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Abstract. We present a component anomaly detector for a host-based
intrusion detection system (IDS) for Microsoft Windows. The core of
the detector is a learning-based anomaly detection algorithm that de-
tects attacks on a host machine by looking for anomalous accesses to the
Windows Registry. We present and compare two anomaly detection al-
gorithms for use in our IDS system and evaluate their performance. One
algorithm called PAD, for Probabilistic Anomaly Detection, is based
upon a probability density estimation while the second uses the Support
Vector Machine framework. The key idea behind the detector is to first
train a model of normal Registry behavior on a Windows host, even when
noise may be present in the training data, and use this model to detect
abnormal Registry accesses. At run-time the model is used to check each
access to the Registry in real-time to determine whether or not the be-
havior is abnormal and possibly corresponds to an attack. The system
is effective in detecting the actions of malicious software while maintain-
ing a low rate of false alarms. We show that the probabilistic anomaly
detection algorithm exhibits better performance in accuracy and in com-
putational complexity over the support vector machine implementation
under three different kernel functions.

1 Introduction

Microsoft Windows is one of the most popular operating systems today, and
also one of the most often attacked. Malicious software running on the host
is often used to perpetrate these attacks. There are two widely deployed first
lines of defense against malicious software, virus scanners and security patches.
Virus scanners attempt to detect malicious software on the host, and security
patches are operating system updates to fix the security holes that malicious
software exploits. Both of these methods suffer from the same drawback. They
are effective against known attacks but are unable to detect and prevent new
types of attacks.

Most virus scanners are signature based meaning they use byte sequences
or embedded strings in software to identify certain programs as malicious [16,
31]. If a virus scanner’s signature database does not contain a signature for a
specific malicious program, the virus scanner can not detect or protect against
that program. In general, virus scanners require frequent updating of signature



databases, otherwise the scanners become useless [38]. Similarly, security patches
protect systems only when they have been written, distributed and applied to
host systems. Until then, systems remain vulnerable and attacks can and do
spread widely.

In many environments, frequent updates of virus signatures and security
patches are unlikely to occur on a timely basis, causing many systems to remain
vulnerable. This leads to the potential of widespread destructive attacks caused
by malicious software. Even in environments where updates are more frequent,
the systems are vulnerable between the time new malicious software is created
and the time that it takes for the software to be discovered, new signatures and
patches created by experts, and ultimately distributed to the vulnerable systems.
Since malicious software may propagate through network connections or email,
it often reaches vulnerable systems long before the updates are available.

A second line of defense is through IDS systems. Host-based IDS systems
monitor a host system and attempt to detect an intrusion. In the ideal case, an
IDS can detect the effects or behavior of malicious software rather then distinct
signatures of that software. Unfortunately, widely used commercial IDS systems
are based on signature algorithms. These algorithms match host activity to a
database of signatures which correspond to known attacks. This approach, like
virus detection algorithms, requires previous knowledge of an attack and is rarely
effective on new attacks. Recently however, there has been growing interest in
the use of anomaly detection in IDS systems, as first proposed by Denning [18]
in a comprehensive IDS framework. Anomaly detection algorithms use models of
normal behavior in order to detect deviations which may correspond to attacks
[15]. The main advantage of anomaly detection is that it can detect new at-
tacks and effectively defend against new malicious software. Anomaly detection
algorithms may be specification-based or data mining or machine learning-based
[30, 32], and have been applied to network intrusion detection [27, 29] and also to
the analysis of system calls for host based intrusion detection [19, 21, 24, 28, 37].

Specification- or behavior-based anomaly detectors, such as the STAT ap-
proach [39], represent normal execution of a system using state transition or fine
state machine representations [33]. Anomalies are detected at run-time when the
execution of a process or system violates the predefined normal execution model.
Data mining or machine learning-based anomaly detectors automatically learn
a normal model without human intervention.

In this paper, we examine a new approach to host-based IDS that monitors
a program’s use of the Windows Registry. We present a system called RAD
(Registry Anomaly Detection), which monitors and learns a normal model of
the accesses to the Registry in real-time and detects the actions of malicious
software at run-time using the learned model.

