sage and eventually overwrites the stored return address. To decide which value

to supply as return address, the worm only needs to know the virtual address

range where the network message is stored and use a value that points to the

start of the worm code within that range1.

1If the message is not stored at a predictable address, the worm can find code sequences

that transfer control to the attack payload elsewhere in memory [ds99].

9



2.1 Infection

void ProcessRequest(char *message, char *user_id)

{

char request[8];

char message_id = *message - ID_BASE;

if(message_id > LOW_ID && message_id < HIGH_ID)

{

int len = CopyField(request,message + 1);

CopyField(user_id,message + len + 2);

ExecuteRequest(request,user_id);

}

system(log_activity_command);

}

int CopyField(char *destination, char *source)

{

int len = 0;

while(*source != ’\n’)

{

len++;

*destination++ = *source++;

}

*destination = ’\0’;

return len;

}

Figure 2.1: Vulnerable code in the C++ programming language. The code has

a buffer overflow vulnerability enabling code injection, edge injection, and data

injection attacks.
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1: push ebp ;on entry, ebx points to the message parameter

2: mov ebp,esp

3: mov al,byte ptr [ebx] ;move first byte of message into al

4: mov ecx,dword ptr [ebp+8]

5: sub al,10h

6: sub al,31h

7: sub esp,8 ;allocate stack space for request buffer

8: cmp al,0Eh ;perform range check on first byte

9: ja 45

10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl

11: push esi

12: push edi

13: lea edi,[ebx+1] ;move address of second byte into edi

14: xor esi,esi

15: cmp dl,0Ah

16: lea eax,[ebp-8] ;move address of request buffer into eax

17: je 28

18: mov ecx,eax

19: sub edi,ecx

20: lea esp,[esp+0h]

21: mov byte ptr [eax],dl ;loop to copy the first

22: mov dl,byte ptr [edi+eax+1] ;field of the message

23: add eax,1 ;into the request buffer,

24: add esi,1 ;while searching for

25: cmp dl,0Ah ;the character 0A.

26: jne 21

27: mov ecx,dword ptr [ebp+8] ;move userid parameter into ecx

28: lea esi,[esi+ebx+2]

29: mov byte ptr [eax],0

30: mov al,byte ptr [esi] ;move first byte of second field into al

31: cmp al,0Ah

32: mov edx,ecx ;move userid parameter into edx

33: je 40

34: sub esi,ecx

35: mov byte ptr [edx],al ;loop to copy the second

36: mov al,byte ptr [esi+edx+1] ;field of the message into

37: add edx,1 ;the userid parameter, while

38: cmp al,0Ah ;searching for the character 0A.

39: jne 35

40: lea eax,[ebp-8]

41: mov byte ptr [edx],0

42: call ExecuteRequest ;call ExecuteRequest(request,user_id)

43: pop edi

44: pop esi

45: push 403018h ;push address of log_activity_command

46: call system ;call system(log_activity_command)

47: add esp,4

48: mov esp,ebp

49: pop ebp

50: ret ;load value pointed to by esp into eip

Figure 2.2: Vulnerable program in IA-32 assembly language (compiled from the

source code in Figure 2.1). The code is vulnerable to code injection, edge injec-

tion, and data injection attacks.
11
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2.1.2 Edge injection

Infecting a remote computer does not require directly injecting new code into a

running process. Another way to carry out infection, is to inject a new control-

flow edge into the vulnerable program by forcing a control-flow transition that

should not happen [Ner01]. To use this type of attack on the program in Fig-

ure 2.1, the worm could again craft a message including a first field large enough

to overwrite the return address on the stack frame. This would allow the worm to

supply as a return address, the address of a function already loaded by the pro-

gram. For instance the attacker could supply the address of the system function

from the C runtime library, and an appropriate argument to that function. This

would allow the worm to run arbitrary programs. It could, for instance, use a file

transfer program to download its code and subsequently run it. This attack can

evade algorithms that only detect code injection, because no new code is loaded

by the process running the vulnerable program.

The detailed steps of the attack are similar to the ones described in the pre-

vious section, with the added complication that the worm needs to fabricate a

correct stack frame for the system function. This can easily be accomplished by

noting that this function takes a single parameter: a pointer to a string. Thus,

the code for the function expects to find this pointer at the address 4 bytes above

the value of the esp register when the function is invoked (at this point esp points

to the return address and the parameter is above that). Consequently, besides

supplying the address of the system function as in the previous section, the worm

will insert in the message a string with the name of the program it wishes to

run, and 8 bytes after the start of the address of system (i.e. at offset 21 in the

attack message) it will supply the address where the string will be stored in the

virtual address space of the target program. The worm can easily extend this

technique to fabricate several stack frames and force the program to issue a series

of function calls [Ner01].

2.1.3 Data injection

Finally, infecting a remote computer does not even require forcing any control-

flow error in a running process: attacks can succeed just by corrupting data. One

12
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general form of this type of attack involves corrupting the arguments of functions

called by the program. By changing the values of the arguments, the worm

changes the behaviour of the program, without injecting any code or forcing any

control-flow transfers.

Using again the example in Figure 2.1, we can see that, after processing the

message, the function ProcessRequest calls system to run an external program

that maintains an activity log for the program. The call to system takes as para-

meter a pointer (log-activity-command) to a string with the appropriate logging

command. The worm can successfully attack the program by corrupting this

string, thus forcing the program to run other commands (e.g. commands that

download the worm code). Corrupting this string is a slightly more elaborate

process than corrupting the function’s return address, because neither the string

nor the pointer to the string are stored in the stack frame for the function (the

region that can easily be overwritten by overflowing the request buffer). However,

the worm can still manipulate the code in the function to do the appropriate

overwrite. It notes that the code copies the second field in the message to the

userid parameter. This parameter is in the function’s stack frame and can be

easily overwritten. Therefore all the worm needs to do is to overwrite userid to

make it point to the log-activity-command string and supply, as the second field

in the attack message, a string with the command it wishes to run.

The detailed steps of the attack can again be understood by analyzing the

code in Figure 2.2. The code reveals that the userid argument is passed to the

function on the stack, immediately above the return address. To see this, note

that instruction 27 loads the userid pointer into the ecx register, and instructions

35 to 39 copy the second field of the message into userid. As in the attacks

above, the worm can supply a large first field in the attack message, overflowing

the request buffer. This allows the worm to supply a value that will overwrite

userid at offset 17 in the attack message. Examining the call to system at lines 45

and 46, we can see that the log-activity-command is stored at address 0x00403018.

Therefore, the worm supplies this value at offset 17 in the attack message and

whatever command it wants to run as a string in the second field in the message.

Thus, the loop at lines 35 to 39, which should copy the second field in the message
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into userid is in fact copying the second field into the log-activity-command string.

The worm command is executed when the program calls system on line 46.

2.2 Spreading

After infecting a computer, worms typically use it to infect other computers,

giving rise to a propagation process which has many similarities with the spread

of human diseases. Empirical evidence [MPS+03; SPW02] shows that the spread

of real worms, such as Code Red and Slammer, can described using the epidemic

model for infectious diseases described in [Het00]. Assuming a population of

S susceptible hosts and an average infection rate of β, and using It as the total

number of infected hosts at time t, the worm infection is modelled by the following

equation:

dIt

dt
= β It(1 −

It

S
) (2.1)

Figure 2.3 plots the propagation of a Slammer-like worm, as predicted by the

model. It shows that initially the number of infected hosts grows exponentially

until a majority of hosts are infected. The model matches accurately the initial

stages of the Code Red and Slammer outbreaks [MPS+03], but later stages tend

to deviate from the model due to network congestion effects or human interven-

tion. For the purpose of designing a containment system such as Vigilante, the

model is appropriate because the containment system must react during the ini-

tial stages of the outbreak, to have any chance of saving a significant fraction of

the vulnerable population. Vigilante was designed to fulfil the requirements for

reaction time identified by Moore et al. [MSVS03]: it typically activates filtering

mechanisms automatically within seconds of the start of an epidemic.

The speed of propagation of worms depends on how fast infected comput-

ers can find new victims to infect, and worms can find new victims in many

ways [SPW02; WPSC03]. Scanning worms send attack messages to Internet Pro-

tocol (IP) addresses that they generate locally, trying to scan the complete IP

address space. The address space may be scanned randomly, linearly or trying
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Figure 2.3: Example of propagation of a Slammer-like worm.

to give preference to address regions that are more likely to be populated with

victims [SPW02].

Topological worms find new victims by finding their addresses in the infected

computers. Thus, they spread along a topology maintained by the computers

they infect. There are many examples of such topologies, for example, peer-to-

peer networks [RD01; SMK+01; RFH+01] form well-connected topologies that

can be exploited in this way. Game server farms, where many computers connect

to a few servers, can also facilitate this type of spreading.

Hitlist worms compute a list of victims before starting the attack, thus avoid-

ing the need to discover victims during the attack. Such lists can be obtained

with different online or offline means; Internet search engines and configuration

files are good sources for this kind of information. During the attack, these worms

possibly partition the list of victims among all the infected machines, to speed

up the attack.

All of these strategies for finding new victims have been observed in one form

or another on the Internet. Worms can also combine several strategies. For

instance the Witty [SM04] worm used a hit list to ramp up the initial phase of

its spread, and then switched to scanning the Internet for subsequent victims.

Vigilante is agnostic to the propagation strategy used by worms. Whatever

the mechanism used by a worm to find new victims, it needs to infect them

by exploiting a software vulnerability. Vigilante detects the worm during the

infection process.
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2.3 Hiding

Worms can use several techniques to disguise their spread on the Internet. In this

section, we focus on three evasion techniques that guided our design of Vigilante:

traffic shaping, polymorphism, and fingerprinting detectors.

2.3.1 Traffic shaping

Worms usually have complete control over the network traffic generated by the

computers they infect. This means they can blend attack traffic with normal traf-

fic, making it difficult to detect them by analyzing traffic patterns. For instance,

some detection and mitigation systems are based on the observation that scan-

ning worms are likely to target many invalid addresses [Pax99; WSP04]. Some of

these systems use a limit on the ratio of failed to successful connections: traffic

from computers that exceed this limit is blocked. These systems can easily be

evaded if the worm establishes a successful connection to another worm instance

for each address that it scans. Other systems assume that worms must initiate

connections to other computers at a high rate [Roe99; HDK+90; Wil02], to prop-

agate rapidly. These systems detect worm traffic by monitoring the rate at which

unique destination addresses are contacted, and block the sender if the rate ex-

ceeds some limit. These systems can be evaded if worms initiate connections just

below the rate limit, in areas of the network where the limits are enforced. Vig-

ilante cannot be evaded with traffic shaping attacks, because it uses host-based

detectors.

Traffic shaping can also be used to mount denial of service attacks on systems

that analyze network traffic [WSP04; PDL+06]. Worms can, for instance, gen-

erate suspicious traffic patterns using fake IP source addresses, in order to block

traffic from legitimate machines. This type of maliciously induced false positives

is a serious concern for the deployment of containment systems based exclusively

on analyzing network traffic.
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2.3.2 Polymorphism

Another powerful technique that worms can use to hide themselves is polymor-

phism1. Polymorphic worms constantly change the content of their attack mes-

sages using techniques such as encryption and code obfuscation [SF01]. For

instance, if the worm attack messages contain code, the worm can replace a

sequence of code instructions with another completely different sequence of in-

structions that achieves the same purpose (i.e. a semantically equivalent se-

quence of instructions). Figure 2.4 shows an example of this type of code mu-

tation. Worm writers can use readily available tools to create polymorphic

worms [Z0m00; K201; DUYU03; Ban05].

Polymorphism creates problems both for detection and for protection. From

the detection point of view, systems that try to detect worms by identifying

common byte strings in suspicious network traffic [KK04; SEVS04], will have dif-

ficulty detecting polymorphic worms, since they may have little invariant content

across different messages. For instance, a polymorphic worm exploiting the same

vulnerability as Slammer [MPS+03] could generate attack messages that differ in

all bytes, except one. On the other hand, if such systems are configured to detect

very short repeated byte strings, they are likely to generate false positives. Vig-

ilante avoids these problems with detection, by using host-based detectors that

do not rely on analyzing network traffic.

From the protection point of view, polymorphic worms make it difficult to

block attacks using byte string signatures [KC03; KK04; SEVS04], because such

signatures will likely be either too long or too short. Signatures that are too long

cannot match worm traffic mutations and signatures that are too short will block

normal traffic.

Vigilante addresses this problem by generating protection filters that are pro-

grams, not byte strings. Vigilante’s filters can compute complex conditions on

the attack messages. Vigilante generates these filters by analyzing the vulnera-

ble programs, not network traffic. The vulnerable code provides information to

1We use the term polymorphic to refer to polymorphic, oligomorphic, and metamorphic

worms as described in [SF01].
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Original code:

mov ebx,eax

inc ebx

sbb eax,eax

dec ebx

add eax,0x3

dec eax

Mutation:

push ecx

push eax

xor ecx,ecx

inc ecx

pop ebx

mov eax,ecx

pop ecx

inc eax

Byte representation for original code:

8B D8 43 1B C0 4B 83 C0 03 48

Byte representation for mutated code:

51 50 33 C9 41 5B 8B C1 59 40

Figure 2.4: Example of polymorphic worm code. Both the original code and the

mutation assign eax to ebx and assign 2 to eax, but they use different instructions

to do so. This results in different byte representations in memory and in attack

messages.
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identify why the attack succeeded; this information cannot be found in samples

of attack messages.

2.3.3 Fingerprinting

Another technique that worms can use to avoid being detected is to try to identify

if they are interacting with a detector, before fully revealing their attack. We refer

to this type of activity as fingerprinting the detector [HR05; BFV05; SII05].

Worms can try to fingerprint detectors remotely, i.e. try to infer if a remote

machine is a detector from its responses to network messages. Some honeypot

systems [Pro04] mimic responses to commonly used protocols, without fully im-

plementing the corresponding network services. These systems are more vulnera-

ble to fingerprinting, because they cannot generate the full spectrum of responses

expected from a real network service. Detectors in Vigilante run full operating

system and applications software, thereby minimizing their exposure to this type

of attack.

Another form of remote fingerprinting involves analyzing the timing of mes-

sage exchanges. For instance, if responses take more time than normal, the remote

system may be a detector. It is unclear if this type of attack can be mounted

across wide area networks, where the CPU speeds, load, and latency to remote

machines is unknown. Vigilante mitigates this type of attack by using different

types of host-based detectors spread over the network, thus making their timing

behaviour harder to predict.

Worms can also fingerprint detectors locally, after they start to run on an

infected machine. For instance, if a detector is trying to identify a certain type

of behaviour (e.g. a malicious pattern of usage of operating system services),

the worm can first check if it is running inside the detection environment and,

if so, take evasive actions. This type of fingerprinting has been observed on the

Internet. Holz et al. [HR05] report that Agobot uses an I/O backdoor [Kat06]

to detect if it is running inside a virtual machine. Agobot also detects the pres-

ence of debuggers and breakpoints. Vigilante avoids local fingerprinting by using

detectors that do not allow the worm to run any instructions. Since the worm
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code does not run, it can’t take evasive actions. The next chapter explains how

to build such a detector.
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Chapter 3

Detection

The first step towards containing the outbreak of an unknown worm is to detect

it. Vigilante detects worms by analyzing the execution of vulnerable programs.

To be effective, worm detectors need to have high coverage and generate few false

positives. This chapter introduces dynamic data-flow analysis, a new host-based

detection algorithm that achieves these goals. We also discuss the importance of

using a diverse set of detection mechanisms in Vigilante.

3.1 Dynamic Data-flow Analysis

Remotely exploiting software defects requires sending messages that enable the

attacker to gain control of the target computers. Therefore, all remote attacks

can be linked to errors that occur while processing messages received from the

network. The dynamic data-flow analysis detection algorithm is based on the

idea of dynamically tracking the flow of data received from the network and

disallowing unsafe uses of that data.

3.1.1 Algorithm

The dynamic data-flow analysis algorithm, shown in pseudo-code in Figure 3.1,

consists of two parts. The first part tracks data received from the network.

Whenever a network input operation completes, the memory locations where the

data is written are marked dirty. Then, the algorithm tracks all movements of
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that data. Whenever the processor executes an instruction that moves data from

a source to a destination, the destination becomes dirty if the source is dirty or

it becomes clean otherwise. Sources and destinations can be memory locations

or processor registers. At all times, the algorithm keeps track of the location of

all copies of data received from the network.

Figure 3.1: Dynamic data-flow analysis algorithm.

