
Controlling Non-determinism for Semantic
Guarantees

Sriram Rajamani G. Ramalingam
Venkatesh-Prasad Ranganath Kapil Vaswani

Microsoft Research India
{sriram,grama,rvprasad,kapilv}@microsoft.com

Concurrent programs are hard to design, develop, and debug. It is widely
accepted that we lack good abstractions to design and reason about concurrent
programs, and good tools to debug concurrent programs. Recent technology
trends, such as the increasing prevalence of multicore processors, make concur-
rent programming more important than ever.

Non-determinism arises in concurrent programs when the order in which
threads can execute is unconstrained. While executions of concurrent programs
on multiprocessors inherently exhibit non-determinism, the executions on unipro-
cessors exhibit non-determinism due to the choices of the thread scheduler in the
underlying O/S. Undesired non-determinism is a major cause of errors in con-
current programs. Nevertheless, we believe that non-determinism can be safely,
permissively, and automatically controlled to tolerate runtime errors in concur-
rent programs and to provide various desirable semantic guarantees.

In this position paper, we sketch some recent work we have done in this
direction and outline our longer term goals along the same direction.

From Tolerating Races to Isolation Guarantees

Numerous efforts in the recent past observed that race conditions represent an
important class of errors in concurrent programs and proposed various tech-
niques to detect races. Nagpal et.al. [2] proposed Tolerace, a runtime tech-
nique for tolerating asymmetric races. Tolerace is a fault tolerance technique
that attempts to ensure that a concurrent program does not exhibit undesirable
behavior even in the presence of races.

Inspired by this effort, we recently proposed a technique [3] called Isolator
that provides stronger semantic guarantees than those provided by Tolerace.
Isolator guarantees isolation, a fundamental property in concurrent programs.
In a concurrent program, a thread T may read and/or update certain shared
variables in a critical section of code and it may be necessary to ensure that
other threads do not interfere with T in the critical section. Specifically, a critial
section executes in isolation if the threads executing outside the critical section
should neither observe values of nor update these shared variables. Isolation
helps avoid undesirable outcomes arising out of unexpected interactions between
different threads and it enables local reasoning (that is, it enables programmers
to reason locally about each thread, without worrying about interactions from
other threads).



Today, locking is the most commonly used technique to achieve isolation.
Every shared variable is protected by a lock. A locking discipline requires that
every thread hold the (corresponding) protecting lock while accessing a shared
variable. We say that a thread is well-behaved if it follows such a discipline. If
all threads are well-behaved, then the thread T holding the locks corresponding
to a set of shared variables V will be isolated from any accesses to V from all
other threads.

However, prevalent programming languages do not support mechanisms to
ensure that such locking disciplines are indeed followed by all threads in a pro-
gram. Thus, even when a thread Twell holds a lock ` protecting a shared variable
g , nothing prevents another (ill-behaved) thread Till from directly accessing g
without acquiring lock `, either due to programmer error or malice. Such an
access to g violates the isolation property expected by thread Twell and makes
it impossible to reason locally about the program. Such interferences leads to
well-known problems such as non-repeatable reads, lost updates, and dirty reads.

In recent work, we proposed a runtime scheme called Isolator that guar-
antees isolation (by detecting and preventing isolation violation) for parts of a
program that follow the locking discipline, even when other parts of the pro-
gram fail to follow the locking discipline [3]. Isolator exploits the available
non-determinism in a concurrent program, and “steers” the program toward an
execution that satisfy isolation.

The Idea. Isolator employs a custom memory allocator to ensure that all
variables protected by a lock ` are allocated in the same page. Then, it exploits
page protection to guarantee isolation. Specifically, when a well-behaved thread
T acquires a lock `, Isolator makes a local copy of the page, and turns on
protection for the page. All further accesses to the page from thread Tare re-
directed by Isolator to the local copy of the page. If an ill-behaved thread
now tries to access a variable in the page without acquiring the lock `, a page
protection exception is raised, and is caught by an exception handler registered
by Isolator. The exception handler code just yields control and retries the
offending access later. The access succeeds only after the thread Thas released
lock `, at which point Isolator copies the local page back to the global copy
and releases page protection on the global copy.

Isolation via Other Language Constructs

From a different perspective, Isolator assigns a different semantics for the
locking primitives. The usual semantics of locking primitives is operational : if
thread T1 acquires a lock `, then another thread T2 cannot acquire ` until T1

releases `. However, Isolator reinterprets the primitives to guarantee a stronger
property: if thread T1 acquires a lock `, and g is a variable protected by `, then
Isolator guarantees that other threads cannot read or write g until T1 releases
`.

Thus, Isolator treats locking primitives more as a specification mechanism
rather than as an implementation mechanism and steers program execution to-



ward runs that satisfy the specification. We believe that this semantics, in fact,
very naturally captures a programmer’s intent in using locks.