The Windows Registry is an important part of the Windows operating system
and is very heavily used, making it a good source of audit data. By building a
sensor on the Registry and applying the information gathered to an anomaly
detector, we can detect evidence of the activity of malicious software. The main
advantages of monitoring the Windows Registry are that Registry activity is



regular by nature, it can be monitored with low computational overhead, and
almost all system activities interact with the Registry.

We present and comparatively evaluate two learning-based anomaly detection
algorithms used in this work. The first anomaly detection algorithm, Probabilis-
tic Anomaly Detection (PAD), is a Registry-specific version of PHAD (Packet
Header Anomaly Detection), an anomaly detection algorithm originally pre-
sented to detect anomalies in TCP packet headers [32]. Mahoney and Chan
formally compared performance of the PHAD algorithm to other prior algo-
rithms and was shown to exhibit substantial improvement in accuracy. PAD is a
more robust and extensive improvement over PHAD. The second anomaly detec-
tion algorithm we present uses a One-Class Support Vector Machine (OCSVM)
to detect anomalous activity in the Windows Registry using different kernel func-
tions. The paper will also discuss the modifications of the PHAD algorithm as
it is applied in the RAD system, as well as the details of the OCSVM algorithm
under three different kernel functions.

Furthermore, we show that the data generated by a Registry sensor is useful
in detecting malicious behavior. We also describe how various malicious pro-
grams use the Registry, and what data can be gathered from the Registry to
detect these malicious activities. We then apply our two anomaly detection al-
gorithms to the data gathered under controlled experiments and evaluate their
ability to detect abnormal Registry behavior caused by malicious software. By
showing the results of our experiments and detailing how various malicious ac-
tivities affect the Registry, we show that the Registry is a good source of data
for intrusion detection.

We also present a comparison of the two anomaly detection algorithms and
show PAD outperforms the OCSVM algorithm due to the use of the estimator
developed by Friedman and Singer [22]. This estimator uses a Dirichlet-based
hierarchical prior to smooth the distribution and account for the likelihoods
of unobserved elements in sparse data sets by adjusting their probability mass
based on the number of values seen during training. An understanding of the
differences between these two models and the reasons for differences in detection
performance is critical to the development of effective anomaly detection systems
in the future.

RAD is designed as a component sensor to provide evidence of a security
event for use in a host-based IDS. It is not a complete security solution. Our
goal is to integrate RAD and correlate its output with other host sensors (such
as a file system anomaly detector [9] or a Masquerade detector [40]) to provide
broader coverage against many attacks. See [10] for an example of a host-based
correlation engine.

In the following section we present background and related research in the
area of anomaly detection systems for computer security. Section 3 fully describes
the Windows Registry and the audit data available for modeling system opera-
tion. Examples of malicious executables and their modus operandi are described
to demonstrate how the Registry may be used by malicious software. Section 4
fully develops the PAD and OCSVM algorithms employed in our studies of Reg-



istry data. This is followed in Section 5 by a description of the RAD architecture
which serves as a general model for any host-based anomaly detector. A set of
experiments are then described with performance results for each algorithm in
Section 6. Section 7 discusses our ongoing research on a number of theoretical
and practical issues which will fully develop RAD as an effective tool to guard
Windows platforms from malicious executables. The paper concludes in Section
8.

2 Related Research

RAD is a host-based intrusion detection system applied to Windows Registry
data which detects anomalous program behavior. In general, some event or piece
of data may be anomalous because it may be statistically unlikely, or because
the rules that specify the grammar of the data or event are not coherent with
the current example (or both). This means that there needs to be a well defined
set of rules specifying all data or events that should be regarded as normal, not
anomalous. This has been the primary approach of nearly all intrusion detection
systems; they depend upon a prior specification of representative data or of
normal program or protocol execution.

The alternative is a statistical or machine learning approach where normalcy
is inferred from training during normal use of a system. Thus, rather than writing
or specifying the rules a priori, here we learn the rules implicitly by observing
data in an environment where there are many examples of normal events or data
that are in compliance with the implicit rules. This is the approach taken in our
work on RAD and other anomaly detectors applied to other audit sources for
security tasks.