The second part of the algorithm generates a security trap when dirty data

is used in an unsafe way. To decide which uses of dirty data are unsafe, we need

to consider the ways in which worms can infect a running process. As discussed
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in Chapter 2, worms can infect a process using three types of attacks: injecting

new code into the process, injecting a new control-flow edge into the process (i.e.

forcing the process to make an unwanted control-flow transition), and injecting

data used in security sensitive operations. To prevent each of these types of

infection, dynamic data-flow analysis generates a security trap on each of the

following situations:

i. execution of dirty data,

ii. loading of dirty data into the program counter, and

iii. passing of dirty data in arguments of security sensitive functions.

Preventing execution of dirty data is important, because the data came from

network messages and therefore corresponds to code injected by the worm. Pre-

venting loading of dirty data into the program counter is important, because by

supplying data used in this way the worm can force the program to make ar-

bitrary control-flow transitions. Finally, passing data to arguments of security

sensitive functions is a common form achieving infection by only injecting data;

therefore, it is also important to prevent it.

To be able to generate security traps on the first and second conditions above,

the algorithm dynamically analyzes the state of memory and processor regis-

ters at every control-flow transition in the program. If the execution is being

directed to memory region that contains dirty data or if the data loaded into

the program counter is dirty, a security trap is generated. To enforce the third

condition, whenever security sensitive functions are called, their arguments are

checked for dirtiness. For instance, when operating system functions that cre-

ate new processes are called, the argument that specifies the program to run is

checked for dirtiness, because controlling this argument would allow the worm to

launch arbitrary programs.

We will use the vulnerable code in Figure 3.2 to illustrate how the dynamic

data-flow analysis algorithm can detect an edge injection attack (the mechanics

of attacks on this code were described in Chapter 2). When the code starts to

execute, the esp register points to the return address saved by the call instruction
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1: push ebp ;on entry, ebx points to the message parameter

;esp points to eip saved on the stack

;the memory containing the message is marked dirty

2: mov ebp,esp

3: mov al,byte ptr [ebx] ;move first byte of message into al

;mark al as dirty

4: mov ecx,dword ptr [ebp+8]

5: sub al,10h

6: sub al,31h

7: sub esp,8 ;allocate stack space for request buffer

8: cmp al,0Eh ;perform range check on first byte

9: ja 45

10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl

;mark dl as dirty

11: push esi

12: push edi

13: lea edi,[ebx+1] ;move address of second byte into edi

14: xor esi,esi

15: cmp dl,0Ah

16: lea eax,[ebp-8] ;move address of request buffer into eax

17: je 28

18: mov ecx,eax

19: sub edi,ecx

20: lea esp,[esp+0h]

21: mov byte ptr [eax],dl ;copy next byte into request buffer

;mark address pointed to by eax as dirty

22: mov dl,byte ptr [edi+eax+1] ;move next byte of message into dl

;mark dl as dirty

23: add eax,1

24: add esi,1

25: cmp dl,0Ah ;if not found 0A, continue to next byte.

26: jne 21

... ;irrelevant instructions omitted

48: mov esp,ebp

49: pop ebp

50: ret ;load value pointed to by esp into eip

;generate a security trap, because

;esp points to dirty memory

Figure 3.2: Example of detection with vulnerable program in IA-32 assembly

language (compiled from the source code in Figure 2.1).
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that transferred control to the function, and the ebx register holds the message

parameter. The parameter points to a message just received from the network.

When the message was received, the memory pointed to by ebx was marked dirty.

After executing some instructions irrelevant for the attack, the program reaches

instruction 7 which subtracts 8 from esp, thus allocating 8 bytes on the stack to

hold the request variable. After running the range check on the first byte of the

message, on line 8, the program loads the second byte of the message into the

dl register, on line 10. At this point dl is marked dirty, because the memory at

ebx+1 is dirty. Instruction 16 makes eax point to the start of the request buffer.

The function then enters a loop, on lines 21 to 26, that copies the first field of

the message. When instruction 21 executes, the memory location pointed to by

eax is marked dirty, because dl is dirty. Instruction 22, loads the next byte of the

message into dl, which remains dirty. The byte is then compared with the newline

character (0x0A), and the loop continues if the newline was not reached. The loop

eventually overwrites the stored return address, and the memory location where

the return address is stored is marked dirty in the process. Figure 3.3 shows

the state of memory just before and immediately after the vulnerable code is

executed. After executing some more instructions irrelevant for the attack, the

code reaches the ret instruction at line 50. At this point, the algorithm generates

a security trap, because the esp register points to a dirty memory location — the

location where the return address was originally stored. Thus, dynamic data-flow

analysis detects the worm before it can inject an arbitrary control-flow edge into

the program by supplying a value to be used as return address.

The dynamic data-flow analysis algorithm has several important properties.

First, it has broad coverage: it detects the three kinds of infection mechanisms

most used by worms. It detects overwrites of control data structures with data

received from the network, and it prevents execution of data received from the

network. Furthermore, it detects attacks that do not cause control-flow errors in

the program. As we have shown in section 2.1, the same vulnerability can often

be exploited to infect a program with these three different techniques; hence it is

important to detect all of them.

Second, dynamic data-flow analysis is independent of vulnerabilities and at-

tack targets. Since the algorithm does not require any information about vulner-
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Figure 3.3: Example of worm detection with dynamic data-flow analysis. The

figure shows the memory when (a) a message is received and the vulnerable code

is about to execute, and (b) after the vulnerable code executes and overwrites

the return address in the stack. Greyed areas indicate dirty memory regions.

abilities or targets of attacks inside programs, it will remain useful if new types

of vulnerabilities or attack targets are identified in programs in the future. In

contrast, previous techniques that protect specific targets in programs have been

shown to be easy to bypass [WK03]. For instance, mechanisms that protect

return addresses on the stack [CPM+98] can be bypassed by overwriting function

pointers.

Third, dynamic data-flow analysis works on unmodified programs in binary

form. The algorithm inspects execution at the processor instruction level, con-

sequently it does not require source code or any form of cooperation from the

entity producing the program under analysis. Thus, it can be used to detect

infection of the normal binaries currently deployed. Furthermore, it works even

with self-modifying and dynamically generated code.

Finally, the dynamic data-flow analysis prevents evasive action by the worm.

The algorithm detects the worm infection attempt before the worm executes any

instructions. This is a key property, because it prevents the worm from checking

that it is running in a detection environment and using evasion techniques. For
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instance, if the worm was allowed to execute any instructions it could time its

own execution to try to distinguish a normal execution from an execution inside

the detection environment, or use one of other fingerprinting techniques discussed

in Section 2.3.3.

Dynamic data-flow analysis has several limitations. One of the limitations is

that it may generate false positives. This happens because programs may perform

safety checks on data received from the network before using that data in ways

that would be unsafe if the checks were not performed. Since dynamic data-flow

analysis is unaware of the checks performed by the programs, it still generates

a security trap on the potentially unsafe uses of the data. This may happen,

for instance, when a program loads a value received from the network into the

program counter after checking that the value is within a safe range (e.g. checking

that the value is the address of a function in the program). Our experiments in

Chapter 6 indicate that such cases are rare. Another example is an application

(e.g. the web browser) for which downloading and executing code is a normal

activity. Such applications already have mechanisms to control the execution

of the downloaded code (e.g. requiring it to be signed by a trusted entity).

These mechanisms would need to be integrated with dynamic data-flow analysis

to enable the applications to run (e.g. by explicitly informing the dynamic data-

flow analysis algorithm that a piece of downloaded code is granted execution

privileges). This type of integration is a simple operation and it needs to be done

only once for each specific code downloading mechanism. It is also important to

note that the vast majority of programs are not designed to download code at

runtime, and thus they are not affected by this restriction.

Even if they are rare, false positives are a serious concern, because organiza-

tions will understandably avoid deploying automatic worm containment systems,

if those systems may generate security alerts and block traffic even when there

is no worm outbreak. To address this problem, we describe in the next chapter

a verification mechanism to discard any false positives generated by detectors in

the Vigilante containment system.

The other limitation of dynamic data-flow analysis is that it may have false

negatives, i.e. there are several attacks that it cannot detect. Dynamic data-flow

analysis cannot detect attacks that exploit high-level defects in programs such as
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explicit backdoors in programs. Backdoors can exist either due to malicious intent

of the developers who wrote the code, or they may simply be due to unintentional

development mistakes. Dynamic data-flow analysis also cannot detect software

configuration errors such as weak passwords. Accessing a computer with a guessed

or stolen password is indistinguishable from a legitimate access.

Finally, dynamic data-flow analysis will not detect attacks that overwrite se-

curity sensitive information with values controlled by the worm, but not directly

copied or derived from the attack messages. Two important cases where this may

happen are when network data is combined with other data through arithmetic

and logic operations, and when network data is used to control the addresses of

load and store instructions in the program. These types of false negatives can be

addressed by extending the algorithm to propagate dirtiness to the destination

operands of arithmetic and logic instructions and to the destination operands of

loads and stores. The extended algorithm would provide increased coverage, but

would also increase the number of false positives.

3.1.2 Implementation

The dynamic data-flow analysis algorithm can be implemented in several ways.

It can be implemented in hardware by changing the processor’s data movement

instructions to propagate dirtiness and augmenting the instructions that change

control-flow with checks to avoid loading dirty data into the program counter.

It can be implemented by changing compilers to emit instructions that inline

the algorithm with the programs instructions. It can also be implemented by

using processor emulators [Boc06; QEM06] to analyze each instruction as it is

emulated.

While all the above are viable implementation strategies, we have chosen to

implement the algorithm with a dynamic binary re-writing tool, because this al-

lows us to run the algorithm on unmodified binaries with reasonable performance.

Specifically, we have used the Nirvana runtime instrumentation engine [BCdJ+06]

to intercept, at runtime, each instruction executed by the program under analysis.

Our implementation runs on Windows operating systems and Intel IA-32 proces-

sors. Nirvana performs dynamic binary translation of processor instructions, by
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3.1 Dynamic Data-flow Analysis

breaking the instructions into sequences of simpler operations and optionally in-

serting call instructions to client supplied callback functions. Figure 3.4 illustrates

how a simple mov instruction is translated. Nirvana keeps the processor state in

an area called the CPU (central processing unit) context. Initially, the translated

code loads into the ecx register a pointer to the CPU context, in order to pass it

to the client callback function. After returning from the callback, the code exe-

cutes the original instruction, using the state kept in the CPU context. Finally,

the context is updated to reflect the CPU side-effects of the instruction. Nirvana

keeps the re-written code in a code cache, thus avoiding re-translation.

Original instruction:

mov eax,[esp + 8]

Translated instruction:

mov ecx,cpuContext ;pointer to CPU context maintained by nirvana

call InstructionCallback ;calling convention assumes ecx is the first argument

mov edx, cpuContext._esp

add edx, 8

mov eax,[edx]

mov cpuContext._eax,eax ;update CPU context

Figure 3.4: Example of Nirvana’s translation of an IA-32 mov instruction.

The dynamic data-flow analysis implementation instruments every data move-

ment instruction for Intel IA-32 [Int99] CPUs, by inserting callbacks on each of

these instructions. The instrumented instructions include all variants of mov,

movs, push and pop instructions. To keep track of which memory locations and

CPU registers are dirty with data received from input operations, we keep a

bitmap with one bit per 4K memory page, which is set if any location in the

page is dirty. For every dirty page we keep an additional bitmap with one bit per

memory location. We also keep an additional bitmap with a bit per CPU regis-

ter to keep track of which registers are dirty. Upon receiving the callback from

Nirvana, our implementation reads the current eip (i.e. the program counter for

Intel CPUs) from the CPU state passed as the argument to the callback. Then,

the implementation decodes the current instruction and updates its data struc-

tures accordingly: if the source is dirty the destination becomes dirty, otherwise

it becomes clean. To bootstrap this process, whenever data is received from
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3.1 Dynamic Data-flow Analysis

Figure 3.5: Components inside a process running under the control of the dynamic

data-flow analysis detector.

the network the memory locations where the data is written are marked dirty.

To intercept network I/O, we implemented a WinSock Layered Service Provider

(LSP) [HOB99]. LSPs are a simple extension mechanism for the Windows im-

plementation of the socket interface for network programming. Finally, we also

insert callbacks for every control-flow transfer instruction on IA-32 CPUs: ret,

call, jmp, jz, etc, and we generate a security trap when dirty data is about to be

executed or loaded into the program counter.

Figure 3.5 illustrates the components inside a process running under the con-

trol of the dynamic data-flow analysis detector. The code and data layout inside

the process remain unchanged (the process may even be running when we attach

the detector to it). Nirvana dynamically populates its code cache with translated

instruction sequences, including callbacks to the detector code. The detector up-

dates its data structures upon receiving callbacks and generates a security trap

upon detecting an attack. Finally, it is worth pointing out that the detector

code can be activated/deactivated dynamically, i.e. the process can easily switch

between instrumented and non-instrumented execution.
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3.2 Diversity of detection mechanisms

Vigilante can use other host-based detectors, besides dynamic data-flow analysis.

We believe it is important, for several reasons, to use not only a diverse set of

detection algorithms, but also different implementations of the same algorithm.

Different algorithms provide different coverage and different runtime character-

istics. For instance, some algorithms will be appropriate to run on production

systems, while others will only be appropriate for honeypots, due to their runtime

overhead. Using a diverse set of detection mechanisms makes the system more

resilient to attack, because the attacker needs to successfully avoid all the de-

tectors. Using different implementations of the same detector, makes the system

more resilient to defects in the detector itself, and it also makes it more difficult

for the attacker to fingerprint the detectors using the techniques described in

Section 2.3.3.

Finally, it is important to point out that the self-certifying alert mechanism

described in the next chapter allows detection in Vigilante to be very dynamic,

for two reasons. First, it allows any host to independently decide to become a

detector at any time, because detectors are not trusted. This makes it harder for

an attacker to know exactly where detectors are deployed, thus making evasion

more difficult. Second, it allows rapid deployment of new detection algorithms,

because they don’t need to be deployed at every machine in the network.
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Chapter 4

Self-Certifying Alerts

Detecting a worm outbreak is not sufficient to contain it: vulnerable computers

that have not yet been infected need to be protected. Vigilante enables computers

to protect themselves, but first they need to be informed about the outbreak. To

do this, detectors in Vigilante generate Self-Certifying Alerts (SCAs): security

alerts that can be verified by the computers that receive them. Using SCAs,

machines cooperate to contain an outbreak, without having to trust each other.

This chapter describes the format of SCAs, as well as the mechanisms to verify,

generate, and distribute alerts.

4.1 Alert types

An SCA proves that a service is vulnerable by describing how to exploit the service

and how to generate an output that signals the success of the exploit unequiv-

ocally. SCAs are not a piece of code. An SCA contains a sequence of messages

that, when received by the vulnerable service, cause it to reach a disallowed state.

SCAs are verified by sending the messages to the service and checking whether

it reaches the disallowed state. We use detection engines combined with message

logging to generate SCAs at detectors.

We have developed three self-certifying alert types for Vigilante that cover the

most common vulnerabilities that worms exploit:

Arbitrary Execution Control alerts identify vulnerabilities that allow worms to
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redirect execution to arbitrary pieces of code in a service’s address space. They

describe how to invoke a piece of code whose address is supplied in a message

sent to the vulnerable service.

Arbitrary Code Execution alerts describe code-injection vulnerabilities. They de-

scribe how to execute an arbitrary piece of code that is supplied in a message

sent to the vulnerable service.

Arbitrary Function Argument alerts identify data-injection vulnerabilities that

allow worms to change the value of arguments to critical functions, for example,

to change the name of the executable to run in an invocation of the exec system

call. They describe how to invoke a specified critical function with an argument

value that is supplied in a message sent to the vulnerable service.

These alert types are general. They demonstrate how the worm can gain

control by using the external messaging interface to a service without specifying

the low-level coding defect used to gain control. This allows the same alert types

and verification procedures to be used with many different types of detection

engines. Detection engine diversity reduces the false negative rate.

The three types of SCAs have a common format: an identification of the

vulnerable service, an identification of the alert type, verification information to

aid alert verification, and a sequence of messages with the network endpoints that

they must be sent to during verification.

The verification information allows the verifier to craft an exploit whose suc-

cess it can verify unequivocally. It is different for the different types of alerts. The

verification information for an arbitrary execution control SCA specifies where

to put the address of the code to execute in the sequence of messages (e.g., in

which message and at which offset). Similarly, the information for arbitrary code

execution SCAs specifies where to place the code to execute in the sequence of

messages. Arbitrary function argument alerts have information to specify a crit-

ical function, a critical formal argument to that function, and where to put the

corresponding actual argument value in the sequence of messages.

