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Abstract— In this paper, we study maximum distance sepa-
rable (MDS) codes for distributed storage with optimal repair
properties. An (n, k) MDS code can be used to store data in
n storage nodes, such that the system can tolerate the failure
of any (n − k) storage nodes because of the MDS property.
Recently, MDS codes have been constructed which satisfy an
additional optimal repair property as follows: the failure of a
single storage node can be repaired by downloading a fraction of
1/(n−k) of the data stored in every surviving storage node. In
previous constructions satisfying this optimal repair property,
the size of the code is polynomial in k for the high-redundancy
regime of k/n ≤ 1/2, but the codes have an exponential size
(w.r.t. k) for the practically important low-redundancy regime
of k/n > 1/2. In this paper, we construct polynomial size codes
in this low redundancy regime. In particular, we construct MDS
codes whose size is O(k2) with optimal repair bandwidth for
the special case where k/n ≥ 2/3. Further, we show that for
any fixed rate k/n, we can construct repair bandwidth optimal
MDS codes whose size scales as a polynomial in k.

I. INTRODUCTION

Erasure coding is a fundamental technique to build redun-
dancy in distributed storage systems. In classical literature
in coding theory, erasure codes have been developed so that
they provide the maximum tolerance to disk failure (erasures)
for a given storage overhead. In particular, it is well known
that maximum distance separable (MDS) codes (such as Reed
Solomon Codes) provide the maximum failure-tolerance for a
given amount of storage. Because of this favorable property,
the design of practical MDS codes for distributed storage
systems has been an important area of research [1]–[5].
Recently, corresponding to the rapid scaling in the volume of
data in storage systems, there is increased interest in the study
and design of MDS codes with a second favorable property:
a small (perferably minimum) repair bandwidth, where the
repair bandwidth is defined as the amount of data downloaded
to repair one of more failed nodes. The motivation for
minimizing the repair bandwidth comes from both theory and
practice. From a practical perspective, minimizing the repair
bandwidth reduces network congestion during recovery. It
can also imply faster recovery of failed nodes in distributed
storage systems. From a theoretical perspective, the repair
bandwidth problem in storage has fundamental connections
to interference alignment and multi-source network capacity
problems. In recent literature, MDS codes with optimal
(minimum) repair bandwidth in distributed storage systems
have been discovered [6]–[12]. However, in general, these
codes have a size that scales exponentially in the number of
nodes in the distributed storage system. This is in contrast
with the storage codes used in practice [1]–[5] whose sizes

scale as a (usually linear) polynomial in the number of
nodes. Thus, while the codes of [8]–[12] improve on the
codes of [1]–[5] w.r.t. the repair bandwidth, they come at
a cost of the code size being large. The exponential code
size of [8]–[12] poses an obstacle in practice because of
several reasons. First, a large code-size corresponds to a
large latency in encoding. Second, the codes have a memory
requirement that is exponential in the number of nodes.
Finally, the exponential size of the code also imposes a
large overhead for coding small packets/files [13]. For these
reasons, the design of MDS codes of polynomial size with
small (preferably minimum) repair bandwidth is an important
open problem. This problem has connections to the area of
interference alignment over a limited number of dimensions
which is an ongoing area of research work1 [14]–[16] (See
[11] for an explanation). In this paper, we make progress
in this area by designing polynomial size MDS codes with
minimal repair bandwidth, for certain coding parameters. We
next proceed to describe the problem, its background and a
detailed description of our contributions.

A. The Problem

The problem of efficient recovery of codes for storage was
formulated in [17] and studied further in [6]–[8], [10]–[12],
[18]–[23]. The problem studied in these references2 is as
follows. Consider a distributed storage system with n storage
nodes, using an (n, k) systematic code to store data. We will
assume that the system stores a file of size M = kL. The
file is divided into k equal parts of L each and stored in
an uncoded form in the first k nodes. These first k nodes
are known as the systematic nodes. The remaining n − k
nodes, each of which store parity data of size L, are known
as parity nodes. If an (n, k) maximum distance separable
(MDS) code is used to store data in the system, then, the
system can tolerate a failure of any set of (n − k) nodes.
This is because the MDS property ensures that the original
data can be recovered from any k surviving nodes in the
system. While the MDS property protects the system from
data loss in the worst case failure scenario of (n− k) nodes,
the most common failure scenario in storage systems is the

1It must be noted that [14]–[16] study the problem in the context
of wireless communications. The problem in wireless communications is
different from to the storage code problem in this paper, although it is related
to it [11].