Anomaly detection systems were first proposed by Denning [18] as an inte-
grated component with host-based misuse detectors and later implemented in
NIDES [27] to model normal network behavior in order to detect deviant behav-
ior that may correspond to an attack against a network computer system. W.
Lee et al. [30] describe a framework and system for auditing, data mining and
feature selection for the automatic computation of intrusion detection models.
This framework consists of classification, link analysis and sequence analysis for
constructing intrusion detection models and may be applied to network data or
to host data. A variety of other work has appeared in the literature detailing
alternative algorithms to establish normal profiles and applied to a variety of
different audit sources. Some are specific to user commands for masquerade de-
tection [40], others such as SPADE [41], NIDES [27] and PHAD [32] are specific
to network protocols and LAN traffic for detecting a variety of attacks, or appli-
cation or system call-level data for malware detection [21, 28], to name a few. A
variety of different modeling approaches have been described in the literature to
compute baseline profiles. Many are based upon statistical outlier theory [15].
These include estimating probabilistic or statistical distributions over tempo-
ral data [34], supervised machine learning [30] and unsupervised cluster-based
algorithms [12].



The work reported in this paper is, to the best of our knowledge, the first
sensor devoted to learning-based anomaly detection for the Windows platform
and specifically for the Windows Registry. The contribution of this paper is to
demonstrate the utility of Windows Registry monitoring as a valuable source of
additional information to detect malicious executables as well as the introduction
of a learning-based approach to automatically specify normal Registry behavior.
The paper also contributes to a deeper understanding of the tradeoffs between a
probabilistic and a Support Vector Machine framework for anomaly detection.

There are several other host-based intrusion detection and prevention systems
primarily focused on misuse detection driven by signature- or specification-based
techniques. We cannot compare the learning-based RAD to a number of commer-
cial products that provide rules-based registry monitoring since those systems
are unpublished. It is not possible to expose their internal logic for a detailed
comparative evaluation. However, the RAD system is intended to be integrated
with other host-based security systems to broaden their coverage and to lever-
age their behavior-blocking capabilities. RAD provides a learning approach that
models the specific characteristics of a distinct machine, rather than depending
upon general-purpose rules that may not cover specific unique cases and may
provide evidence of malicious activities that may not be covered by a set of rules.

The RAD system automatically learns relationships between all of the fea-
tures extracted from registry queries, not just process name and key name. More
subtle interactions are captured by modeling the conditional probabilities across
all pairs of features. Thus the learned models reveal actual system behavior and
performance and a completely deployable system can be architected to auto-
matically adapt over time to newly seen behavior patterns when new software
is installed.

There is of course a tradeoff between complexity, effective coverage and gen-
erality when one compares a machine learning-based approach to a specification-
based approach. We posit that a rule based system has some disadvantages when
compared to the RAD system. A rule based system requires a human expert to
craft specific rules to cover the complete range of policies and behaviors in the
system. General Windows Registry policies (for example that only a single ap-
plication has the right to access a distinct key) may or may not be correct for
all applications, or all versions of the underlying platform. In addition these spe-
cific behaviors might change over time, making the specific rules incomplete or
at worst, very wrong. In addition, generally rule based systems require frequent
updates to cover new attacks.Rather than choosing one or the other approach,
we believe leveraging both may provide better security; this is one of a number
of related research topics we explore in Section 7 on Future Work.

3 Modeling Registry Accesses

3.1 The Windows Registry

In Microsoft Windows, the Registry file is a database of information about a
computer’s configuration. The Registry contains information that is continually



referenced by many different programs. Information stored in the Registry in-
cludes the hardware installed on the system, which ports are being used, profiles
for each user, configuration settings for programs, and many other parameters
of the system. It is the main storage location for all configuration information
for many Window programs. The Windows Registry is also used by some appli-
cations as the repository for security related information: policies, user names,
profiles and passwords. It stores much of the important run-time configuration
information that programs need to execute.

The Registry is organized hierarchically as a tree. Each entry in the Registry
is called a key and has an associated value. One example of a Registry key is

HKCU\Software\America Online\AOL Instant Messenger (TM)
\CurrentVersion\Users\aimuser\Login\Password

This is a key used by the AOL instant messenger program. This key stores
an encrypted version of the password for the user name aimuser. Upon start up
the AOL instant messenger program queries this key in the Registry in order to
retrieve the stored password for the local user. Information is accessed from the
Registry by individual Registry accesses or queries. The information associated
with a Registry query is the key, the type of query, the result, the process that
generated the query and whether the query was successful. One example of a
query is a read for the key shown above. For example, the record of the query
is:

Process: aim.exe

Query: QueryValue

Key: HKCU\Software\America Online\AOL Instant Messenger
(TM) \CurrentVersion\Users\aimuser\Login\Password
Response: SUCCESS

ResultValue: " BCOFHIHBBAHF"

The Windows Registry is an effective data source for monitoring attacks be-
cause many attacks are detectable through anomalous Registry behavior. Many
attacks take advantage of Windows’ reliance on the Registry. Indeed, many at-
tacks themselves rely on the Windows Registry in order to function properly.