Figure 4.1 shows an example arbitrary execution control SCA generated for

the Slammer worm. The SCA identifies the vulnerable service as Microsoft SQL

Server version 8.00.194 and the alert type as an arbitrary execution control. The
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Service: Microsoft SQL Server 8.00.194

Alert type: Arbitrary Execution Control

Verification Information: Address offset 97 of message 0

Number messages: 1

Message: 0 to endpoint UDP:1434

Message data: 04,01,01,01,01,01,01,01,01,01,01,01,01,01,01,
01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,
01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,
01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,
01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,01,DC,C9,B0,42,EB,
0E,01,01,01,01,01,01,01,70,AE,42,01,70,AE,42,...

Figure 4.1: An example arbitrary execution control SCA for the Slammer vulner-

ability. The alert is 457-bytes long and has been reformatted to make it human

readable. The enclosed message is 376-bytes long and has been truncated.

verification information specifies that the address of the code to execute should

be placed at offset 97 of message 0. The SCA also contains the 376 byte message

used by the Slammer worm.

4.2 Alert verification

Verifying an SCA entails reproducing the infection process by sending the se-

quence of messages in the alert to a vulnerable service. It is important to run

the verification procedure in a sandbox because SCAs may come from untrusted

sources. The current implementation runs the verification procedure in a sepa-

rate virtual machine to contain any malicious side effects. Hosts must use the

same configuration to run the production instance of a service and the sandboxed

instance for verification, because some vulnerabilities can be exploited only in cer-

tain program configurations.

To verify SCAs, each host runs a virtual machine with a verification man-

ager and instrumented versions of network-facing services. Each service is in-

strumented by loading a new library into its address space with a Verified

function that signals verification success to the verification manager. In addition,

critical functions (e.g., exec system calls) are wrapped using a binary rewriting
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Figure 4.2: SCA verification.

tool [HB99]. The wrappers call Verified if the actual value of a critical argu-

ment matches a reference value specified by the verification manager. Otherwise,

they call the original functions. Since we do not require access to the source

code of the services, we can instrument any service. The host also runs an SCA

verifier process outside the virtual machine that provides other processes with

an interface to the verification module and acts as a reverse firewall to ensure

containment.

Figure 4.2 illustrates the SCA verification procedure. When the SCA verifier

receives an SCA for verification, it sends the SCA to the verification manager

inside the virtual machine. The verification manager uses the data in the SCA

to identify the vulnerable service. Then it modifies the sequence of messages in

the SCA to trigger execution of Verified when the messages are sent to the

vulnerable service. The modifications involve changing the byte string at the

offset of the message specified in the verification information according to the

alert type. This byte string is changed to:

• the address of Verified for arbitrary execution control alerts,

• the code for call Verified for arbitrary code execution alerts,
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4.2 Alert verification

• or the reference critical argument value for arbitrary function argument

alerts.

After performing these modifications, the verification manager sends the sequence

of messages to the vulnerable service. If Verified is executed, the verification

manager signals success to the SCA verifier outside the virtual machine. Other-

wise, the SCA verifier declares failure after a timeout.

The state of the virtual machine is saved to disk before any verification is per-

formed. This reference state is used to start uncompromised copies of the virtual

machine for verification. After performing a verification, the virtual machine is

destroyed and a new one is started from the reference state in the background to

ensure that there is a virtual machine ready to verify the next SCA. The exper-

imental results in Section 6 show that the memory and CPU overheads to keep

the virtual machine running are small.

Vigilante’s alert verification procedure has three important properties:

Verification is fast. The time to verify an SCA is similar to the time it takes

the worm to infect the service because the overhead of the instrumentation and

the virtual machine are small.

Verification is simple and generic. The verification procedure is simple and

independent of the detection engine used to generate the alert. This is impor-

tant for keeping the trusted computing base small, especially with many distinct

detectors running in the system.

Verification has no false positives. If the verification procedure signals success,

the service is vulnerable to the exploit described in the SCA. A successful verifi-

cation shows that attackers can control a vulnerable service through its external

messaging interface.

The current implementation has some limitations that may lead to false nega-

tives (but not false positives). First, it assumes that the target address, code, and

argument values in SCAs can be supplied verbatim in the messages that are sent

during verification. This is the case in many vulnerabilities, but in others these

values are transformed by the vulnerable service before being used, for example,

integer values could be decoded from ASCII characters. This can potentially be

addressed by specifying a conversion function for these values in SCAs.
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Second, the current implementation assumes that sending the sequence of

messages in an SCA to the vulnerable service is sufficient to replay the exploit

during verification. This is true for all previous worms that we are aware of,

but it may be insufficient for some worms. For example, the success of some

exploits may depend on a particular choice of scheduling order for the threads

in a service. We could address this limitation by including other events in SCAs

(e.g., scheduling events and other I/O events) and by replaying them during

verification. There is a large body of work in this area [EAWJ02; DKC+02] that

we could leverage.

4.3 Alert generation

Hosts generate SCAs when they detect an infection attempt by a worm. Vigilante

enables hosts to use any detection engine provided it generates an SCA of a

supported type. SCA generation follows the same general pattern for all detection

engines and services, but some details are necessarily detection engine specific.

To generate SCAs, hosts log messages and the networking endpoints where

they are received during service execution. We garbage collect the log by removing

messages that are included in generated SCAs or that are blocked by our filters.

We also remove messages that have been in the log more than some threshold

time (e.g., one hour).

When the engine detects an infection attempt, it searches the log to generate

candidate SCAs and runs the verification procedure for each candidate. The

strategy to generate candidate SCAs is specific to each detection engine, but

verification ensures that an SCA includes enough of the log to be verifiable by

others and it filters out any false positives that detectors may generate. SCA

generation returns a candidate SCA when that SCA passes verification.

We implemented SCA generation for two detection engines: the non-executable

(NX) pages [PAX01] algorithm, which we describe next, and the dynamic data-

flow analysis detection algorithm described in Chapter 3. We chose these engines

because they represent extreme points in the trade-off between coverage and over-

head: the first detector has low overhead but low coverage whereas the second has
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high overhead and high coverage. Furthermore, they are both widely applicable,

since neither of them requires access to source code.

4.3.1 Using Non-executable pages

The first detection engine uses non-execute protection on stack and heap pages to

detect and prevent code injection attacks. It has negligible runtime overhead with

emerging hardware support and has relatively low overhead even when emulated

in software [PAX01]. This detector can be used to generate arbitrary execution

control or arbitrary code execution SCAs as follows.

When the worm attempts to execute code in a protected page, an exception

is thrown. The detector catches the exception and then tries to generate a can-

didate SCA. First, the detector traverses the message log from the most recently

received message searching for the code that was about to be executed or for

the address of the faulting instruction. If the detector finds the code, it gener-

ates a candidate arbitrary code execution SCA, and if it finds the address of the

faulting instruction, it generates a candidate arbitrary execution control SCA. In

both cases, the message and the offset within the message are recorded in the

verification information, and the single message is inserted in the candidate SCA.

The detector then verifies the candidate SCA. Since most worms exploit vul-

nerabilities using only one message to maximize their propagation rate, this can-

didate SCA is likely to verify. However, it will fail verification for multi-message

exploits. In this case, the detector includes additional messages by taking longer

suffixes of the message log and including them in the candidate SCA. The detec-

tor keeps increasing the number of messages in the candidate SCA until the SCA

verifies or the message log is empty.

The search through the log is efficient when detectors are run in honeypots

because the detection engine will receive only anomalous traffic and the message

log will be small. We optimize for this case by including all the logged messages

in the first candidate SCA when the log size is smaller than a threshold (e.g., 5).
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4.3.2 Using dynamic data-flow analysis

Dynamic data-flow analysis can be used to generate the three types of alerts

discussed in Section 4.1. By tracking the flow of data received from the network,

dynamic data-flow analysis can generate efficiently the verification information

needed for SCAs. To do this, the instrumented data movement instructions are

used to maintain data structures that indicate not only which CPU registers and

memory locations are dirty but also where the dirty data came from. Each dirty

register and memory location has an associated integer that identifies the input

message and offset where the dirty data came from. These identifiers are simply

a sequence number for every byte received in input messages. There is a bitmap

with one bit per 4K memory page; the bit is set if any location in the page is

dirty. For each page with the bit set, an additional table is maintained with one

identifier per memory location. We also keep a table with one identifier per CPU

register. Finally, we keep a list with the starting sequence number for every input

message to map identifiers to messages.

The modified dynamic data-flow algorithm proceeds in a manner similar to

the one described in Section 3.1.1: whenever an instruction that moves data from

a source to a destination is executed, the destination becomes dirty if the source

is dirty and becomes clean otherwise. When a destination becomes dirty, it is

tagged with the identifier associated with the source. Whenever data is received

from a network connection, the memory locations where the data is written are

marked dirty and tagged with sequence numbers corresponding to each received

byte. The instrumented control flow instructions signal an infection attempt when

dirty data is about to be executed or loaded into the program counter, while the

instrumented critical functions signal an infection attempt when all the bytes in

a critical argument are dirty. The algorithm generates a candidate SCA of the

appropriate type when it detects an infection attempt:

• If dirty data is about to be loaded into the program counter, it signals an

attempt to exploit an arbitrary execution control vulnerability.

• If dirty data is about to be executed, it signals an attempt to exploit an

arbitrary code execution vulnerability.
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• If a critical argument to a critical function is dirty, it signals an attempt to

exploit an arbitrary function argument vulnerability.

The additional information maintained by this engine eliminates the need for

searching through the log to compute the verification information: this infor-

mation is simply read from the data structures maintained by the engine. The

identifier for the dirty data is read from the table of dirty memory locations or

the table of dirty registers. The identifier is mapped to a message by consulting

the list of starting sequence numbers for input messages and the offset in the mes-

sage is computed by subtracting the starting sequence number from the identifier.

Then, the detector adds the single identified message to the candidate SCA and

attempts to verify it. This verification will succeed for most worms and it com-

pletes the generation procedure. For multi-message exploits, the detector follows

the same search strategy to compute candidate SCAs as the detector based on

non-executable pages.

We will use the vulnerable code in Figure 4.3 to illustrate SCA generation

using dynamic data-flow analysis (the source code for the program is shown in

Figure 2.1), during an edge injection attack. When the code starts to execute,

the ebx register holds the message parameter. The parameter points to a message

just received from the network. In this example, the bytes in the incoming attack

message were mapped to identifiers from 100 to 127. Before the code is executed,

the memory region where the message was received is marked dirty with identifiers

from 100 to 127. The code starts by doing a range check on the first byte of the

message, by subtracting 0x10 and 0x31 from the first byte in the message and

then comparing the result with a constant (0x0E). If the check succeeds, the next

bytes in message are copied to a stack-based buffer until a newline character is

found. This results in a buffer overflow that overwrites the return address on the

stack. After running the range check on the first byte of the message, on line 8,

the program loads the second byte of the message into the dl register, on line 10.

At this point dl is marked dirty and tagged with identifier 101. The function then

enters a loop, on lines 21 to 26, that copies the first field of the message into the

request buffer. When instruction 21 executes, the memory location pointed to by

eax is marked dirty and tagged with identifier 101, since dl is also tagged with 101.
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1: push ebp ;on entry, ebx points to the message parameter

;esp points to eip saved on the stack

;the memory containing the message is tagged with

;identifiers 100 to 127

2: mov ebp,esp

3: mov al,byte ptr [ebx] ;move first byte of message into al

;tag al with 100

4: mov ecx,dword ptr [ebp+8]

5: sub al,10h

6: sub al,31h

7: sub esp,8 ;allocate stack space for request buffer

8: cmp al,0Eh ;perform range check on first byte

9: ja 45

10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl

;tag dl with 101

11: push esi

12: push edi

13: lea edi,[ebx+1] ;move address of second byte into edi

14: xor esi,esi

15: cmp dl,0Ah

16: lea eax,[ebp-8] ;move address of request buffer into eax

17: je 28

18: mov ecx,eax

19: sub edi,ecx

20: lea esp,[esp+0h]

21: mov byte ptr [eax],dl ;copy next byte into request buffer

;tag address pointed to by eax with 100+i

22: mov dl,byte ptr [edi+eax+1] ;move next byte of message into dl

;tag dl with 100+i

23: add eax,1

24: add esi,1

25: cmp dl,0Ah ;if not found 0A, continue to next byte.

26: jne 21

... ;irrelevant instructions omitted

48: mov esp,ebp

49: pop ebp

50: ret ;load value pointed to by esp into eip

;generate an SCA, because

;esp points to dirty memory

Figure 4.3: Example of SCA generation with vulnerable program in IA-32 assem-

bly language (compiled from the source code in Figure 2.1).
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Instruction 22, loads the next byte of the message into dl, which becomes tagged

with 102. The byte is then compared with the newline character (0x0A), and the

loop continues if the newline was not reached. The loop eventually overwrites the

stored return address.

Figure 4.4 shows the state of memory before and after the vulnerable code

is executed. When the ret instruction is about to execute, at the end of the

Figure 4.4: Example of SCA generation with dynamic data-flow analysis. The

figure shows the memory when (a) a message is received and the vulnerable code

is about to execute, and (b) after the vulnerable code executes and overwrites

the return address in the stack. Greyed areas indicate dirty memory regions and

the identifiers of dirty data are shown on the left.

function, a portion of the stack has been marked dirty with identifiers from 101

to 127 because the instrumented data movement instructions propagated the tags

from the message into the stack buffer, while copying the message data. Since

the copy overwrote the return address in the stack, the ret instruction attempts

to load dirty data into the program counter. Therefore, the detector generates an

arbitrary execution control alert: it computes the verification information from

the identifier of the dirty data pointed to by the stack pointer and adds the

identified message to the SCA. This message is the attack message because the

identifier of the dirty data falls in the range 100 to 127, and the offset is computed
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by subtracting 100 from the identifier. The detector verifies this SCA and sends

it to the distribution and protection modules.

As explained in Chapter 3, dynamic data-flow analysis suffers from a small but

non-negligible false positive rate. It also has a substantial runtime overhead, when

implemented with dynamic binary re-writing. SCAs address both of these issues:

verification eliminates false positives and the cooperative detection architecture

spreads the detection load.

4.4 Alert distribution

After generating an SCA, a detector broadcasts it to other hosts. This allows

other hosts to protect themselves if they run a program with the vulnerability in

the SCA.

The mechanism to broadcast SCAs must be fast, scalable, reliable and se-

cure. It must be fast because there is a race between SCA distribution and worm

propagation. Scalability is a requirement because the number of vulnerable hosts

can be extremely large. Additionally, SCA distribution must be reliable and se-

cure because the growing number of hosts compromised by the worm can launch

attacks to hinder distribution and the number of detectors sending an SCA for

a particular vulnerability can be small. The SCA must be delivered to vulner-

able hosts with high probability even under these extreme conditions. To meet

these requirements, Vigilante uses a secure Pastry overlay [CDG+02] to broadcast

SCAs.

Vigilante uses flooding to broadcast SCAs to all the hosts in the overlay: each

host sends the SCA to all its overlay neighbours. Since the overlay is scalable, we

can distribute an SCA to a large number of hosts with low delay in the absence

of attacks. Each host maintains approximately 15 × log16N neighbours and the

expected path length between two hosts is approximately log16N . Since each host

has a significant number of neighbours, flooding provides reliability and resilience

to passive attacks where compromised hosts simply refuse to forward an SCA.

Hosts that join the overlay can obtain missing SCAs from their neighbours.

The secure overlay also includes defences against active attacks. It prevents

sybil attacks [Dou02] by requiring each host to have a certificate signed by a
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trusted offline certification authority to participate in the overlay [CDG+02]. The

certificate binds a random hostId assigned by the certification authority with a

public key whose corresponding private key should be known only to the host.

This prevents attackers from choosing their identifiers or obtaining many identi-

fiers because these keys are used to challenge hosts that want to participate in

the overlay.

Additionally, the secure overlay prevents attackers from manipulating the

overlay topology by enforcing strong constraints on the hostIds of hosts that can

be overlay neighbours [CDG+02]. These constraints completely specify the set

of neighbours of any host for a given overlay membership. Each host establishes

authenticated and encrypted connections with its neighbours using the certified

public keys. Since compromised hosts cannot choose their hostIds, they are not

free to choose their neighbours and they are not able to increase the number of

overlay paths through compromised hosts.