2In this paper, we focus on what are called Minimum Storage Regener-
ation (MSR) code generation problem [17] for exact repair [18]. Some of
these references also study certain other problems related to efficient repair.



case where a single node fails. For this single-node failure
scenario, the conventional repair strategy is the following:
download the data stored in any k nodes in the system,
recover all the original data, and then replace the failed
node. Therefore, with the conventional strategy, the amount
of repair bandwidth - the amount of data to be downloaded
from the surviving nodes to repair a single failed node - is
equal to k times the data stored in a single node, i.e., kL.
The primary objective of references [6]–[8], [10]–[12], [17]–
[23] is to reduce the repair bandwidth of MDS codes. The
main contributions and the results of these references are
summarized next.

B. Background: High Redundancy Regime

The design of repair strategies more efficient than the
conventional approach was pioneered in [18] through an
example for the special case of n = 4, k = 2. For this
case, the reference showed that a single node failure can
be repaired with a repair bandwidth of 1.5 times the data
stored a single node (i.e., 1.5L), which is more efficient than
the trivial strategy of downloading 2 nodes entirely. Later,
references [19], [21] showed that if k ≤ max(n/2, 3) then,
the amount of data to be downloaded from each surviving
node can be reduced to a fraction of 1

n−k of the data stored
in the (surviving) node, of a single failed node. Because there
are n− 1 surviving nodes3, the total repair bandwidth for a
single failed node is (n−1)

n−k times the amount of data stored
in a single node, i.e., L(n−1)

n−k . Since n−1
n−k < k, the strategy of

[19], [21] is more efficient than conventional repair. In fact,
the repair bandwidth of L(n−1)

n−k can be shown to be optimal
via cut-set lower bounds [17]. Note that the results of [18],
[19], [21] hold for the special case of k/n ≤ 2. In other
words, they hold for the special case where the redundancy
overhead ((n − k)L) is at least as large as the amount of
original data, kL. Therefore, this regime is referred to as the
high redundancy regime in this paper.

A key technique used in the improved repair bandwidth in
references [18], [19], [21] is the notion of vector coding -
the idea that the code elements are vectors and a code can
be constructed over the vectors. The idea is best explained
for the case of where n = 4, k = 2 originally studied in
[18] and depicted in Fig. 1. In this case, note that each of
the 4 storage nodes stores a 2 × 1 vector, where the first
two nodes respectively store (A1, A2) and (B1, B2) - these
two vectors together form an uncoded copy of the original
data. The remaining two nodes, which are parity nodes, each
store two linear combinations of the A1, A2, B1, B2. It can
be verified that the code depicted is an MDS code so that the
failure (erasure) of any two storage nodes can be tolerated
without a loss of data. If two nodes fail, there are 4 linear
combinations of A1, A2, B1, B2 surviving in the system; the
original data A1, A2, B1, B2 can be recovered from these 4
linear combinations. Now, consider the case where first node

3In this reference, we assume that the repair can be performed by
connecting to all n-1 surviving nodes. References [17], [20], [21] also conder
the more general case where the new node is restricted to connect to only
d of the n− 1 surviving nodes, where d ≤ n− 1.

fails. The goal is to repair this node using the surviving nodes,
i.e., to reconstruct (A1, A2) using the surviving nodes. A
trivial solution is to download 4 linear combinations from
any 2 surviving nodes and then reconstruct the entire original
data, and then store A1, A2 in the new node. However, it
is possible to reconstruct (A1, A2) by downloading only 3
linear combinations, i.e., a fraction of 1/(n − k) = 1/2 the
data stored in every node. The linear combinations to be
downloaded are depicted in Fig. 1.