Many programs store important information in the Registry, regardless of
the fact that other programs can arbitrarily access the information. Although
some versions of Windows include security permissions and Registry logging,
both features may not be used (because of the computational overhead and
the complexity of the configuration options). RAD has been designed to be low
overhead and efficient. In the initial implementation we avoided using the native
logging tools in favor of a specific sensor that extracts only Registry data of
interest to our algorithms. We detail the implementation in Section 5.

3.2 Analysis of Malicious Registry Accesses

Most Windows programs access a certain set of Registry keys during normal
execution. Furthermore, users tend to have a typical set of programs that they



routinely run on their machines. This may be the set of all programs installed
on the machine or, more commonly, a small subset of these programs. Another
important characteristic of Registry activity is that it tends to be regular over
time. Most programs either only access the Registry on start-up and shutdown,
or access the Registry at specific intervals. This regularity makes the Registry
an excellent place to look for irregular, anomalous activity, since a malicious
program may substantially deviate from normal activity and can be detected.

Many attacks involve launching programs that have never been launched be-
fore and changing keys that have not been changed since the operating system
had first been installed by the manufacturer. If a model of normal Registry be-
havior is computed over clean data, then these kinds of Registry operations will
not appear while training the model. Furthermore malicious programs may need
to query parts of the Registry to get information about vulnerabilities. A mali-
cious program can also introduce new keys that will help create vulnerabilities
in the machine.

Some examples of malicious programs used in this study and how they pro-
duce anomalous Registry activity are described below. There are newer versions
for several of these for more recent versions of Windows than used in this study.
We chose to use these exploits since they were readily available, and they attack
known vulnerabilities in the particular version of Windows (NT 4.0) used as our
target victim in this work. The behavior of these exploits and there attack upon
the Registry are sufficient to demonstrate the utility of RAD.

— Setup Trojan: This program when launched adds full read/write sharing
access on the file system of the host machine. It makes use of the Reg-
istry by creating a Registry structure in the networking section of the Win-
dows keys. The structure stems from HKLM\Software\Microsoft\Windows
\CurrentVersion \Network\LanMan. It then typically creates eight new
keys for its own use. It also accesses HKLM \Security\Provider in order
to find information about the security of the machine to help determine vul-
nerabilities. This key is not accessed by any normal programs during training
or testing in our experiments and its use is clearly suspicious in nature.

— Back Orifice 2000: This program opens a vulnerability on a host machine,
which grants anyone with the back orifice client program complete control
over the host machine. This program does make extensive use of the Registry,
however, it uses a key that is very rarely accessed on the Windows system.
HKLM\Software\Microsoft\VBA\Monitors was not accessed by any normal
programs in either the training or test data, which allowed our algorithm to
identify it as anomalous. This program also launches many other programs
(LoadWC .exe, Patch.exe, runonce.exe, bo2k_1 o_intl. e) as part of the
attack all of which made anomalous accesses to the Windows Registry.

— Aimrecover: This is a program that steals passwords from AOL users. It
is a very simple program that reads the keys from the Registry where the
AOL Instant Messenger program stores the user names and passwords. The
reason that these accesses are anomalous is because Aimrecover is accessing
a key that is usually only accessed by the program which created that key.



— Disable Norton: This program very simply exploits the Registry so that
Norton Antivirus is disabled. This attack toggles one record in the Registry,
the key HKLM\SOFTWARE\INTEL \LANDesk \VirusProtect6\CurrentVersion
\Storages \Files\System \Real-TimeScan \OnOff. If this value is set to
0 then Norton Antivirus real-time system monitoring is turned off. Again this
is anomalous because of its access to a key that was created by a different
program.