Compromised hosts in the overlay may also attempt to disrupt SCA distrib-

ution with denial of service attacks. Vigilante uses three techniques to mitigate

these attacks: hosts do not forward SCAs that are blocked by their filters or

are identical to SCAs received recently, they only forward SCAs that they can

verify, and they impose a rate limit on the number of SCAs that they are willing

to verify from each neighbour. The first technique prevents attacks that flood

variants of old SCAs and the second prevents attacks that flood bogus SCAs

to all the hosts in the overlay. Since hosts only accept SCAs received over the

authenticated connections to their neighbours, the third technique bounds the

computational overhead that compromised hosts can impose on their neighbours.

It is effective because the constraints on neighbour identifiers make it hard to

change neighbours.

Requiring hosts to verify SCAs before forwarding raises some issues. Some

hosts may be unable to verify valid SCAs because they do not have the vulnerable

software or they run a configuration that is not vulnerable. We made overlay links

symmetric to reduce the variance in the number of neighbours per host and to

ensure that there is a large number of disjoint overlay paths between each pair of

nodes. Since flooding explores all paths in the overlay, the probability that SCAs
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are delivered to vulnerable nodes is very high even when the fraction of nodes

that can verify the SCA is small.

Additionally, verifying SCAs introduces delay. Our verification procedures are

fast but the attacker can increase delay with denial of service attacks. In addition

to the techniques above, we verify SCAs from different neighbours concurrently to

defend against attacks that craft SCAs that take a long time to verify. Therefore,

the attacker can increase the verification delay at a host by a factor proportional

to the number of compromised neighbours of the host.

Most worms have propagated by randomly probing the IP address space but

they could propagate much faster by using knowledge of the overlay topology.

Therefore, it is important to hide information about the overlay topology from

the worm. One technique to achieve this is to run the overlay code in a separate

virtual machine and to enforce a narrow interface that does not leak information

about the addresses of overlay neighbours.

Our preferred technique to hide information about the overlay topology from

the worm is to run an overlay with super-peers. The super-peers are not vulner-

able to most worm attacks because they run only the overlay code and a set of

virtual machines with sandboxed versions of vulnerable services to verify SCAs

efficiently. The super-peers form a secure Pastry overlay as we described. Each

ordinary host connects to a small number q of super-peers (e.g., q = 2) that are

completely specified by the host’s identifier. This prevents leaking information

about vulnerable hosts because all neighbours of compromised hosts are super-

peers that do not run vulnerable software.

An overlay with super-peers is also more resilient to denial of service attacks.

First, we can give priority to verification of SCAs sent by super-peers. Since

super-peers are less likely to be compromised than ordinary hosts, this is a very

effective defence against denial of service attacks that bombard hosts with SCAs.

Additionally, super-peers may be well connected nodes with very large link ca-

pacities to make it hard for attackers to launch denial of service attacks by simply

flooding physical links.

Currently, a secure overlay with super-peers is the best option for deployment

of SCA distribution. It could be supported easily by an infrastructure similar
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to Akamai’s, which is already used by anti-virus companies to distribute signa-

tures [Aka00]. However, it should be noted that alerts could be distributed over

other broadcast/multicast channels (e.g., channels used to broadcast video).

4.5 Implementation

The implementation of SCA generation uses techniques similar to the ones de-

scribed in Chapter 3, for the implementation of the dynamic data-flow analy-

sis detector. Vigilante intercepts socket operations, using a Layered Service

Provider [HOB99], to log received messages and to mark the socket buffers

dirty. Each new byte received is tagged with a unique 32 bit identifier. Tags

are propagated when dirty data moves across memory and registers, by using

Nirvana [BCdJ+06] to translate code sequences dynamically into instrumented

versions. This instrumentation ensures that the detection engine is invoked be-

fore every instruction to disassemble the instruction, examine its operands, and

update the data structures that keep track of dirty data. These data structures

are similar to the ones described in Chapter 3, for the implementation of the

dynamic data-flow analysis detector, except that they store 32 bit identifiers for

dirty data, instead of single bits. When a control transfer instruction is about to

give control to the worm, the engine generates an SCA from these data structures

and the message log (as described in Section 4.3.2).

SCAs are verified inside a Virtual PC 2004 virtual machine (VM) to isolate any

side-effects of the verification process (see Figure 4.2). During an initial setup

phase, the SCA verifier process starts a VM and establishes a virtual network

connection to the verification manager inside the VM. The verification manager

initiates the connection because the VM is configured to disallow any incoming

connections. The SCA verifier then instructs the verification manager to load

network facing services. The verification manager injects a dynamic link library

(DLL) into each service by creating a new thread that loads the DLL. The DLL

includes the Verified function and an initialization routine which reports the

address of the Verified function back to the verification manager, through a

shared memory section. At this stage the setup for verification is complete and

the virtual machine state is saved.
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When an SCA arrives, the SCA verifier relays the SCA to the verification

manager, sets a timer, and waits for a success notification message or the time-

out. The verification manager replays the messages in the SCA, using the address

of the Verified function as described in Section 4.2, and waits on a synchroniza-

tion object. If the SCA is valid, the Verified function is called and sets the

synchronization object, signalling success to the verification manager, who sends

a success notification message to the SCA verifier. After each verification, the

VM is destroyed and a new one is created from the state on disk to be ready to

verify the next SCA.

The implementation of the overlay used for distribution is described in [CCR04;

CDG+02]. We used a small real network to evaluate the distribution of SCAs. To

understand the behaviour of Vigilante on the Internet, we simulated the distrib-

ution system using topologies from the secure version of the overlay [CDG+02].

The simulations also used measurements from real worm outbreaks and from our

implementation of Vigilante.
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Chapter 5

Protection

The last crucial step to contain a worm outbreak is to protect vulnerable com-

puters that have not been infected yet. After receiving an SCA for the outbreak,

vulnerable hosts protect themselves, but first they verify the SCA, to prevent

false positives. If the verification is successful, the local version of the program,

with the local configuration, is vulnerable to the exploit described in the SCA.

If the verification fails, the SCA is dropped and the host does not consume more

resources with the protection procedure. This is important for mitigating denial-

of-service attacks because verification is significantly cheaper than generating

protective countermeasures.

After successful verification of the SCA, hosts could stop the vulnerable pro-

gram or run it with a detection engine to prevent infection. However, stopping

the program is not acceptable in most settings and running a high-coverage de-

tection engine (e.g., dynamic data-flow analysis) results in poor performance.

Additionally, detection engines typically detect the infection attempt too late for

the vulnerable program to be able to recover gracefully.

Instead, hosts in Vigilante generate filters to block worm traffic before it is

delivered to the vulnerable program, and they suspend the vulnerable program

to prevent infection during the filter generation process. Once generated, these

filters allow the program to continue running while under attack. Furthermore,

they are unlikely to affect the correct behaviour of the program, since they do

not change the program’s code; they just discard attack messages. The main

challenge in generating these filters is to make them block mutations of the worm
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attack. In this chapter we describe the optimal filters and present an algorithm

to automatically generate filters that are effective at blocking mutations of worm

traffic, have no false positives, and introduce very low overhead.

5.1 Sufficient preconditions for infection

The optimal filter for a worm blocks all mutations of attack messages and has no

false positives. This filter can be expressed in terms of weakest preconditions, as

defined by Dijkstra [Dij75]. We assume a system that processes input messages

by running a vulnerable program P , instrumented to terminate when it reaches

a state satisfying the condition I that defines successful infection. The optimal

filter for this system, in regard to I, is the weakest precondition for infection, i.e.

the weakest condition which is guaranteed to lead to an infected state:

wp(P, I)

While of theoretical interest, calculating weakest preconditions is currently

not practical for most real systems [Win93]. However, it is practical to generate

filters that capture sufficient preconditions for infection: a set of conditions on

attack messages such that there are program states and scheduling decisions for

which the messages satisfying these conditions are guaranteed to lead to success-

ful infection. This means that when an entity, malicious or not, sends a message

satisfying these conditions, the message may lead to successful infection; there-

fore, we classify it as an attack message. The filters generated automatically by

Vigilante have no false positives, because they only drop attack messages.

5.2 Vulnerability condition slicing

5.2.1 Algorithm

Hosts generate the conditions for filters automatically by analyzing the execution

path followed when the messages in the SCA are replayed. They use vulnerability

condition slicing: a form of dynamic data and control flow analysis that finds the
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conditions on the messages in the SCA that determine the execution path that

exploits the vulnerability.

The dynamic data-flow analysis during filter generation is more elaborate than

the one we use to detect worms. It instruments all instructions in the program to

compute data-flow graphs for dirty data, i.e., data derived from the messages in

the SCA. These data-flow graphs describe how to compute the current value of

the dirty data: they include the instructions used to compute the current value

from the values at specified byte offsets in the messages and from constant values

read from clean locations. We associate a data-flow graph with every memory

position, register, and processor flag that stores dirty data.

The control-flow analysis keeps track of all conditions that determine the

program counter value after executing control transfer instructions (conditional

move and set instructions are handled similarly to control transfer instructions,

therefore we omit them for brevity). We call the conjunction of these conditions

the filter condition. The filter condition is initially true and it is updated after

every instruction that uses a dirty processor flag or transfers control to an address

read from a dirty location. The filter condition is updated to be the conjunction

of its old value and the appropriate conditions on the expressions computed by

the data-flow graphs of the dirty flag and address location.

Figure 5.1 shows the vulnerability condition slicing algorithm in pseudo-code.

When the program receives a message, the algorithm tags the memory positions

where each byte in the message is stored with a new data-flow graph that identifies

the byte (input bytes are identified by an increasing counter). Whenever an

instruction is executed, the algorithm checks if its arguments are tagged with

data-flow graphs. If so, the address that stores the result of the instruction is

tagged with a new data-flow graph reflecting the execution of the instruction;

otherwise the address that stores the result is marked clean. If the instruction

affects the processor’s flags, they are tagged in a similar fashion.

When a conditional control-flow instruction is executed, the flag controlling

the instruction is checked for dirtiness. If it is dirty, the filter condition is updated

to reflect the conditions tested by the instruction and outcome of the check on

the flag. This is done by creating a new data-flow graph that applies the opcode

of the instruction to the data-flow graph of the flag controlling the jump; the
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Figure 5.1: Vulnerability condition slicing algorithm. The algorithm generates

filters that block mutations of worm attacks, by analyzing a vulnerable program

and extracting the control-flow decisions that lead to successful attacks.
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outcome of the test on the flag is recorded by negating the opcode if the jump is

not taken. When an indirect control-flow transfer uses a dirty location (memory

or register), the filter condition is updated to reflect that the data-flow graph for

the dirty location must be equal to the current value stored there. The filter is

updated similarly on indirect memory accesses which use a dirty address operand.

For example, when the instruction jz address (jump if zero to address) is

executed, the filter condition is left unchanged if the zero flag is clean. If the

zero flag is dirty and the jump is taken, we add the condition that the expression

computed by the data-flow graph for the zero flag be true. If the zero flag is dirty

and the jump is not taken we add the condition that the expression computed by

the data-flow graph for the zero flag be false. As another example, when jmp eax

(jump to the memory position identified by the eax register) is executed, the filter

condition is left unchanged if the eax register is clean. If eax is dirty, we add the

condition that the expression computed by eax’s data-flow graph be equal to the

value currently stored by eax.

We will use the vulnerable code in Figure 5.2, and the corresponding arbi-

trary execution control SCA from Section 4.3, to illustrate the filter generation

procedure (the mechanics of attacks on this code were described in Chapter 2).

When the code starts to execute, the ebx register holds the message parameter.

The parameter points to a message just received from the network. Before the

code is executed, the memory region where the message was received is tagged

with data-flow graphs with symbols input[0] to input[27], corresponding to

the bytes just received in the message. The code starts by loading the first byte

of the message into al; at this point al is tagged with input[0]. Next, the code

does a range check on the first byte of the message by subtracting 0x10 and 0x31

from it, and comparing the result with 0x0E. Thus, at instruction 6, al becomes

tagged with input[0] - 0x10 - 0x31. The zero, sign and overflow flags become

dirty after the comparison at instruction 8, and their data-flow graphs become

input[0] - 0x10 - 0x31=0x0E; Figure 5.3 a) shows the data-flow graph asso-

ciated with the flags at this point. The filter condition is updated to input[0] -

0x10 - 0x31<=0x0E after instruction 9, because the conditional jump ja is not

taken.
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1: push ebp ;on entry, ebx points to the message parameter

;esp points to eip saved on the stack

;the memory containing the message is tagged with

;data-flow graphs for symbols input[0] to input[27]

2: mov ebp,esp

3: mov al,byte ptr [ebx] ;move first byte of message into al

;tag al with input[0]

4: mov ecx,dword ptr [ebp+8]

5: sub al,10h ;tag al with input[0] - 0x10

6: sub al,31h ;tag al with input[0] - 0x10 - 0x31

7: sub esp,8 ;allocate stack space for request buffer

8: cmp al,0Eh ;perform range check on first byte

;tag flags with input[0] - 0x10 - 0x31 = 0x0E

9: ja 45 ;add filter condition input[0] - 0x10 - 0x31 <= 0x0E

;because the jump is not taken

10: mov dl,byte ptr [ebx+1] ;move second byte of message into dl

;tag dl with input[1]

11: push esi

12: push edi

13: lea edi,[ebx+1] ;move address of second byte into edi

14: xor esi,esi

15: cmp dl,0Ah ;tag flags with input[1] = 0x0A

16: lea eax,[ebp-8] ;move address of request buffer into eax

17: je 28 ;add filter condition input[1]!= 0x0A

;because the jump is not taken

18: mov ecx,eax

19: sub edi,ecx

20: lea esp,[esp+0h]

21: mov byte ptr [eax],dl ;copy next byte into request buffer

;tag address pointed to by eax with input[i]

22: mov dl,byte ptr [edi+eax+1] ;move next byte of message into dl

;tag dl with input[i]

23: add eax,1

24: add esi,1

25: cmp dl,0Ah ;tag flags with input[i] = 0x0A

26: jne 21 ;add filter condition input[i] != 0x0A

;because the jump is taken

Figure 5.2: Example of filter generation with vulnerable program in IA-32 as-

sembly language (compiled from the source code in Figure 2.1).
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The function then copies bytes from the message into the request buffer, until

it finds the terminator character 0x0A. The check for termination on the second

byte is implemented by instructions 15 and 17, and the remaining bytes are

checked by instructions 25 and 26. For each iteration of the copy loop, the dl

register holds the next byte in the message, and is therefore tagged with input[i]

(for i >= 1). Each iteration adds a filter condition of the form input[i]6=0x0A

for i >= 1, because dl is compared with 0x0A and a conditional jump continues

the loop if they are not equal; Figure 5.3 b) shows the data-flow graph associated

with the flags when these control-flow decisions are taken.
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Figure 5.3: Data-flow graphs for flags controlling conditional jumps: a) when the

instruction ja 45 is executed, and b) when the instruction jne 21 is executed.

Both instructions are executed by the vulnerable program in Figure 5.2.

Figure 5.4 shows the filter condition generated by the algorithm for this exam-

ple. It shows that the algorithm generalizes the attack by noting that messages

will lead to successful attacks if they have a first byte within the appropriate range

and a sufficient number of subsequent bytes different from the newline character.

The termination condition for the filter generation procedure depends on the

type of SCA. The filter generation procedure replays the execution triggered by

receiving the message in the SCA after updating the location specified by the

verification information to contain a verification nonce. The idea is to use the

dynamic data-flow analysis to stop execution in the same conditions that we de-

scribed for detection while using the verification nonce to prevent false positives.

For example, the filter generation procedure for arbitrary code execution alerts
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stops when the program is about to jump to the nonce value. To remove unnec-

essary conditions from the filter, the generation procedure returns the value of

the filter condition after the instruction that overwrites the critical argument or

jump target that causes the worm to gain control. To obtain the value of the

filter condition at this point, we tag write operations with the current value of

the filter condition.
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Figure 5.4: Filter condition for an edge injection attack on the program in Fig-

ure 5.2. The filter blocks mutations of the attack; it matches any attack message

with the first byte in the allowed range and the subsequent bytes different from

0x0A up until the bytes that overwrite the return address on the stack.

The filters generated by this algorithm are safe. The conditions generated

by the algorithm can be computed without propagating side-effects to memory

or the processor, because they are pure functional expressions. In addition, the

filter conditions do not include loops or recursion. Therefore, they can always

be computed in linear time or less, on the size of the corresponding data-flow

graphs. Figure 5.5 shows the translation of the filter condition in Figure 5.4 into

a filtering program. The translation is carried out by doing a depth-first traversal

of the graph to generate a stack-based evaluation of the data-flow expression. We

ensure that the code generated has no side effects, by saving/restoring the CPU

state when entering/leaving the filter code and by using a separate stack that we

56

Figures/filter-condition.eps


5.2 Vulnerability condition slicing

ensure is large enough to evaluate the data-flow expressions. Filters also check

that a message is at least as long as the largest offset used by the filter code.