References [19], [21] generalized the code shown in Fig.
1 to (n, k) code based storage systems, where k ≤ (n/2, 3).
In particular, for a (n = 2k, k) code of [19], [21], each code
element (i.e., data stored in each node) can be viewed as L×1
vector, where L = k. The failure of a single node can be
repaired by downloading a single scalar from each surviving
node. This effectively amounts to downloading a fraction of
1/(n − k) = 1/k of every surviving node as required for
optimality4. By code shortening, the class of (2k, k) codes
can be used to construct repair-bandwidth optimal codes for
any (n, k) where n ≥ 2k. While these references found
optimal codes for the minimum repair bandwidth for the
high-redundancy case of k/n ≤ 1/2 (and k ≥ 3, [19]),
the question of the minimum repair bandwidth for the low-
redundancy case of k/n > 1/2, k > 3 was left open.

C. Background: Low Redundancy Regime

The question of the minimum repair bandwidth for arbi-
trary (n, k) including the low redundancy regime of k/n ≤
1/2 was settled in [6], [7]. The references used the asymptotic
interference alignment scheme of [24] to construct asymp-
totic codes which approach the repair bandwidth cutset bound
of (n− 1)/(n− k) times the data stored in a single node. In
other words, they showed that as the size of the code L→∞,
the repair bandwidth approaches L(n−1)/(n−k) (asymptoti-
cally with 100% accuracy). The question of existence of finite
codes for this case was left open in these references. This
question was settled in the positive in references [8], [10]–
[12], [23] which constructed finite repair-bandwidth optimal
codes for arbitrary (n, k) including the previously open low
redundancy regime. In reference [11], a framework based
on a tensor product structure (also referred to as subspace
interference alignment [25]) generalizing the codes of [8],
[10], [26] was described for construction of MDS codes with
optimal repair of systematic nodes. Codes which can repair
the failure of any single node (including the failure of a parity
node) are presented recently for the case of n−k = 2 in [12]
and for arbitrary (n, k) in [23]. While the code constructions
of [19], [21] for the high redundancy case of k/n ≤ 1/2
used vectors of size k, the code constructions of [8], [10]–
[12], [23] for the low redundancy case of k/n > 1/2 used
vectors whose size is exponential in k. In other words, for
k/n > 1/2 the parameter L = O((n − k)k) in the codes
of [8], [10]–[12], [23]. An important question left open in
these references is the efficient repair of codes in the low

4Note that if the original data is larger than L = k units, the data can be
divided into several portions of L = k units, and the code can be used for
each of these portions separately.
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Fig. 1. A (4, 2) code with the repair of the first node depicted. Each node
stores a L × 1 vector, where L = 2. Note that 1/2 of every surviving
node (i.e., a scalar) is downloaded, and that on cancellation of B1, the lost
elements A1, A2 can be recovered from the 2 equations.

redundancy regime, when the size of the code is restricted
to be of a polynomial size. In this paper, we make progress
on this open problem, and provide a partial answer to this
question.

The main contribution of this paper is a new polynomial
size code in the low redundancy regime of k/n > 1/2
with optimal repair for a single systematic node failure. In
particular, we provide a technique to combine two (k, k/2)
codes of [19], [21] (referred to as ‘MISER’ codes in the
former reference) to generate codes for k/n = 2/3. Further,
a simple code shortening technique of [21] suffices to argue
that the codes are applicable, not just for k/n = 2/3, but
for the entire regime of k/n ≥ 2/3. Our code, which lies
in this low redundancy regime of k/n > 1/2, has the
advantage that L = k2/4 and therefore has a size which
is polynomial in k. For instance, if n = 12, k = 8, the
schemes of [8], [10] encode over vectors of size L = 47.
However, our scheme encodes over vectors of size L = 16.
Since our coding scheme uses two underlying (k, k/2) codes,
it can be viewed as a compound of two MDS codes and
hence termed compound codes. The compounding approach
demonstrated here can also be used to form an (n, k) code
with optimal repair for any arbitrary (n, k) by compounding
m = dk/(n−k)e (2k/m, k/m) MISER codes (See extended
paper [27] for details). The size of the compounded code
for this general case is L = (k/m)m. Note that this means
that for a fixed rate k/n, the code size is polynomial in k.
However in general, the code size is exponential in k.We now
proceed to describe to give an overview of the main ideas
behind the code construction. A more complete description
can be found in the extended version of this paper [27].