From this perspective, Isolator is close in spirit to language constructs
that have been recently proposed, such as atomicity (often realized via software
transactional memory (STM) [4, 1]). (However, most existing STMs support only
weak atomicity, which can suffer from the same problem of isolation violation
as manual locking [5].) We think that the implementation mechanism used by
Isolator may be useful for implementing features such as strong atomicity as
well, though this remains as future work. However, Isolator differs from such
constructs in proposing a semantic strengthening of existing language features
and idioms. As such, it may be easier to deploy and use a scheme like Isola-
tor in existing systems, where locking disciplines, designed and implemented
by programmers, continue to be a predominant programming paradigm for con-
currency (due to reasons such as the need to interoperate with legacy programs
written in legacy languages as well as efficiency concerns).

Towards Semantic Isolation

We now describe our long term vision. Isolation, as provided by Isolator or
STMs, is a very desirable property. However, in general, that is not sufficient.
The programmer still decides the boundaries of isolation: the code segment that
is guaranteed isolation. Programmers can still make mistakes with regards to
the boundaries leading to concurrency related errors. So, can we improve the
mechanism described earlier to provide even stronger semantic guarantees?

Often, the ultimate goal of concurrrency control mechanisms (such as locking)
is to ensure that certain desired invariants are maintained, which allow modular
reasoning about the code. Code that reads a shared data-structure typically
assumes that the data-structure satisfies its invariant. Code that updates the
shared data-structure may temporarily break the invariants before reestablishing
it. In such cases, the updating code locks the shared data-structure to ensure
that no other code observes the data-structure in an inconsistent state (a state
that violates its intended invariants).

Manually ensuring the above methodology is fraught with difficulties, involv-
ing the usual safety-performance tradeoff. On one hand, an emphasis on safety
can lead to code where data-structures are locked even when not required, reduc-
ing concurrency and performance. On the other hand, aggressive optimization of
the locking discipline can lead to incorrect code. Note that holding a lock while
accessing the data it protects is insufficient to guarantee that a thread will not
observe data in an inconsistent state.

Thus, our long term goal is to develop techniques that can semantically
guarantee isolation: ensure that when one thread breaks invariants of a data-
structure, no other thread can observe the inconsistent data-structure until the
original thread reestablishes the invariants. We are pursuing runtime techniques,
similar to Isolator, that guarantee invariants at runtime. The idea is that the
programmer specifies invariants that the shared data-structures are required to



satisfy. An invariant-preserving runtime uses the invariants to “steer” the pro-
gram toward an execution that satisfy the invariant. We are also investigating
both the independent and the complementary use of static techniques, that uti-
lize static program analysis, to meet the same goal.

We note that there are two possible modes for such mechanisms. The less am-
bitious possibility is to use the mechanism as a fault tolerance scheme. Here, the
programmer still makes manual choices, e.g., in terms of acquiring and releasing
locks. The runtime mechanism is used solely to work robustly even when the
programmmer makes concurrency control mistakes. The more ambitious possi-
bility is that the programmer does not worry about concurrency control. Instead,
the system automatically identifies when to isolate data-structures using the in-
variants. (While the latter possibility is convenient, it requires programmers to
write complete specifications to ensure correct operation. The former possibility,
however, can be used even if the programmer specifies only a few of the desired
invariants.)

Conclusion

Non-determinism is a source of trouble for concurrent programs. It forces people
to reason about large number of interleavings. Also, testing becomes hard since
it is hard to cover all the interleavings. Further, debugging becomes hard since
it is hard to reproduce a failure due to a specific interleaving.

However, non-determinism can be our friend if we want to tolerate faults in
concurrent programs. We can build static techniques and runtime systems that
exploit non-determinism and steer the program towards executions that satisfy
desired semantic properties.

References

1. T. Harris and S. P. Jones. Transactional memory with data invariants. In First
ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing (TRANSACT’06), 2006.

2. R. Nagpal, K. Pattabiraman, D. Kirovski, and B. Zorn. ToleRace: Tolerating and
detecting races. In Proceedings of the Second Workshop on Software Tools for Multi-
Core Systems (STMCS), 2007.

3. S. Rajamani, G. Ramalingam, V. P. Ranganath, and K. Vaswani. Isolator: Dynam-
ically ensuring isolation in concurrent programs, 2008. In Submission.

4. N. Shavit and D. Toutiou. Software transactional memory. In 14th ACM Symposium
on Principles of Distributed Computing, 1995.

5. T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Grossman, R. L.
Hudson, K. F. Moore, and B. Saha. Enforcing isolation and ordering in STM. In
Proceedings of the Conference on Programming language design and implementation
(PLDI), pages 78–88, 2007.