Filters generated using this procedure have no false positives: any message

that matches the filter condition would be able to exploit the vulnerability if

received in the state in which the filter was generated, and if scheduling decisions

were identical. Additionally, they can filter many worm variants that exploit the

same vulnerability because the filter captures the exact conditions that determine

the path to exploit the vulnerability. These filters are very different from filters

that block messages that contain a particular string [KK04; SEVS04] or sequence

of strings [NKS05]. They can capture arbitrary computations on the values of

the input messages.

This algorithm can be seen a form of program slicing [Wei84]. It identifies

a subset of instructions in the program that compute the control-flow decisions

that lead to successful attacks. The instructions captured in the data-flow graphs

in Figure 5.3 are a subset of the instructions of the vulnerable program shown

in Figure 2.2. Filters block messages that satisfy these conditions, by computing

the conditions immediately after messages are received.

The algorithm can also be seen a form of symbolic execution [Kin76]: simul-

taneously with the concrete execution of the vulnerable program, the algorithm

executes symbolically the instructions that process dirty data.

The current implementation only supports filters with conditions on a single

message. To deal with SCAs with multiple messages in their event list, we produce

a filter that blocks a critical message in the list to prevent the attack. The filter is

obtained using the generation procedure that we described above and removing

all conditions except those related to the critical message. We pick this critical

message to be the one named in the SCA’s verification information because this

is the message that carries the worm code or the value used to overwrite a control

structure or a critical argument. To prevent false positives, we only install the

filter if this is also the message that gives the worm control when it is processed.

The filters that we described so far have no false positives but they may be

too specific. They may include conditions that are not necessary to exploit the

vulnerability. For example, the filter generated for the Slammer worm would
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mov eax, message_len ;move the message length into eax

cmp eax, 14 ;check maximum index used in filter conditions

jb do_not_drop ;if message is shorter, do not drop it

mov esi, message ;move address of message into esi

xor eax,eax ;clear eax register

mov al,byte ptr [esi + 0x00] ;move first byte into al

push eax

push 0x10

pop ebx

pop eax

sub al,bl ;subtract 0x10 from al

push eax

push 0x31

pop ebx

pop eax

sub al,bl ;subtract 0x31 from al

push eax

push 0x0E

pop ebx

pop eax

cmp al, bl ;compare al with 0x0E

ja do_not_drop ;if above, do not drop the message

xor eax,eax ;clear eax register

mov al,byte ptr [esi + 0x01] ;move second byte into al

push eax

push 0x0A

pop ebx

pop eax

cmp al,bl ;compare with 0x0A

je do_not_drop ;if second byte is 0x0A, do not drop the message

... ;the remaining bytes, until the ones

;that overwrite the return address on the stack,

;are also checked to be different from 0x0A

Figure 5.5: Filter code generated automatically for the filter condition in Fig-

ure 5.4. The filter blocks mutations of an edge injection attack on the vulnerable

program shown in Figure 5.2. The code to save registers and to setup a separate

stack is omitted for brevity.
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require a longer than necessary sequence of non-zero bytes. This filter would not

block variants of the worm that used smaller messages.

We use two filters to reduce false negatives while ensuring that we have no

false positives: a specific filter without false positives, and a general filter that

may have false positives but matches more messages than the specific filter to

block more worm variants.

Messages are first matched against the general filter. If a message does not

match, it is sent to the program for immediate processing. Otherwise, it is

matched against the specific filter. A message that matches is dropped and

one that does not is sent to a dynamic data-flow analysis detection engine. If

the engine determines that the message is innocuous, it is sent to the program

for processing. But if the engine detects an attempt to exploit a vulnerability,

the message is dropped after being used to generate an SCA. This SCA can be

used to make the specific filter more general: the specific filter’s condition can be

updated to be the disjunction of its old value and the filter condition generated

from the SCA using the procedure from the previous section.

Since detection with dynamic data-flow analysis is expensive, the general filter

must have a low false positive rate for the protected program to achieve good

performance. We create the general filter by removing some conditions from the

specific filter using heuristics guided by information about the structure of the

path that exploits the vulnerability.

The first heuristic removes conditions on message bytes that appear after the

offset identified by the verification information in the SCA. Since the bytes in the

message are usually processed in order, this heuristic is unlikely to introduce false

positives. The second heuristic removes conditions added by the execution of a

function when that function returns. The rationale is that these conditions are

usually not important after the function returns and that the important effects

of the function are captured in the data-flow graphs of dirty data. The third

heuristic removes conditions added by indirect memory accesses, since they may

unnecessarily constrain inputs due to coding idioms used in common implementa-

tions of runtime libraries. We compute the general filter at the same time as the

specific filter by maintaining a separate general filter condition to which we apply

these heuristics. Our experimental results suggest that these heuristics work well
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in practice: they generalize the filter to capture most or even all worm variants

and they appear to have zero false positives.

5.2.2 Implementation

The implementation of filter generation uses techniques similar to the ones de-

scribed in Chapter 3, for the implementation of the dynamic data-flow analysis

detector. We associate a data-flow graph with every memory position, register,

and processor flag that stores dirty data. We maintain a page table with one entry

per 4K memory page; if any byte in the page is dirty, the entry points to a table

with one pointer per memory location. If a location is dirty, the corresponding

entry in this table points to a data-flow graph. A separate data structure stores

data-flow graphs for registers and flags.

The implementation intercepts socket operations, and tags each received byte

with a unique data-flow graph that identifies the byte. We use Nirvana [BCdJ+06]

to instrument all IA-32 instructions to maintain the data-flow graphs up to date.

These data-flow graphs describe how to compute the current value of the dirty

data: they include the instructions used to compute the current value from the

values at specified byte offsets in input messages and from constant values read

from clean locations. In the current implementation, each data-flow graph has

constants, byte offsets in messages, and Intel IA-32 opcodes as vertices and the

edges connect the operands of an instruction with its opcode. The filter condition

is represented as a list of graphs with the same format. Therefore, the filter con-

dition can be translated into efficient executable IA-32 code for filtering incoming

messages, as shown in Figure 5.5. Furthermore, we ensure that the filter code

has no side effects and that it always terminates, since it includes only forward

jumps.

After filters are generated, we deploy them with the Detours [HB99] runtime

instrumentation package. The interception mechanism used by Detours has very

low overhead, therefore it is appropriate for use in production systems, where the

filters will be deployed. Deploying the filters on a vulnerable host does not require

re-starting the vulnerable service. To achieve hot installation of the filters, the

functions that intercept the socket interface check for availability of filters on a
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shared memory section. After filter generation, the filter code is copied to the

vulnerable process through the shared memory section. Figure 5.6 shows the

components inside a vulnerable process, after a filter is deployed.

Figure 5.6: Components inside a process with a filter deployed by Vigilante.

Vigilante intercepts socket functions to process network messages with the filter

code. When the filter matches a message, it is dropped, otherwise it is handed

over to the normal code.
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Chapter 6

Evaluation

We implemented a prototype of Vigilante for Intel IA-32 machines running the

Windows operating system. This section evaluates our implementation of the

Vigilante algorithms and architecture.

6.1 Experimental setup

Experiments ran on Dell Precision Workstations with 3GHz Intel Pentium 4

processors, 2GB of RAM and Intel PRO/1000 Gigabit network cards. Hosts

were connected through a 100Mbps D-Link Ethernet switch.

We evaluated Vigilante with real worms: Slammer, Blaster and CodeRed.

Experiments with CodeRed and Blaster ran on Windows 2000 Server and exper-

iments with Slammer ran on Windows XP with SQL Server 2000. These worms

attacked popular services and had a high impact on the Internet.

Slammer infected approximately 75,000 Microsoft SQL Servers. So far, it was

the fastest computer worm in history [MPS+03]. During its outbreak, the number

of infected machines doubled every 8.5 seconds. Slammer’s exploit uses a UDP

packet with the first byte set to 0x04 followed by a 375 byte string with the worm

code. While copying the string, SQL overwrites a return address in the stack.

CodeRed infected approximately 360,000 Microsoft IIS web servers. It spread

much slower than Slammer, taking approximately 37 minutes to double the in-

fected population. CodeRed’s exploit sends a “GET /default.ida?” request fol-

lowed by 224 ‘X’ characters, the URL encoding of 22 Unicode characters (with
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the form “%uHHHH” where H is an hexadecimal digit), “HTTP/1.0”, headers

and an entity body with the worm code. While processing the request, IIS over-

writes the address of an exception handler with a value derived from the ASCII

encoding of the Unicode characters. The worm gains control by triggering an

exception in a C runtime function and it immediately transfers control to the

main worm code that is stored in the heap.

Blaster infected the RPC service on Microsoft Windows machines. We con-

servatively estimate that it infected 500,000 hosts and that its spread rate was

similar to CodeRed’s. Blaster is a two-message attack: the first message is a

DCERPC bind request and the second is a DCERPC DCOM object activation

request. The second message has a field that contains a network path starting

with ‘\\’. While copying this field to a buffer and searching for a terminating ‘\’,

the RPC service overwrites a return address in the stack.

Additionally, we used the Windows MetaFile (WMF) vulnerability of the In-

ternet Explorer Web browser1 in our tests. The vulnerability allows an attacker

to execute arbitrary code when a user views an image. Windows metafiles con-

tain pictures represented as sequences of calls to the Windows Graphical Device

Interface (GDI) library. One of these calls allows the attacker to specify the ad-

dress of a function that is later called by the GDI. Using this call, the attacker

can specify an address corresponding to code inside an attack image file. This

vulnerability is not strictly exploitable by a worm, since some user action is still

required. However, the attack is serious, since a computer can be immediately

infected when a user views an image. It is also interesting in another way: it was

exploited on the Internet before it was known by Microsoft.

6.2 Detection

We tested the dynamic data-flow analysis detector on the set of real worm attacks

described above, and on a broad range of synthetic attacks. Table 6.1 shows the

results for attacks that exploited the network services described above; all the

attacks were detected.

1Several applications that open image files are affected by this vulnerability.
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Service Attack Detected?

SQL Server Slammer attack yes

Internet Information Server Code Red attack yes

Windows RPC Service Blaster attack yes

Internet Explorer Windows Metafile vulnerability yes

Table 6.1: Real attacks detected by dynamic data-flow analysis.

The synthetic attacks were based on a testbed of 18 buffer overflow attacks

described in [WK03]. Each attack is based on a different combination of tech-

nique, location and attack target. The testbed uses two techniques, two types of

location and four attack targets:

Techniques. The first technique simply overflows a buffer until the attack target

is overwritten. The second technique overflows a buffer until a pointer is over-

written, and a uses a subsequent assignment through the pointer to overwrite the

attack target.

Locations. The attacks use two types of location for the overflowed buffer: the

stack, and the data segment.

Attack Targets. The attacks use four different control data structures as tar-

gets: the return address on the stack, the old base pointer on the stack, function

pointers and longjmp buffers. The last two can be either variables or function

parameters.

Table 6.2 shows the results for the synthetic attacks. All the attacks were

detected. It is worth pointing out that dynamic data-flow analysis is able to

detect the attacks without using any specific knowledge about the control data

structures used by the program. By comparison, the coverage of several tools

that protect specific control data structures was tested with the same attacks

and the best tools only detected 50 percent of the attacks [WK03]. Even if all

the techniques used by the tools tested in [WK03] were combined, a third of the

attacks would not be detected.

We also measured the performance overhead introduced by the dynamic data-

flow analysis detector with SQL Server, the IIS web server, and the Windows RPC

service. For each vulnerable service we measured the average response time of one

hundred requests. For SQL Server the requests were generated with transactions

65



6.2 Detection

Attack Target data structure Detected?

Direct overwrite on stack

Parameter function pointer yes

Parameter longjmp buffer yes

Return address yes

Old base pointer yes

Function pointer yes

Longjmp buffer yes

Direct overwrite on data segment
Function pointer yes

Longjmp buffer yes

Overwrite through stack pointer

Parameter function pointer yes

Parameter longjmp buffer yes

Return address yes

Old base pointer yes

Function pointer yes

Longjmp buffer yes

Overwrite through data segment pointer

Return address yes

Old base pointer yes

Function pointer yes

Longjmp buffer yes

Table 6.2: Synthetic attacks detected by dynamic data-flow analysis.
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from the TPC-C benchmark [TPC99]. To measure the worst case scenario for

detector overhead, we used empty implementations for the TPC-C stored proce-

dures; therefore the requests were CPU bound. For IIS we used requests from the

SpecWeb99 [SPE] benchmark. To measure a worst case scenario, IIS returned

512 bytes from main memory in response to every request. For the Microsoft

Windows RPC service, we generated a custom workload using requests to lookup

an RPC interface; these requests are also CPU bound. Figure 6.1 shows the over-

head for each of the experiments for the three vulnerable services. The overhead

is large in all cases: the response time increases by a factor of 51 for SQL, 38 for

the RPC service, and 50 for IIS. Therefore, it is not appropriate to run our im-

plementation of the dynamic data-flow analysis detector on production services.

The largest contributors to the overhead are the Nirvana re-writing mechanism

and the disassembler used to decode instructions. Both of these mechanisms can

be optimized; for instance, DynamoRIO [BDA00] provides much faster re-writing,

and we also plan to optimize the detector by caching decoded instructions. How-

ever, as Section 6.3 shows, in spite of their large overhead, these detectors can

still generate alerts in times ranging from tens of milliseconds to a few seconds;

thus, they can already be used to provide timely detection of unknown worm

attacks.
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Figure 6.1: Runtime overhead of running the dynamic data-flow analysis detector.
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6.3 Alert generation

6.3 Alert generation

The next experiment measures the time to generate SCAs with the dynamic data-

flow analysis and NX detectors. The time is measured from the moment the last

worm message is received till the detector generates an SCA. It does not include

the time to verify the SCA before it is distributed and the log contains only the

worm messages. One detector uses dynamic data-flow analysis and the other

uses a software emulation of non-execute protection on stack and heap pages

(NX). The detectors generate arbitrary execution control alerts for Slammer and

Blaster, and an arbitrary code execution alert for CodeRed.
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Figure 6.2: SCA generation time in milliseconds for real worms using two detec-

tors.

Figure 6.2 shows average SCA generation times for Slammer, Blaster, and

CodeRed with the dynamic data-flow detector and for Slammer using the NX

detector. The results are the average of five runs. The standard deviation is 0.5

ms for Slammer, 3.9 ms for Blaster, and 204.7 ms for CodeRed.

Both detectors generate SCAs fast. The NX detector performs best because

its instrumentation is less intrusive, but it is less general. For both Slammer and

Blaster, the dynamic data-flow detector is able to generate the SCA in under

210 ms and it takes just over 2.6 s for CodeRed. Generation time is higher for

CodeRed because the number of instructions executed is larger and Nirvana has

to dynamically translate a number of libraries loaded during the worm attack.

Figure 6.3 shows the SCA size in bytes for each worm. The SCAs include a

fixed header of 81 bytes that encodes the SCA type, vulnerable service identifica-
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Figure 6.3: SCA sizes in bytes for real worms.

tion and verification information. The size of the SCAs is small and it is mostly

determined by the size of the worm probe messages.

6.4 Alert verification

The next experiment measures the time to verify SCAs. SCAs are verified inside

a Virtual PC 2004 virtual machine that has all the code needed for verification

loaded. The state of this VM is saved to disk before verifying any SCA. After

each verification, the VM is destroyed and a new one is created from the state on

disk to be ready to verify the next SCA.
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Figure 6.4: SCA verification time in milliseconds for real worms.

Figure 6.4 shows the average time in milliseconds to verify each SCA. The

results are the average of five runs. The standard deviation is 0.5 ms for Slammer,

1.5 ms for Blaster, and 6.5 ms for CodeRed.
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6.5 Alert distribution

Verification is fast because it doesn’t need to instrument the vulnerable soft-

ware, and because we keep a VM running that is ready to verify SCAs when they

arrive. The overhead to keep the VM running is low: a VM with all vulnerable

services used less than 1% of the CPU and consumed approximately 84MB of

memory.

We also explored the possibility of starting VMs on demand to verify SCAs.

The VM is compressed by the Virtual PC into a 28MB checkpoint. It takes four

seconds to start the VM from disk with cold caches, but it takes less than a second

to start the VM from a RAM disk. Since this additional delay is problematic

when dealing with fast spreading worms, we decided to keep a VM running.

Techniques to fork running services [VMC+05; FC03] should enable creation of

VMs on demand with low delay.