II. CODE CONSTRUCTION

Consider k sources each uniformly distributed over a
field FL

q , where Fq is a field. Source i ∈ {1, 2, . . . , k} is
represented by the L × 1 vector ai ∈ FL

q . Note here that
M = kL denotes the size of the total information stored
in the distributed storage system, in terms of the number of
elements over the field. There are n nodes storing a code
of the k source symbols in an (n, k) MDS code. Each node
stores a data of size L, i.e., each coded symbol of the (n, k)
code is a L×1 vector. The data stored in node i is represented

by L×1 vector di, where i = 1, 2, . . . , n. Our code is linear
and di can be represented as

di =

k∑

j=1

Ci,jaj , (1)

where Ci,j are L × L square matrices. Our codes have a
systematic structure so that, for i ∈ {1, 2, . . . , k},

Ci,j =

{
I j = i
0 j 6= i

}
,

so that di = ai for 1 ≤ i ≤ k. Since we restrict our attention
to MDS codes, we will need the matrices Ci,j to satisfy the
following property

Property 1:

rank







Cj1,1 Cj1,2 . . . Cj1,k

Cj2,1 Cj2,2 . . . Cj2,k

...
...

. . .
...

Cjk,1 Cjk,2 . . . Cjk,k





 = Lk =M (2)

for any distinct j1, j2, . . . , jk ∈ {1, 2, . . . , n}.
The MDS property ensures that the storage system can

tolerate up to (n−k) failures (erasures), since all the sources
can be reconstructed, linearly, from any k nodes whose
indices are represented by j1, j2, . . . , jk ∈ {1, 2, . . . , n}.
Now, consider the case where a single systematic node, node
i ∈ {1, 2, . . . , k}, fails. Now, to reconstruct a failure of
node i, L

n−k elements of di are downloaded from nodes
{1, 2, . . . , n} − {i}. The goal of this paper is to generate
Ci,j such that
• The code is an MDS code, i.e., Ci,j satisfies Property

1.
• The di can be regenerated by using L/(n−k) elements

of each surviving node, i.e., from dj , j ∈ {1, 2, . . . , n}−
{i}. We assume that the failed node is a systematic one
so that i ∈ {1, 2, . . . , k}. Note that the total number of
elements downloaded for reconstruction of di is equal
to (n−1)L

n−k since we download L/(n−k) elements from
each surviving node.

Previously, codes with the above property have been
developed for k ≤ n/2 in [19], [21]. In our construction,
we will develop a technique to combine two (2k, k) codes
generated in [19], [21] to develop a (n = 3k, k = 2k) code
which satisfies the above properties for any k. The remainder
of this section is organized as follows. First, we provide an
overview of the important properties of the codes described
in [19], [21]. Then, we will describe the concept of a m-
expansion of a code in Section II-B. Finally, in Section II-C,
we will describe a technique to generate a (3k, 2k) code by
combining two expanded (2k, k) codes.

Before we proceed to describe our code construc-
tion, we will introduce a notation that is used through
out the paper. For any l × 1 vector a, its l elements
are denoted by a(1), a(2), . . . , a(l). For instance di =
(di(1) di(2) . . . di(L))

T , where the T denotes the
transpose of a vector. Let A and B be two subsets of
{di(j) : i = 1, 2, . . . , k, j = 1, 2, . . . , L}. Then we use



the notation A → B if the elements of B can be generated
linearly from the elements of set A. In other words,

A → B ⇔,∀y ∈ B∃αx ∈ Fq, y =
∑

x∈A
αxx, ∀a1,a2, . . . ,ak,

where the constants αx do not depend on (the realization of)
a1,a2, . . . ,ak.

On a similar note, we also sometimes use the notation
A → di if the vector di can be generated linearly from the
elements in A. For example, because any parity node can be
generated from the systematic node by (1) we have {di(j) :
i = 1, 2, . . . , k, j = 1, 2, . . . , L} → dm for k < m ≤ n.