— LOphtCrack: This program is probably the most popular password cracking
program for Windows machines. This program creates its own section in the
Registry involving many create key and set value queries, all of which will
be on keys that did not exist previously on the host machine and therefore
have not been seen before.

Another important piece of information that can be used in detecting attacks
is that all programs observed in our data set, and presumably all programs in
general, cause Windows Explorer to access a specific key. The key

HKLM\Software\Microsoft\Windows NT \CurrentVersion\Image File
Execution Options\processName

where processName is the name of the process being executed, is a key that is
accessed by Explorer each time an application is run. Therefore we have a ref-
erence point for each specific application being launched to determine malicious
activity. In addition many programs add themselves in the auto-run section of
the Windows Registry under

HKLM\Software\Microsoft\Windows \CurrentVersion\Run .

While this is not malicious in nature, this is a rare event that can definitely be
used as a hint that a system is being attacked. Trojan programs such as Back
Orifice utilize this part of the Registry to auto load themselves on each boot.

Anomaly detectors do not look for malicious activity directly. They look for
deviations from normal activity. It is for this reason that any deviation from
normal activity will be declared an alert by the system. The installation of a
new program on a system may be a fairly rare event (in relation to normal client
use of a machine) and thus may be viewed as anomalous activity. Programs often
create new sections of the Registry and many new keys on installation. This may
cause a false alarm, much like adding a new machine to a network may cause an
alarm on an anomaly detector that analyzes network traffic. Hence, an anomaly
detector such as RAD may generate too many false positives, or worse, it may
be blind to malicious installations if the logic of the system chooses to ignore
program installs.

There are a few possible solutions to this problem. Malicious programs are
often stealthy and install quietly so that the user does not know the program
is being installed. This is not the case with most user initiated (legitimate)
application installations that make themselves (loudly) known.

A complete host-based IDS solution that incorporates RAD as a component
may be architected to handle this case. For example, RAD may be modified to use



a specific model trained over install shield runs, which could model the behavior
of install shield separately from normal Registry accesses. Another option is to
simply prompt the user when a RAD alarm occurs so that the user can let the
anomaly detection system know that a legitimate program is being installed
and therefore the anomaly detection model needs to be updated with a newly
available training set gathered in real-time. This is a typical user interaction in
many application installations where user feedback is requested for configuration
information. In addition a white list of good programs can be gathered in this
way to inform the system that the user has approved of some specific program
installs.

A full treatment of these design issues are beyond the scope of this paper and
are a core part of our future work we describe in Section 7. For the present paper,
we first test the thesis that Registry monitoring, and learning-based anomaly
detection in particular, provides a useful component in the arsenal of security
features for a host system.

4 Registry Anomaly Detection

The RAD system has three basic components: an audit sensor, a model genera-
tor, and an anomaly detector. The audit sensor logs Registry activity to either
a database where it is stored for training, or to the detector to be used for anal-
ysis. The model generator reads data from the database and creates a model
of normal behavior. This model is then used by the anomaly detector to decide
whether each new Registry access should be considered anomalous.

In order to detect anomalous Registry accesses, five features are extracted
from each Registry access. Using these feature values over normal data, a model
of normal Registry behavior is generated. When detecting anomalies, the model
of normalcy determines whether the feature values of the current Registry access
are consistent with the normal data. If they are not consistent, the algorithm
labels the access as anomalous.

4.1 RAD Data Model

The RAD data model consists of five features directly gathered from the Registry
sensor. The five raw features used by the RAD system are as follows.

— Process: This is the name of process accessing the Registry. This is useful
because it allows the tracking of new processes that did not appear in the
training data.

— Query: This is the type of query being sent to the Registry, for example,
QueryValue, CreateKey, and SetValue are valid query types. This allows
the identification of query types that have not been seen before. There are
many query types but only a few are used under normal circumstances.

— Key: This is the actual key being accessed. This allows our algorithm to
locate keys that are never accessed in the training data. Many keys are used



only once for special situations like system installation. Some of these keys
can be used to create vulnerabilities.

— Response: This describes the outcome of the query, for example success,
not found, no more, buffer overflow, and access denied.