6.5 Alert distribution

To evaluate the effectiveness of SCA distribution at large scale, we ran simula-

tions with parameters derived from our experiments with the prototype and from

published statistics about real worms.

6.5.1 Simulation setup

The simulations ran on a simple packet-level discrete event simulator with a

transit-stub topology generated using the topology generator described in [ZCB96].

The topology has 5050 routers arranged hierarchically with 10 transit domains

at the top level and an average of 5 routers in each. Each transit router has an

average of 10 stub domains attached with an average of 10 routers each. The

delay between routers is computed by the topology generator and routing is per-

formed using the routing policy weights of the graph generator. Vigilante hosts

are attached to randomly selected stub routers by a LAN link with a delay of 1

ms.

In all the simulations, we use a total population of 500,000 hosts. S randomly

selected hosts are assumed susceptible to the worm attack because they run the
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same piece of vulnerable software. A fraction p of the susceptible hosts are ran-

domly chosen to be detectors, while the rest are referred to as vulnerable hosts.

We evaluate distribution using the secure overlay with super-peers: 1,000 of the

500,000 hosts are randomly selected to be super-peers that form a secure Pastry

overlay and each ordinary host connects to two super-peers. Each super-peer is

able to verify the SCA and is neither vulnerable nor a detector.

We model worm propagation using the epidemic model described in [Het00]

with minor modifications that take detectors into account. Assuming a popula-

tion of S susceptible hosts, a fraction p of them being detectors, and an average

infection rate of β, let It be the total number of infected hosts at time t and Pt

be the number of distinct susceptible hosts that have been probed by the worm

at time t, the worm infection is modelled by the following equations:

dPt

dt
= β It(1 −

Pt

S
) (6.1)

dIt

dt
= β It(1 − p −

It

S
) (6.2)

Starting with k initially infected hosts, whenever a new vulnerable host is

infected at time t, our simulator calculates the expected time until a new suscep-

tible host receives a worm probe using Equations (6.1) and (6.2), and randomly

picks an unprobed susceptible host as the target of that probe. If the target host

is vulnerable, it becomes infected. If the target host is a detector, an SCA will

be generated and distributed.

To account for the effects of network congestion caused by worm outbreaks,

we built a simple model that assumes the percentage of packets delayed and

the percentage of packets dropped increase linearly with the number of infected

hosts. We computed the parameters for the model using the data gathered during

the day of the Slammer outbreak by the RIPE NCC Test Traffic Measurements

(TTM) service [GGK+01]. At the time, the TTM service had measurement hosts

at 54 sites spread across the world and each host sent a probe to each of the other

hosts every 30 seconds.

Since Slammer took approximately 10 minutes to propagate, we computed the

peak percentage of packets dropped and delayed by analyzing the data during

the 10-minute interval starting at 10 minutes after the Slammer outbreak. We
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also computed the average increase in packet delay using as the baseline the

delays in the 10-minute interval ending at 10 minutes before the outbreak. We

observed that about 9.6% of the packets sent were delayed with an average delay

increase of 4.6 times, while 15.4% of the packets were dropped. We delay or drop

a percentage of packets equal to the above values multiplied by the fraction of

infected hosts.

When probed, a detector takes time Tg to generate an SCA and then it broad-

casts the SCA. SCA verification takes time Tv. Detectors, vulnerable hosts, and

super-peers can verify SCAs but other hosts cannot. Unless otherwise stated, we

assume 10 initially infected hosts. Each data point presented is the mean value

of 250 runs with an error bar up to the 90th percentile. Each run has different

random choices of susceptible hosts, detectors, and initially infected hosts.

We model a DoS attack where each infected host continuously sends fake

SCAs to all its neighbours to slow down distribution. We conservatively remove

rate control. We assume that the concurrent execution of n instances of SCA

verification increases verification time to nTv seconds.

Finally, we note that while accurately modelling worm outbreaks and counter-

measures is still an area of active research [MSVS03; ZGGT03; CGK03; VG05;

GGK+06], the worm spreading model above has been shown to describe accu-

rately outbreaks of real worms [MPS+03], and we parameterized the model with

measurements from our implementation of Vigilante and with data collected dur-

ing real outbreaks.

6.5.2 Containment of real worms and beyond

First, we evaluate the effectiveness of Vigilante with Slammer, CodeRed, and

Blaster. Table 6.3 lists the parameter settings used for each worm. The infection

rates (β) and susceptible population (S) for Slammer and CodeRed are based on

observed behaviour reported by Moore et al. [MPS+03]. Blaster was believed to be

slower than CodeRed, but with a larger susceptible population. We conservatively

set its infection rate to be the same as CodeRed and have the entire population

being susceptible. Tg and Tv are set according to the measurements in Sections 6.3

and 6.4.
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β S Tg (ms) Tv (ms)

Slammer 0.117 75,000 18 10

CodeRed 0.00045 360,000 2667 75

Blaster 0.00045 500,000 206 18

Table 6.3: Simulation parameters for modelling containment of real worms.

Figure 6.5 shows the infected percentage (i.e., the percentage of vulnerable

hosts that are eventually infected by the worm) for the real worms with different

fractions (p) of detectors both with and without DoS attacks. The graph shows

that a small fraction of detectors (p = 0.001) is enough to contain the worm infec-

tion to less than 5% of the vulnerable population, even under DoS attacks. The

Vigilante overlay is extremely effective at disseminating SCAs: once a detector

is probed, it takes approximately 2.5 seconds (about 5 overlay hops) to reach

almost all the vulnerable hosts.

SCA verification time (Tv) determines SCA distribution delay, whereas the

number of initially infected hosts (k) and infection rate (β) characterize worm

propagation. Figure 6.6 shows the impact of Tv, β, and k on the effectiveness of

Vigilante, both with and without DoS attacks. Slammer is the fastest propagating

real worm. We therefore use Slammer’s β = 0.117 as the base value in subfigure

(b), for example, with a worm infection rate of 8β, the number of infected ma-

chines doubles approximately every second. Because the initially infected hosts

are counted in the infected percentages reported, the baseline in subfigure (c)

shows the contribution of the initially infected hosts to the final infected percent-

age. Unless otherwise specified, the experiments use the default values with p of

0.001, k of 10, Tg of 1 second, Tv of 100 ms, β of 0.117, and S of 75,000.

These results show that Vigilante remains effective even with significant in-

creases in SCA verification time, infection rate, or number of initially infected

hosts. The effectiveness of Vigilante becomes reduced (and exhibiting significant

variations) with SCA verification time of 1000 ms, with infection rate of 8β, or

with 10000 initially infected nodes. Do note that those settings are an order of

magnitude worse than the worst of real worms.
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Figure 6.5: Containment of Slammer, CodeRed, and Blaster using parameter

settings in Table 6.3, both with and without DoS attacks. Each data point is the

mean value with an error bar up to the 90th percentile value.

74

Figures/SlammerErrorBar.eps
Figures/CodeRedErrorBar.eps
Figures/BlasterErrorBar.eps


6.5 Alert distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000

SCA Verification Time (msec)

In
fe

ct
ed

 P
er

ce
n

ta
g

e w/ DoS
w/o DoS

(a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5� � 2� 4� 8�
Infection Rate

In
fe

ct
ed

 P
er

ce
n

ta
g

e w/ DoS
w/o DoS

(b)

0%

5%

10%

15%

20%

25%

30%

35%

0 2000 4000 6000 8000 10000

Number of Initially Infected Hosts

In
fe

ct
ed

 P
er

ce
n

ta
g

e w/ DoS
w/o DoS
Baseline

(c)

Figure 6.6: The effect of SCA verification time, infection rate, and number of

initially infected hosts, both with and without DoS attacks. Each data point is

the mean value with an error bar up to the 90th percentile value.
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6.6 Protection

Not surprisingly, DoS attacks appear more damaging in configurations where

Vigilante is less effective because the significance of DoS attacks hinges directly

on the number of infected hosts. Also as expected, Vigilante is increasingly

vulnerable to DoS attacks as the verification time increases.

Other attacks on the distribution of SCAs have also been analyzed in recent

work: [RHR06] analyzed the possibility of using the information in the SCAs to

generate new worms. Such attacks have a limited impact, because the generated

worms compete with a worm that is already spreading.

6.6 Protection

The next set of experiments evaluates the overheads associated with filters and

their effectiveness.

6.6.1 Filter generation

The first experiment measures the time to generate a filter from an SCA that has

already been verified. Figure 6.7 shows the time in milliseconds to generate both

the specific and general filters for the three worms. The results are the average

of five runs. The standard deviation was 0.7 ms for Slammer, 5.1 ms for Blaster,

and 205.3 ms for CodeRed. In all cases, filter generation is fast. Filter generation

for CodeRed is more expensive because the number of instructions analyzed is

larger and the binary re-writing tool needs to dynamically translate code for a

number of libraries that are loaded on demand.

The generated filters are also effective. In all cases, the specific filters block

the attack, have no false positives, and also block many polymorphic variations of

the attack. We describe the general filters in more detail because they determine

the false negative rate.

The general filter for Slammer checks that the first byte is 0x4 and that

the following bytes are non-zero (up to the byte offset of the value that would

overwrite the return address in the stack). This filter is optimal: it captures all

polymorphic variations of the attack with no false positives. The filter’s code

sequence is not optimized: it corresponds to a stack-based evaluation of the filter
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Figure 6.7: Filter generation time for real worms.

condition. For example in Slammer, the condition that the first byte is equal

to 0x04 is computed by the code in Figure 6.8. There are a number of obvious

optimizations, but the performance of the filter is good even without them.

The general filter for Blaster checks that there are two consecutive backslash

(‘\’) Unicode characters at the required positions, followed by Unicode characters

different from ‘\’ up to the position of the value that will overwrite the return

address in the stack. This filter catches all polymorphic variations in the worm

code and some variations in other parts of the message.

The general filter for CodeRed checks that the first 4 bytes form the string

“GET ”, and that bytes from offset 0x11 to offset 0xF0 are ASCII characters

and that they are different from ‘+’ and ‘%’. The filter also checks that “%u”

strings are used in the same positions where the attack used them and that the

characters following those strings are ASCII representations of hex digits. This

filter catches polymorphic variations on the worm code and insertion of HTTP

headers in the attack message.

These results show that dynamic control and data flow analysis is a promising

approach to filter generation. While the general filter for Slammer is perfect, the

general filters for Blaster and CodeRed have some limitations. For Blaster, it

is possible that other successful attacks could be mounted by using the string

starting with ‘\’‘\’ at a different position in the attack message. The CodeRed

filter also does not tolerate shifting or insertion of ‘+’ or ‘%’ where the worm

used ‘X’ characters. We plan to improve the general filters in the future. In our
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6.6 Protection

xor eax,eax ;clear the eax register

mov al,byte ptr [esi + 0x0] ;move first byte into al

push eax ;push the first byte into the stack

push 0x02

pop ebx

pop eax

sub eax,ebx ;subtract 2 from first byte

push eax

pop eax

mov ebx,0x02

cmp eax,ebx ;compare with 2

jne do_not_drop ;exit the filter without a match if not equal

Figure 6.8: IA-32 code for a condition of Slammer’s filter.

current implementation, filters may also be evaded with packet fragmentation.

We plan to address this limitation by implementing well known countermeasures

for this evasion technique [PN98].

6.6.2 Overhead of deployed filters

We also measured the performance overhead introduced by deployed filters. Fil-

ters were deployed by binary re-writing the vulnerable services. We used De-

tours [HB99] to intercept calls to the socket interface and install the filters im-

mediately above functions that receive data.

We ran three experiments for each vulnerable service and measured the over-

head with a sampling profiler. The first experiment (intercepted) ran the service

with just the socket interface being intercepted. The second experiment (inter-

cepted + filter) ran the service with the socket interface being intercepted and

invoking the appropriate general and specific filters. The third experiment (in-

tercepted + filter + attack) stressed the filter code by sending worm probes to the

service at a rate of 10 per second (which is three orders of magnitude larger than

the rate induced by Slammer). For every experiment, we increased the service

load until it reached 100% CPU usage, as described below. Figure 6.9 shows

the overhead for each of the experiments for the three vulnerable services. The

results are the average of five runs. The overhead is very low in all cases.

SQL For Slammer the vulnerable service is SQL Server. We generated load

using the TPC-C benchmark [TPC99] with 170 simulated clients running on two
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separate hosts. Clients were configured with zero think time. To measure the

worst case scenario for the filter overhead, the number of requests serviced per

unit time was maximized by using empty implementations for the TPC-C stored

procedures. Figure 6.9 shows that the CPU consumed by the interception is just

0.16%. When then Slammer filters are installed, the overhead remains the same

because Slammer exploits a vulnerability in a management interface running on

UDP port 1434. This is not the same communication endpoint that SQL uses to

listen for client transactions. Therefore, the requests issued by the TPC-C clients

follow a different code path and the impact of running the filter is negligible.

With worm probes, the overhead rises to only 0.2%.
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Figure 6.9: CPU overhead of network traffic interception and filter deployment.

RPC For Blaster the vulnerable service is Microsoft Windows RPC service. We

generated a custom workload using requests to lookup and register an RPC in-

terface. We loaded the RPC service using 3 client hosts that lookup the RPC

interface and 1 local client that registers the interface. Figure 6.9 shows the CPU

consumed by interception is only 0.51%, and it rises to 0.7% when the filters

are invoked. When running with 10 Blaster probes per second the overhead was

0.76%. Unlike Slammer, the filters are on the normal execution path and are

used by requests to lookup the interface.

IIS For CodeRed the vulnerable service is Microsoft IIS Server. We generated a

workload using the requests from the SpecWeb99 [SPE] benchmark with clients

running on two separate hosts. To measure a worst case scenario for filter over-

head, we installed an IIS extension that returns 512 bytes from main memory
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in response to every request. Figure 6.9 shows that the CPU consumed by the

interception is 1.4%. The majority of this CPU overhead is attributable to match-

ing I/O operation handles to discover where data is written when asynchronous

I/O operations complete. When the CodeRed filters are invoked the overhead

increases to 1.92%. These filters are on the normal execution path and are in-

voked for every packet. Finally, adding the 10 CodeRed probes per second, the

overhead rises to 2.07%.

6.7 End-to-End experiments

The final set of experiments measures Vigilante’s worm containment process end-

to-end in a five-host Vigilante network. The hosts were configured in a chain

representing a path from a detector to a vulnerable host in the SCA distribution

overlay with three super-peers. They were connected by a LAN. The first host

was a detector running a dynamic data-flow analysis engine. Once the detector

generated an SCA it was propagated through three super-peers to a host running

the vulnerable service. This provides approximately the same number of hops as

the simulations in Section 6.5.

We measured the time in milliseconds from the moment the worm probe

reached the detector till the moment when the vulnerable host verified the SCA.

This time is critical for protection. After successful verification, the vulnerable

host can suspend execution of the vulnerable service during filter generation. We

ran the experiment for the three worms: using SQL Server with Slammer, the

Windows RPC Service with Blaster, and IIS with CodeRed. The time was 79 ms

for Slammer, 305 ms for Blaster, and 3044 ms for CodeRed. The results are the

average of five runs. The standard deviation is 12.2 ms for Slammer, 9.0 ms for

Blaster and 202.0 ms for CodeRed. These values are close to those obtained by

adding the SCA generation time to five SCA verifications, as expected.

The vulnerable host deployed the filter after it was generated, which does

not require re-starting the vulnerable service. To achieve hot installation of the

filters, the functions that intercept the socket API check for availability of filters

on a shared memory section. After filter generation, the filter code is copied to
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the vulnerable process through the shared memory section. Filter deployment is

fast: in all cases filters were deployed in less than 400 microseconds.

81





Chapter 7

Related work

Previously proposed techniques to mitigate worm attacks can be divided into

network-based and host-based mechanisms. Network-based mechanisms exclu-

sively analyze network traffic, while host-based systems use information available

at the end-hosts. This chapter discusses previous proposals in each of these areas.

7.1 Network-based mechanisms

Detection in network-based systems is based on defining a model of normal traffic

and identifying deviations from that model. Protection in these systems consists

of blocking suspicious traffic. Traffic can be considered suspicious for several

reasons: it may come from outside an enterprise network perimeter; it may come

from machines thought to be infected; it may match a signature generated from

previously observed attacks; or it may contain suspicious data (e.g. data that

looks like executable code). All network-based systems that we are aware of

are based on heuristics and can have both false positives and false negatives.

Furthermore, it seems difficult to completely remove false positives and false

negatives from these systems, because the root cause for worm attacks, vulnerable

programs, is not visible at the network level.
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7.1.1 Firewalls

Firewalls [CBR03] are one of the most successful network-based protection mech-

anisms. Enterprise firewalls define a boundary between enterprise networks and

the Internet. Only certain types of network interactions are allowed across the

firewall boundary. For instance, incoming connections are usually disallowed.