A. Background : MISER codes

References [19], [21] developed a class of codes for
optimal repair of a single failed node. The codes were termed
MISER codes in the latter reference, whose nomenclature
we borrow to denote the codes. We shall illustrate the main
properties of the (n = 2k, k) MISER codes here. We do
not present the MISER codes constructions here because of
space constraints; the properties listed below suffice for our
purposes.

1) Each element of the code is a k× 1 vector, i.e., L = k.
2) To repair a failure of the jth node for 1 ≤ j ≤

k, the jth element of every surviving node is down-
loaded. In other words, dj can be recovered us-
ing linear combinations of the elements of the set
{di(j) : i ∈ {1, 2, . . . , n} − {j}}.

The 2k symbols of the codes satisfying the above properties
are denoted by di, i = 1, 2, . . . , 2k, where di is a k × 1
vector (because of the first property listed above). The coding
matrices satisfying the above properties are denoted by Hi,j ,
where i ∈ {k + 1, k + 2, . . . , 2k}, j ∈ {1, 2, . . . , k}. If we
denote

di =

k∑

j=1

Hi,jai

for i = k+1, k+2, . . . , 2k, where the construction of Hi,j ,
can be found in [19], [21]. The second property of these
codes listed above is re-stated formally below.

Property 2: Optimal Repair of MISER Codes [21] For the
(2k, k) MISER code defined as in reference [19], [21], with
its code symbols denoted by d1,d2, . . . ,d2k, the following
property holds.

{di(l) : i ∈ {1, 2, . . . , 2k} − {l}} → dl

for l = 1, 2, . . . , k.
We will effectively form a compound of two (2k, k)

MISER codes into one (3k, 2k) code. The concatenation is
preceded by an of the (2k, k) MISER code which is described
next.

B. k-Expansion of the MISER code

For a given (n, k) MDS code where each node stores a
L × 1 vector, an s-expansion of the code is also an (n, k)
MDS code where each node stores an p0L × 1 vector. The
sL × 1 vector stored at a node is essentially formed by a

! ! ! ! ! !

!!!!!!!!!

d1(1)

d1(2)

d1(3)

d1(4)

d1(5)

d1(6)

d1(7)

d1(8)

d1(9)

Node 1 (Data) Node 2 (Data) Node 3 (Data)

Node 4 (Parity) Node 5 (Parity) Node 6 (Parity)

Fig. 2. A 3-expansion of the (6, 3) MISER Code. The Xdenotes the
elements downloaded on the failure of node 1, thus depicting Property 4.
Property 3 is denoted using colors - the red (resp. blue, green) colored
elements of a parity node are derived from the red (resp. blue, green) colored
elements of systematic nodes.

repeated use of the original coding matrix to form the vector.
In other words, the p0L×1 vector of each symbol is viewed
as p0 blocks of L×1 vectors. The pth block of a parity node,
which is a L× 1 vector, is generated by using the pth block
of all the systematic nodes. Here we consider a k-expansion
of the (2k, k) MISER code described above. Denoting the

elements of the code by d
[k]

i , the k-expansion of the code is
defined as

d
[k]

i =
∑

i,j

Ik ⊗Hi,jai (3)

where the data elements, ai are k
2 × 1 vectors, and Ik

denotes the k-dimensional identity matrix and ⊗ represents
the Kronecker product operation. We will use the notation
H

[k]
i,j

4
= Ik ⊗ Hi,j . Note that H

[k]
i,j is a k

2 × k
2

matrix
with a block diagonal structure. Note that in this expansion,
the (p − 1)k + jth element of a parity node, where p =
1, 2 . . . , k, j = 1, 2, . . . , k is essentially a member of the pth
block. Therefore, it is formed by using the MISER code over
the pth block of all the systematic elements, and hence, only

depends on the elements d
[k]

m ((p− 1)k + 1), d
[k]

m ((p− 1)k +

2), . . . , d
[k]

m ((p− 1)k+ k) for m = 1, 2, . . . , k. Therefore we
can make the following observation (also depicted in Fig. 2).

Property 3: Consider the k-expanded MISER code. Let

Ap =

k⋃

i=1

{d[k]i ((p− 1)k + j) : j = 1, 2, . . . , k}

Bp,m =

{
d
[k]

m ((p− 1)k + j) : j = 1, 2, . . . , k,

}

for p = 1, 2, . . . , k for m = k + 1, k + 2, . . . , 2k. Then,
Ap → Bp,m,∀m = k+1, k+2, . . . , 2k. Note that |Ap| = k

2

and |Bp,m| = k.
Finally, because of Property 2 and the definition of the

k-expansion, the optimal repair property of the MISER code



P =
(
e(1) e(k + 1) e(2k + 1) . . . e(k(k − 1) + 1) e(2) e(k + 1) . . . e(k(k − 1) + k e(k

2
)
)

simply carries over to the k-expansion.
Property 4: For the expanded MISER code as in equation

(3), the following property holds.
⋃

i∈{1,2,...,k}−{l}

{d[k]i ((p− 1)k + l) : p = 1, 2, . . . , k} → d
[k]

l

for l = 1, 2, . . . , k.
Properties 3 and 4 are represented pictorially in Figure 2.

C. Main Contribution : The (3k, 2k) Compound Code

In this section, we will describe a (n = 3k, k = 2k) code
which can optimally repair a single failed systematic node.
The coding matrices for our construction are described as

Ci,j =





H
[k]

i−k,j j ∈ {1, 2, . . . , k}

λiPH
[k]

i−k,j−k j ∈ {k + 1, k + 2, . . . , 2k}





where λi is a scalar randomly chosen from the field Fq .
Matrix P is a permutation matrix shown at the top of this
page, where e(i) represents the ith column of the k

2 × k2

identity matrix. Therefore, the (p−1)k+ bth column of P is
e((b−1)k+p), where p, b ∈ {1, 2, . . . , k}. To understand the
code, it is instructive to understand the structure of the above
k
2 × k

2
permutation matrix. Consider an arbitrary k

2 × 1
column vector a. Then, the vector, Pa, is a permutation of the
elements of a. The permutation has the following structure
(also depicted pictorially in Fig. 3). If we arrange the k

2

elements of a in a k × k square, where the pth column of
the square contains elements a((p− 1)k + 1), a((p− 1)k +
2), . . . a(pk). Then, the permutation Pa takes a “transpose”
of this square. In other words, the (p− 1)k+ lth element of
Pa) is a((l−1)k+p)) for l, p ∈ {1, 2, . . . , k}. With the above
permutation, the code can be interpreted as the concatenation
of two MISER codes via a permutation operation because, a
parity node di can be represented as follows (Also see Fig
4 and Fig. 5).

di =

k∑

j=1

H
[k]

i−k,jaj

︸ ︷︷ ︸
First (2k, k) MISER code

+λiP

k∑

j=1

H
[k]

i−k,jaj+k

︸ ︷︷ ︸
Second (2k, k) MISER code

(4)
for i = 2k + 1, 2k + 2, . . . , 3k. The first MISER
code is formed over a1,a2, . . . ,ak and the second, over
ak+1,ak+2, . . . ,a2k.

Further, because of Property 3 and the nature of the permu-
tation, note that the (p−1)k+lth element of a parity node is a
linear combination of the {dm((p−1)k+j) : j = 1, 2, . . . , k}
for m = 1, 2, . . . , k and {dr((j − 1)k+ p) : j = 1, 2, . . . , k}
for r = k+1, k+2, . . . , 2k. This observation is summarized
in the following property.

a(1)

a(2)

a(3)

a(4)

a(5)

a(6)

a(8)

a(9)

a(7)

a

a(1) a(2) a(3)

a(4) a(5) a(6)

a(8) a(9)a(7)

Pa

Fig. 3. A depiction of the permutation matrix P. If a =
(a(1) a(2) . . . a(9))T , then the column vector Pa is equal to
(a(1) a(4) a(7) a(2) a(5) a(8) a(3) a(6) a(9))T

Property 5: Consider the compound code defined in (4).
Let

Ap =
k⋃

m=1

{dm((p− 1)k + j) : j = 1, 2, . . . , k}

Bp =

2k⋃

r=k+1

{dr((j − 1)k + p) : j = 1, 2, . . . , k}

for p ∈ {1, 2, . . . , k}. Then

Ap ∪ Bp → dl((p− 1)k + j)

for all j ∈ {1, 2, . . . , k} for l ∈ {2k + 1, 2k + 2, . . . , 3k}.
We will use the above property, in combination with

Property 4 to show that a failed systematic node can be
optimally repaired, by downloading a fraction of 1

k
of every

surviving node.
Repair of a failed systematic node: Suppose node 1 fails.