Firewalls are effective at blocking many attacks, but they are a brittle bound-

ary. Worms can bypass them using web browser vulnerabilities or email-based

attacks, because firewalls typically allow this type of traffic [CER01]. Worms can

also exploit virtual private network connections and infected laptop computers

to penetrate enterprise networks. After infecting one computer inside the enter-

prise network, the worm can spread internally unhampered by the firewall. Thus,

while firewalls make it hard for the worm to directly send attack messages from

the Internet to computers on enterprise networks, they do not provide a general

solution for containment.

Personal firewalls, i.e. firewalls that run on personal computers, are also

widely deployed. They are usually more permissive than enterprise firewalls, and

therefore less effective at blocking attacks. Personal firewalls provide an effective

mechanism to deploy traffic filters generated with the blacklisting and content

filtering approaches discussed next.

7.1.2 Address blacklisting

Several systems are based on the idea of blocking network traffic from infected

computers, thus preventing them from infecting other computers. Early proposals

identified infected computers by analyzing host connectivity graphs [SCCD+96].

The heuristics used by the GrIDS system generated 1 to 2 false positives a day;

it is unclear how many false positives would be generated by current traffic.

More recently, several systems proposed identifying infected machines by detect-

ing scanning behaviour. Mirage networks [Mir06] and Forescout [For06] mark

machines as infected if they send messages to unallocated (dark) IP addresses.

Worms can avoid this type of detectors by not using dark IP addresses. The

systems in [GEB02; WKO05] consider machines infected if they use IP addresses

without first resolving the corresponding DNS [Moc87] names. These systems
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can generate false positives that need to be handled with whitelisting. It seems

they can also be evaded if worms coordinate to fake DNS traffic. For instance,

a worm instance can generate DNS queries that are answered by another worm

instance, by supplying the appropriate IP address for the next scan target.

Several systems detect scanning by observing that worms generate many failed

network transmissions [TK02b; JPBB04; SJB04; WSP04], because they try to

contact unreachable addresses. Jung et al. [JPBB04] proposed Threshold Random

Walk (TRW): an algorithm that can be parameterized with models of good traffic

and attack traffic, and detects infection by analyzing the rate of successful to

failed connections. Weaver et al. [WSP04] proposed a simplification of TRW

that uses a threshold on an estimate of the difference between the number of

failed connections and the number of successful connections. Bro [Pax99] uses a

configurable threshold on the number of failed connections. Snort [Roe99] and

Network Security Monitor [HDK+90] do not look at failed connections; instead

they monitor the rate at which unique destination addresses are contacted. If

computers exceed a threshold of new addresses contacted in a given interval,

they can be flagged as infected. Finally, SPICE [SHM02] is an algorithm to

detect very slow scans of enterprise networks by correlating anomalous events;

the algorithm gathers information over long time periods(days) and is expensive

to run. Therefore it is not well adapted to the detection of fast spreading worms.

Staniford [Sta04] and Ganesh [GGK+06] analyze the conditions under which

scanning detection and subsequent blacklisting can provide containment. Stan-

iford [Sta04] discusses the importance of an ”epidemic threshold” for these sys-

tems: if on average an infected machine can find more than one victim before

being blacklisted, the number of infected machines will still grow exponentially.

Weaver et al. argue [WESP04] that scanning detection and suppression would

need to be deployed in every local area network (LAN), in special hardware de-

vices, for the system to provide containment.

These systems also cannot contain worms that have normal traffic patterns, for

example, topological worms that exploit information about hosts in infected ma-

chines to propagate, thus avoiding scanning. False positives are another problem

for these systems, because several normal network services exhibit scanning-like

behaviour [Jun06]. A related problem is malicious false positives, for example,
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an attacker can perform scanning with a fake source address to block traffic from

that address.

7.1.3 Throttling connections

A variant of blacklisting is throttling: limiting the resources used by infected

machines, without blocking all traffic from those machines. Williamson [Wil02]

proposed limiting the rate of connections to new addresses. This approach limits

the impact of false positives, by allowing the machines to continue active, albeit

with degraded performance. On the other hand it only slows the spread of worms,

without providing containment.

7.1.4 Content filtering

Another approach to network-based worm containment is to generate a set of

content signatures for worm attack messages, and to drop messages that match

the signatures. Interest in this approach increased after Moore et al. [MSVS03]

showed it is superior to blacklisting, if content signatures can be generated quickly.

The intuition for this is simple: systems based on blacklisting need to continuously

discover and blacklist the addresses of the infected machines very soon after they

become infected, while content filtering systems can block all attack traffic by

generating a signature only once.

Worm signatures have traditionally been generated by humans but there are

several proposals to generate signatures automatically. Kephart et al. [KA94]

proposed, in the context of viruses, the first algorithm to generate signatures

automatically. Their system generates byte string signatures by luring viruses into

infecting decoy programs, and creating candidate signatures by finding common

substrings in several instances of infected programs1. The candidate signatures

are then filtered to minimize the probability of false positives.

More recently, Honeycomb [KC03] proposed generating byte string signatures

from the traffic observed at honeypots. Honeycomb assumes all traffic received by

1Strictly speaking, this system uses host-level information, but we include it here since it

is similar to subsequent network-based systems that generate signatures by finding common

substrings in network traffic.
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honeypots is suspicious. Signatures are generated by finding the longest common

substring in two network connections. The system can generate false positives

if legitimate traffic reaches the honeypot. Malicious false positives are also a

problem, since an attacker can send traffic to the honeypot in order to generate

a signature. Honeycomb can also have false negatives. It uses a configurable

minimum length for its signatures, to avoid false positives, but this will allow

polymorphic worms to spread undetected. Polymorphic worms can have little

invariant content across attack messages, thereby making it difficult to match

them with byte strings.

Autograph [KK04] also generates byte string signatures automatically. Rather

than relying on honeypots, Autograph identifies suspicious network flows at the

firewall boundary. It stores the address of each unsuccessful inbound TCP con-

nection, assuming the computer generating such connection requests is scanning

for vulnerable machines. When a configurable number of such attempts are

recorded, Autograph marks the source IP address as infected. All subsequent

connections involving IP addresses marked as infected are inserted into a pool of

suspicious network flows. Periodically, Autograph selects the most common byte

strings in the suspicious flows as worm signatures. To limit the amount of false

positives, Autograph can be configured with a list of disallowed signatures; the

authors suggest a training period during which an administrator runs the system

and gradually accumulates the list of disallowed signatures. The system is also

configured with a minimum signature size, which can result in false negatives,

especially with polymorphic worms.

Earlybird [SEVS04] is based on the observation that it is rare to see the same

byte strings within packets sent from many sources to many destinations. Un-

like Autograph, Earlybird doesn’t require an initial step that identifies suspicious

network flows based on scanning activity. Earlybird generates a worm signature,

when a byte string is seen in more than a threshold number of packets and it is

sent/received to/from more than a threshold number of different IP addresses.

Earlybird uses efficient algorithms to approximate content prevalence and ad-

dress dispersion; therefore, it scales to high-speed network links. To avoid false

positives, Earlybird uses whitelists and minimum signature sizes. As with Hon-
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eycomb and Autograph, malicious false positives are a concern and polymorphic

worms are likely to escape containment.

PayL [WCS05] is based on the idea of analyzing byte frequency distributions in

normal traffic, and considering messages with anomalous distributions as suspect.

PayL triggers a signature generation procedure if outgoing messages are similar

to suspect incoming messages. PayL signatures are byte strings which are shared

by incoming and outgoing suspect messages. PayL can generate false positives

and recent work [FSP+06] showed that it can be evaded.

Polygraph [NKS05] argued that single byte string signatures cannot block

polymorphic worms. In an effort to generate signatures that match polymorphic

worms, Polygraph generates signatures that are multiple disjoint byte strings, in-

stead of a single byte string. Polygraph relies on a preliminary step that classifies

network flows as suspicious or innocuous. Tokens are identified as repeated byte

strings across the suspicious network flows. A subsequent step groups tokens into

signatures. Polygraph proposes three types of matching with these signatures:

matching all the byte strings in a signature, matching the byte strings in order,

or assigning a numeric score to each byte string and base matching in an overall

numeric threshold. Their evaluation shows that none of these types of signature

is superior to the others for every worm. All of them can have false positives and

false negatives. A recent evaluation [PDL+06] shows that attacks that generate

fake anomalous network flows can prevent Polygraph from reliably generating

useful signatures.

PADS [TC05] generates signatures that are a sequence of byte frequency dis-

tributions. The authors show that PADS works for some cases, but it is unclear

if a polymorphic worm cannot generate arbitrary byte frequency distributions for

most bytes in the attack messages. Malicious false positives are also a problem for

PADS; it uses a configuration with two honeypots to try to remove any non-worm

traffic from the signature generation procedure, but the worm can still generate

bogus traffic after infecting a machine.

Nemean [YGBJ05] uses protocol-specific information to generate signatures

that are regular expressions and may include session-level context, but it requires

some manual steps and also cannot cope with pollution of the network data that

is used as input to the signature generation process.
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Finally, another technique to filter attack messages is to identify executable

code in network messages. Toth and Kruegel [TK02a] proposed using binary

disassembly over a network flow and dropping messages whenever a long se-

quence of valid instructions is found. An instruction is considered valid if it can

be decoded by the processor and if all the memory operands of the instruction

reference memory locations that can be accessed. Strictly speaking, this mecha-

nism requires host-based information, since checking if the memory locations can

be accessed requires having access to the address space of the process running

the target program. However, this information can easily be approximated (e.g.

certain memory regions are always reserved for the operating system and can

never be accessed by applications) and subsequent systems removed this require-

ment [CvdB05; KKM+05a; WPLZ06]. Their system assumes attack messages

will have a relatively long region with instructions that have no effect (sometimes

called a NOP sledge [TK02a]), because this is common technique used by worms

to deal with small variations on the location where attack messages are stored in

the virtual address space of target processes. This technique can be defeated by

inserting noise (e.g. branch instructions, illegal instructions, etc) in the sledge.

To deal with this type of attacks, several systems [CvdB05; KKM+05a; WPLZ06]

proposed using static analysis techniques on the disassembled network flow. These

systems identify executable code in the network flow more reliably, at some per-

formance cost.

The techniques that identify code in messages are more resilient to attack

mutations, because they do not use fixed byte strings as signatures. They may

still have false negatives because they look for code sequences of some minimum

length (e.g. 15 instructions [WPLZ06]) and worms can use very short code se-

quences to encode/decode the bulk of the attack payload. Another source of

false negatives is worm attacks that succeed without injecting new executable

code into their targets. Even for injected code, the code may be encoded in the

protocol messages [rix01]; for instance the systems in [TK02a; WPLZ06] use pro-

tocol specific information to decode the network messages, before trying to find

executable code.

89



7.2 Host-based mechanisms

7.2 Host-based mechanisms

Host-based mechanisms either statically analyze programs, or dynamically ana-

lyze the execution of programs. Some host-based mechanisms try to remove or

avoid all defects that might be exploited by worms, while other systems detect

attacks only when worms exploit defects at runtime. The latter often require ad-

ditional survivability mechanisms, since detection is usually not enough to keep

programs running while they are being attacked. This section reviews work in all

of these areas.

7.2.1 Avoid/Remove defects

Type safe languages [Car04; Mad06] can avoid many of the defects that can be

exploited by worms. However, these languages force the programmer to relin-

quish some of the flexibility and speed available in languages like assembly or

C; thus, they have not been adopted by some programmers. Many of these lan-

guages include facilities to link with unsafe modules, and often their runtimes are

written in unsafe languages. This has made them vulnerable to attacks [Sec02].

Finally, there is a very large body of code written in unsafe languages; the effort

of porting this code to different languages is large and difficult to justify econom-

ically. Languages like CCured [NMW02] and Cyclone [JMG+02] try to facilitate

the evolution of code written in C to memory-safe dialects. The disadvantage

of these approaches is that the effort to port existing C code to these dialects is

non-trivial and they require significant changes to the C runtime, for example,

CCured replaces malloc and free by a garbage collector.

Another approach to remove defects is to statically analyze the source code of

programs, looking for specific classes of defects. SELECT [BEL75] and Lint [Joh84]

were some of the early tools in this space. More recently, several tools [BPS00;

YTEM04; XA05] have been used to find defects in large programs. Some tools

have been specifically designed to find security vulnerabilities [WFBA00; EL02;

JW04; STFW01; LE01; ADLL05; LL05].

Most of these tools can generate false positives, i.e. they report defects which

are not real. One reason for this is that their results may be based on control-flow

paths that are infeasible at runtime, but they cannot determine this statically.
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They also often have limits on the length of execution paths they explore, to be

able to scale to large programs, but this causes false negatives. Unsound handling

of pointer aliasing may also create false negatives. Finally, they may also have

false negatives because they usually look for known classes of defects. Hence,

they cannot find previously unknown types of defects, although there has been

some work on describing defects generally as deviant behaviour [ECH+01].

7.2.2 Detect/Prevent exploits

Since static tools can have false positives and they have not been able to remove

all defects from software, runtime mechanisms have been developed to detect and

stop attacks at runtime. These systems are based on the idea of detecting or

preventing exploits, rather than removing defects.

One of the first host-based techniques to detect attacks is to identify anom-

alous patterns of system calls [FHSL96]. Wagner et al. [WS02] showed that

mimicry attacks can elude this type of detection, and Kruegel et al. [KKM+05b]

showed how to automate these attacks, even for recent improvements on the

original technique [FKF+03; GJM04; SBDB01].

Other early systems protected specific control data structures, such as re-

turn addresses. StackGuard [CPM+98] proposed writing a canary value between

the local variables and the return address on a stack frame, and checking that

the canary value is intact, before using the saved return address. This detects

attacks that overflow buffers on the stack, because the overflow overwrites the

canary value on the way to overwriting the return address. StackShield [Ven01],

RAD [CH01], and Libverify [BST00] proposed keeping a copies of return ad-

dresses separate from the normal stack. This allows them to detect overwrites of

return addresses by comparing the saved values with the values on the normal

stack. They can also recover the original return addresses. Libsafe [BST00] pro-

vided implementations of C library functions that do additional bound checks to

avoid overwriting return addresses. FormatGuard [CBB+01] provides safe imple-

mentations of C library functions that use format strings. PointGuard [CBJW03]

proposed protecting pointers by encrypting them in memory and decrypting them
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when they are loaded into registers. While effective at protecting some attack

targets, these approaches can be bypassed [WK03; BK00].

More recently, DIRA proposed protecting all control data structures [SC05]

by keeping a separate copy of these data structures and checking their integrity at

control-flow transfers. The copies are protected by storing them between guard

(read-only) memory pages. Such protection can be bypassed by corrupting point-

ers, and using assignments though the corrupted pointers to directly change the

stored copies, without writing over the guard pages [WK03; CH01].

Backwards-compatible bounds checking for C [JK97] detects bounds errors

in C programs. It instruments pointer arithmetic to ensure that the result and

original pointers point to the same object. To find the target object of a pointer,

it uses a splay tree that keeps track of the base address and size of heap, stack,

and global objects. A pointer can be dereferenced provided it points to a valid

object in the splay tree. CRED [RL04] is similar but provides support for some

common uses of out-of-bounds pointers in existing C programs. These systems

may have false negatives, since they do not prevent all bounds violations. For

example, they cannot prevent attacks that exploit format string vulnerabilities or

that overwrite data using a pointer to a dead object whose memory was reused.

Additionally, they have high overhead because of accesses to the splay tree; for

instance, the scheme in [JK97] can cause up to a 30X slowdown in applications.

The overhead may be controlled by applying the checks only to specific types of

data(e.g. strings) [RL04], yielding a slowdown of up to 2.3X, but this increases

the number of false negatives.

Program shepherding [KBA02] introduced a general mechanism to ensure

that a program does not deviate from its control-flow graph. They compute

a control-flow graph for a program statically, and they use a dynamic binary

re-writer [BDA00] to monitor the program’s execution and ensure that every

control-flow transition is allowed by the control-flow graph. Control-Flow In-

tegrity [ABEL05] checks that control-flow transitions follow the computed control-

flow graph with inlined checks based on a static binary re-writer.

Program shepherding has less overhead than current implementations of dy-

namic data-flow analysis, but it has several limitations. Program shepherding
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cannot detect attacks that succeed without changing the control-flow of the tar-

get programs [CXS+05]. Dynamic data-flow analysis can detect some of these

attacks, for example, attacks that overwrite arguments of system calls with data

received from the network. Also, program shepherding cannot be used on pro-

grams for which it is not feasible to compute a control-flow graph statically.

Dynamic data-flow analysis works even with self-modifying code. Finally, pro-

gram shepherding requires access to source code, while dynamic data-flow analysis

works on unmodified binaries.

Concurrently with the publication of the dynamic data-flow analysis algorithm

presented here [CCCR04; CCC+05], three systems [SLD04; CC04; NS05] have

proposed similar mechanisms for detection, that do not require access to source

code. The idea of tracking input data and preventing unsafe uses of that data, can

be traced back to Perl taint mode [Per06], and Chow at al. [CPG+04] proposed

tracking the lifetime of sensitive information, such as passwords, through memory

and CPU registers. More recently, Suh et al. [SLD04] proposed a hardware design

that tracks the flow of data from I/O operations. Their design tags each byte of

memory with a dirty bit, but they also include multi-granularity tags, to optimize

storage and bandwidth overhead. Besides tracking direct copies of input data,

their system can also track three other forms of dependency: when a dirty value is

used in arithmetic or logic instructions, the result of the operation may be marked

dirty; when a dirty value is used to specify an address in an instruction that loads

data from memory, the loaded value may be marked dirty; when an instruction

that stores data in memory uses a dirty value to specify the address of the store,

the stored value may be marked dirty. Since tracking all of these dependencies

may generate false positives, the system allows users to specify a per-application

security policy, describing which I/O flows should be tracked, which dependencies

should be tracked, and which uses of dirty data should generate security traps.

They also include some heuristics to reduce false positives; for instance, they

identify common code patterns that are safe, but would normally be trapped as

attacks (e.g. using a dirty value to index a jump table, after appropriate bounds

checking is performed); these heuristics may lead to false negatives. They do not

detect use of dirty data in system function calls; we believe this is an important

avenue for attacks.
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Minos [CC04] is a hardware microarchitecture that implements Biba’s low-

water-mark policy [Bib77]. In Minos, every 32 bit word is tagged with an addi-

tional bit. Since Intel CPUs can address memory at byte granularity, tagging 32

bit words leads to imprecision, which may cause false positives (e.g. a word is

marked dirty when only one of its bytes is dirty; the clean bytes may be moved

to another location, causing it to be tagged as dirty, when it is in fact clean).

By contrast, Vigilante’s dynamic data-flow analysis tags each individual memory

byte with an additional bit. In Minos, when dirty data is combined with clean

data using arithmetic and logic instructions, the resulting data is marked dirty;

this increases coverage at the cost of a possible increase in false positives. While

Minos does not propagate dirtiness when stores or loads use a dirty value to

specify the address, it marks as dirty values resulting from 8 and 16 bit immedi-

ate loads; this increases coverage when network data is used in some addressing

operations (e.g., table lookups for character translation), but it also increases

false positives. To increase coverage, Minos can track network data across disk

operations, but this requires changes to the operating system. Vigilante does not

track the flow of data when it leaves the address space of a process. Minos only

detects attacks that hijack control-flow by overwriting control data structures.

Vigilante also detects attacks that corrupt non-control-data used in system calls,

and attacks that redirect execution to dirty memory regions, without corrupting

control data structures.

TaintCheck [NS05] tracks input data by instrumenting binaries using Val-

grind [NS03]. TaintCheck tags each byte of dirty memory with a 32 bit pointer

to a data structure that records the system call through which the data was re-

ceived into the address space of the process, a copy of the stack at the time when

the data was received, and a copy of the data. TaintCheck propagates dirtiness

when executing data movement and arithmetic operations. As Minos, it does not

check if execution is redirected to a dirty memory region, which is important to

catch some attacks (it only checks if the value loaded into the program counter is

dirty). As Vigilante, Taincheck also checks the dirtiness of arguments to security

sensitive functions. TaintCheck proposes using a training phase to deal with false

positives: locations where false positives were observed can be recorded to avoid

raising security traps there.
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The work in [CXN+05] evaluated a security policy that generates security

traps when memory writes use dirty pointers. This policy had been proposed

in [SLD04], but not evaluated in the context of non-control data attacks. This

technique can catch some attacks that do not change the control-flow of programs,

but it also increases the likelihood of false positives. Crandall et al. [CC04]

discusses the possibility of checking the integrity of addresses used in 32 bit loads

and stores. They conclude that this approach is infeasible, because it would

generate too many false positives, if dirtiness is also propagated by arithmetic

and logic instructions. Vigilante’s procedure to verify SCAs provides an effective

way to deal with this type of false positives. If a detector generates an alert that

cannot be verified, it is simply discarded.

Since its original publication [CCCR04; CCC+05], the dynamic data-flow

analysis algorithm has also be used by several systems. [HFC+06] proposed

an implementation based on the Xen [BDF+03] virtual machine monitor that

automatically transitions from emulation to direct CPU execution, when none of

the CPU’s registers are dirty. Argos [PSB06] uses an implementation based on

QEMU [QEM06] to detect attacks on full operating system and application code.

Another host-based approach to thwart attacks is randomization. Several

forms of achieving diversity through randomization were initially discussed in

[FSA97]. Randomizing the memory layout of processes was originally imple-

mented by the PaX [PAX01] project. Randomizing the location of the stack,

heap and code makes it difficult for the attacker to gain control of the tar-

get program: even if the attacker can force the program to load an arbitrary

value into the program counter, it’s still difficult to know which value to sup-

ply (since the attacker doesn’t know, for instance, where the attack messages

are in the target’s address space). Recent projects proposed improvements on

this technique [BDS03; BSD05; XKI03]. Several attacks against address ran-

domization have been proposed [Dur02]. It has been shown that for some im-

plementations it is possible to discover addresses of relevant objects by brute

force attacks [SPP+04]. Information leakage attacks [SPP+04] are also a con-

cern: the security provided by randomization relies on keeping the locations of

objects secret; if locations are leaked out of the target process, the target can be

compromised.
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Another form of randomization is instruction set randomization [KKP03;

BAP+03]. The idea is to create process-specific randomized instruction sets by

using a simple encoding of instructions, e.g. by XORing them with a random

key, and decoding the instructions before executing them. Since the encoding

key is secret, any code supplied by an attacker is decoded into a meaningless in-

struction sequence, when executed. This approach has a significant performance

penalty, if implemented in software. Furthermore, it only blocks attacks that

inject code into targets; attacks that merely change the control-flow or corrupt

data are not detected. Attacks against instruction set randomization have been

described in [SEP05].

Finally, it is important to note that the diversity of detection mechanisms

that have been proposed makes it difficult for an attack to elude all of them. All

of these mechanisms could be used as detectors in the Vigilante architecture. By

generating SCAs, any detector can communicate useful information about the

attack to all other computers in the system.

7.2.3 Survivability

Several systems have proposed mechanisms that, like Vigilante filters, allow vul-

nerable services to continue execution while being attacked.

Rinard et al. [RCD+04] proposed failure oblivious computing. They use a

C compiler that inserts runtime checks for illegal memory accesses using the

C Range Error Detector [RL04]. Their system discards invalid memory writes,

and redirects invalid memory reads to a pre-allocated buffer of values; they use

heuristics to decide which values to use. While they show that several applications

continue to execute normally when memory errors are masked in this way, it is

not clear how this mechanism affects the correct execution of general programs.

Several systems proposed techniques that checkpoint/rollback executions to a

previous execution point, upon detecting an attack. DIRA [SC05] is a compiler

extension that can log updates to memory, and allows rolling back vulnerable

services to the entry point of a function. Sidiroglou et al. [SLBK05] proposed

using an emulator to execute code in regions where faults have been observed.

When faults occur, their system rolls back memory writes and returns an error
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from the current function. Rx [QTSZ05] checkpoints processes periodically, and

rolls them back to the latest checkpoint, when an error is detected. Rx then

dynamically changes the execution environment based on the observed error. For

instance, if a buffer overflow was observed, subsequent executions may allocate

larger buffers to avoid the overflow. One limitation of the checkpoint/rollback

approach is that rolling back past the point where I/O operations committed is

problematic; for instance, state in disks or in processes that received network

messages from the faulty process may become inconsistent. Performance is also

a concern for two reasons. First, worm attack packets may be frequent, causing

many rollbacks (Rx mitigates this concern by enforcing the changes to execution

environment for a threshold interval, but it still discards them after that interval

to reduce space and time overheads). Second, these systems require a detection

mechanism to decide when to initiate a rollback, and high-coverage detection

mechanisms are often expensive. Vigilante filters are more efficient than these

techniques and they are less likely to affect the correct execution of the protected

services.

Sidiroglou et al. [SLBK05] proposed generating patches automatically using

a set of heuristics to modify vulnerable source code, for example, modifying the

code to move vulnerable buffers to the heap. Their system still requires applica-

tions to stop for applying the patch, but after that they can continue executing.

While they show that this approach works in some cases, it is difficult to provide

guarantees on the semantics of the modified program.

Recently, several systems proposed using filters generated with host-based in-

formation. Buttercup [PCL+04] proposed identifying the return address range

used in worm attack messages and filtering messages that include such addresses.

To reduce false positives, their system searches for the return address value start-

ing at a predetermined offset in messages, and stops after a configurable number

of bytes have been checked. While Buttercup requires these addresses to be exter-

nally specified, CTCP [HC04] and TaintCheck [NS05] proposed to obtain them

automatically, by using the exact return address observed in attack messages.

These systems can have false positives, because the 4 byte sequences used as a

return address can appear in normal messages. The system can also have false

negatives, since attackers can use a wide range of values of return addresses, by
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searching the address space of vulnerable applications for sequences of bytes that

correspond to instructions that transfer control to the worm code [CSWC05].

ARBOR [LS05a] generates signatures based on the size of network messages

and the fraction of non-ASCII characters in them. Its signatures also include host

context: messages are dropped at specific code locations, and when specific call

sequences are observed. ARBOR can still have false positives and false negatives.

COVERS [LS05b] also generates signatures based on length of inputs and fraction

of non-ASCII characters in them, but includes an input correlation mechanism to

identify attack packets and the specific bytes in those packets that were involved

in an observed security fault. Vigilante’s SCA generation algorithm, performs this

correlation in a more efficient way. COVERS uses information about the network

protocol used by an application, to generate filtering conditions on specific fields of

the protocol. Vigilante does not require network protocol information. COVERS

does not provide guarantees on the rate of false positives or false negatives.

Several systems provide interesting alternatives to deploy Vigilante filters.

IntroVirt [JKDC05] uses vulnerability-specific predicates to analyze the execution

state of applications and operating systems running inside virtual machines. Like

Vigilante filters, IntroVirt predicates can compute generic conditions, but they are

generated manually for known vulnerabilities. By using virtual machine rollback

and replay, IntroVirt is able to detect if vulnerabilities were exploited in the past.

We could deploy Vigilante filters as IntroVirt predicates. Shield [WGSZ04] uses

host-based filters to block vulnerabilities but these filters are generated manually.

We could use Shield’s infrastructure to deploy our filters.

7.3 Artificial immune systems

Several projects have contributed to the design of artificial immune systems. Co-

hen [Coh87] studied computer viruses, and Kephart et al. [KSSW97] designed

a computer immune system targeted at viruses. Unlike viruses, worms spread

automatically by exploiting software vulnerabilities. This led to a vulnerability

centric-design in Vigilante that solves many of the problems faced by [KSSW97].

Hofmeyr [HF00] describes an artificial immune system inspired by natural im-

mune systems. Their system can be applied to several domains, but it is not
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7.3 Artificial immune systems

particularly well adapted to the problem of containing worm epidemics. One

attack resilience principle inspired by natural systems is diversity [FSA97]. In-

terestingly, the argument that monocultures contribute to improved security has

also been made [LSK06].

Several authors have proposed theoretical models for predicting characteris-

tics of worm epidemics and for analyzing immunization systems [KW91; WKE00;

SPW02; MSVS03; ZGGT03; CGK03; SMPW04; Sta04; VG05; GSSS05; GGK+06].

Vigilante can be seen as a detailed design for an automatic artificial immune sys-

tem that provides protection from worm attacks: we described how unknown

worm attacks can be detected with broad coverage, how machines can safely

share information about the attacks in a timely manner, and how machines can

protect themselves efficiently.
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Chapter 8

Conclusions

8.1 Summary

Systems to contain Internet worm epidemics must be deployed, because our so-

ciety is increasingly dependent on computers connected to the Internet. Worm

containment systems must be automatic, since worms infect computers much

faster than humans can respond. However, automatic systems will not be widely

deployed unless they are accurate. They cannot cause network outages by block-

ing innocuous traffic and they should be hard to evade.

Vigilante introduces an end-to-end architecture to automate worm contain-

ment. End hosts can contain worms accurately because they can perform a de-

tailed analysis of attempts to infect the software they run. Vigilante introduces

dynamic data-flow analysis: an algorithm that detects infection attempts with

broad coverage. The algorithm detects the three most common infection tech-

niques used by worms: code injection, edge injection and data injection, without

requiring access to source code.

Vigilante introduces the concept of a self-certifying alert that enables a large-

scale cooperative architecture to detect worms and to propagate alerts. Self-

certifying alerts remove the need to trust detectors; they provide a common

language to describe vulnerabilities and a common mechanism to verify alerts.

Verifying SCAs is an effective way to discard any false positives generated by

detectors. After detection, Vigilante uses an overlay to distribute SCAs in a

resilient and timely manner.
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Vigilante also introduces a new mechanism to generate host-based filters au-

tomatically by performing dynamic data and control flow analysis of attempts

to infect programs. These filters can block mutations of the attacks observed by

detectors and they produce a negligible performance degradation when deployed.

Our results show that Vigilante can contain real worms like Slammer, Blaster,

CodeRed, and polymorphic variants of these worms, even when only a small

fraction of the vulnerable hosts can detect the attack. Furthermore, Vigilante

does not require any changes to hardware, compilers, operating systems or the

source code of vulnerable programs. Therefore, Vigilante can be used to protect

software as it exists today in binary form.

8.2 Future Work

There are several promising directions for future work. Recently, we observed that

almost all worm attacks subvert the intended data-flow in a program [CCH06].

Based on this observation, we proposed a technique that can prevent both control

and non-control data attacks by enforcing a simple safety property that we call

data-flow integrity. This technique computes a data-flow graph for a vulnerable

program using static analysis, and instruments the program to ensure that the

flow of data at runtime is allowed by the data flow graph. We plan to integrate

this new detector in the Vigilante architecture.

We are also working on combining static analysis techniques with our dynamic

analysis to generate filters that can block more attack mutations. Analyzing

more execution paths, besides the path identified by an SCA, and using static

techniques such as program chopping [RR95] will yield more general filters.

The operational mechanism that we have used to verify SCAs could be aug-

mented with a static version of verification. This can be seen as an application

of proof-carrying code [NL96], where logic proofs of vulnerability are exchanged

by machines.

Finally it interesting to consider integrating Vigilante with network tele-

scopes [MVS01; MSVS04] and honeyfarms [VMC+05]. By re-directing suspicious
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traffic to host-based detectors, network telescopes can help detect a worm out-

break sooner, yielding even better containment results than we have presented

here.
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Appendix A

Intel IA-32 Assembly Language

Table A.1 describes the small subset of Intel IA-32 [Int99] instructions used in

the examples. Intel IA-32 CPUs store the address of the next instruction to be

executed (i.e. the program counter) in the eip register. The esp register points

to the top of the stack, which grows downwards in memory (i.e. towards lower

memory addresses). eax, ebx, ecx, ebp, esi and edi are general purpose 32-bit

registers. al and dl are 8-bit registers, corresponding to the least significant bytes

of eax and edx, respectively. Arithmetic and logic instructions such as addition

(add), subtraction (sub) and comparison (cmp) set the CPU flags (eflags register)

according to the result. Conditional control-flow instructions take control-flow

decisions based on the current values of the CPU flags.
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Instruction Description

mov dest,src Move src to dest

mov dest,byte ptr [src] Load byte from src memory address into dest

mov byte ptr [dest],src Store src byte into memory address dest

sub dest,src Subtract src from dest and store the result in dest

add dest,src Add src to dest and store the result in dest

xor dest,src Store in dest the bitwise exclusive OR between dest and src

lea dest,[src] Load address specified by src into dest

cmp reg,val Compare reg to val

ja address Jump if above

je address Jump if equal

jne address Jump if not equal

push reg Push reg onto the stack

pop reg Pop the value on top of the stack into reg

call address call function (pushes eip onto the stack)

ret return from function (pops eip from the stack)

Table A.1: List of IA-32 assembly language instructions used in the examples.
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