Loosely speaking, the key idea behind repair, of say node
1, can be described as follows: First, we download enough
data symbols from nodes k + 1, k + 2, . . . , 2k so that the
effect of the second MISER code is cancelled from the
(appropriate) parity elements. Then, what remains among
nodes 2, 3, . . . , k and the k parity nodes is a (2k, k) MISER
code on which optimal repair can be performed. The repair
strategy is described more specifically next. The repair of a
failed systematic node is indicated in Figure 5 for k = 3, n =
9, k = 6. We consider the case where node l ∈ {1, 2, . . . , k}
fails. For this case, we download the following.

1) Ci = {di((p − 1)k + l) : p = 1, 2, . . . , k} from node
i ∈ {1, 2, . . . , k} − {l}

2) Ci = {di(lk + (p − 1)) : p = 1, 2, . . . , k} from node
i ∈ {k + 1, k + 2, . . . , 2k}

3) Ci = {di((p − 1)k + l) : p = 1, 2, . . . , k} from node
i ∈ {2k + 1, 2k + 2, . . . , 3k}

Note that this strategy downloads k elements of every surviv-
ing node, and therefore downloads a fraction of 1

k
of every

surviving node, as required. Now, because of Property 5 the
second set of elements listed above can be used to cancel the
effect of ak+1,ak+2, . . . ,a2k from the third set of (parity)
elements downloaded (See Fig. 5). After this cancellation,
the effect of the second MISER code is cancelled and the
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Fig. 5. Repair for a (9, 6) code. The X denotes the elements downloaded for the repair of node 1. The elements downloaded from nodes 4, 5, 6 can be
used to generate and hence cancel the effect of the second (bottom) (6, 3) code participating in the combination, i.e., cancel the effect of a4,a5,a6. After
this cancellation, the remaining elements form a picture similar to Fig. 2

elements that remain are exactly those elements that are
needed to repair node l from the first k-expanded MISER
code, as described in Property 4 (See Fig. 5). Thus, using
Properties 4 and 5 along with recognizing the code structure
(4), the following optimal repair property can be shown

⋃

i∈{1,2,...,3k}−{l}

Ci → dl.

The repair of a failed node l ∈ {k+1, . . . , 2k} is also similar
and omitted here for the sake of brevity.

MDS Property: It can be shown (see [27]) using the
Schwartz-Zippel Lemma that if the field size is chosen large
enough, there exist scalars λi so that the MDS property can
be satisfied.

III. DISCUSSION

A. Repair of Parity Nodes
Above, we have described the repair of systematic nodes.

By exploiting the fact that the underlying MISER codes have

optimal repair property for parity nodes, the code developed
here can be used for non-trivially efficient repair of parity
nodes. For example, if a parity node fails, then we can
download d1,d2, . . . ,dk completely - this involves a cost (of
repair bandwidth) of k nodes. Now, what remains is a (2k, k)
MISER code (with one failed parity node). By applying the
optimal repair strategy over these remaining nodes, the total
repair bandwidth can be reduced to k + 1

k
(k − 1) times the

amount of data stored in each node. In other words, the
total repair bandwidth can be reduced to be equivalent to
downloading k/2 + k/2−1

k/2 < k nodes completely.

B. Compound of More than two (2k, k) MISER codes

The principle of combining (2k, k) MISER codes illus-
trated here can be used to combine more than two MISER
codes. In general, by using a k

m−1
-expanded MISER codes,

m (2k, k) codes can be combined to obtain a (mk, (m−1)k)
code with optimal repair properties. However, the size of the
code vectors, L, grows exponentially in (n−k) with such an



expansion. Details of combination of more than two MISER
codes will be provided in the extended version of this paper.
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