— Result Value: This is the value of the key being accessed. This will allow the
algorithm to detect abnormal values being used to create abnormal behavior
in the system.

| Feature ‘ |aim.exe | aimrecover.exe

Process aim.exe aimrecover.exe

Query QueryValue QueryValue

Key HKCU\Software\America Online|HKCU\Software\America Online
\AOL Instant Messenger (TM) |\AOL Instant Messenger (TM)
\CurrentVersion\Users \CurrentVersion\Users
\aimuser\Login\Password \aimuser\Login\Password

Response SUCCESS SUCCESS

Result Value||" BCOFHIHBBAHF" " BCOFHIHBBAHF"

Table 1. Registry Access Records. Two Registry accesses are shown. The first is a
normal access by AOL Instance Messenger to the key where passwords are stored.
The second is a malicious access by AIMrecover to the same key. Note that the pairs
of features are used to detect the anomalous behavior of AIMrecover.exe. This is be-
cause under normal circumstances only AIM.exe accesses the key that stores the ATIM
password. Another process accessing this key should generate an anomaly alert.

4.2 PAD Anomaly Detection Algorithm

Using the features that we extract from each Registry access, we train a model
over normal data. This model allows us to classify Registry accesses as either
normal or not.

Any anomaly detection algorithm can be used to perform this modeling.
Since we aim to monitor a significant amount of data in real-time, the algo-
rithm must be very efficient. Furthermore, one of the most vexing problems for
anomaly detection algorithms is how to treat noise in the training data. Many
papers present standard modeling algorithms that rely upon cleaned training
data which is simply impractical in contexts where there is far too much data
to inspect and clean. Previous algorithms, for examples those based upon clus-
tering (see [12] and references cited therein) had no systematic way of treating
noise other than to assume small or low density clusters may be outliers. Simi-
larly, modeling algorithms based upon the Support Vector Machine framework
(treated in Section 4.3) assume outliers are detectable by recognizing points on
the “wrong side” of the maximal margin hyperplane.



The Probabilistic Anomaly Detection (PAD) algorithm was designed to train
a normal probabilistic model in the presence of noise. The algorithm was in-
spired by the heuristic algorithm that was proposed by Chan and Mahoney in
the PHAD system [32], but is more robust. PHAD would not detect data that
represents an attack in the training set because it would not label such data as
an anomaly; it would assume all data was normal. PAD’s design is based upon
the premise that low probability events or data records with a low likelihood
are regarded as noise, and hence are recognized as anomalies. If one assumes
that attack data are a minority of the training data (otherwise attacks would be
high frequency events) than they would be recognized as attacks by PAD im-
plicitly as low probability events and treated as anomalies at detection time. (If
attacks were prevalent and high probability events, then they are normal events,
by definition.)

PAD also extends the PHAD algorithm by considering conditional proba-
bilities over all pairs of features of the data. This modeling tends to identify a
broader class of unlikely data with low conditional probabilities. This is crucial
to understanding PAD’s performance as an anomaly detection algorithm. It is
often the case that multi-variate data is indeed inconsistent with prior training
data not because of any individual feature value (which may have been sampled
frequently in the training data), but rather in the combination of feature values
which may never or rarely have been seen before.

In general, a principled probabilistic approach to anomaly detection can be
reduced to density estimation. If we can estimate a density function p(x) over
the normal data, we can define anomalies as data elements that occur with
low probability. In practice, estimating densities is a very hard problem (see
the discussion in Scholkopf et al., 1999 [35] and the references therein.) In our
setting, part of the problem is that each of the features has many possible values.
For example, the Key feature has over 30,000 values in our training set. Since
there are so many possible feature values, relatively rarely does the same exact
record occur in the data. Data sets with this characterization are referred to as
sparse.

Since probability density estimation is a very hard problem over sparse data,
we propose a different method for determining which records from a sparse data
set are anomalous. We define a set of consistency checks over the normal data.
Fach consistency check is applied to an observed record. If the record fails any
consistency check, we label the record as anomalous.

We apply two kinds of consistency checks. The first kind of consistency check
evaluates whether or not a feature value is consistent with observed values of that
feature in the normal data set. We refer to this type of consistency check as a first
order consistency check. More formally, each Registry record can be viewed as
the outcome of 5 random variables, one for each feature, X1, X5, X3, X4, X5. Our
consistency checks compute the likelihood of an observation of a given feature
which we denote P(X;).

The second kind of consistency check handles pairs of features as motivated
by the example in Table 1. For each pair of features, we consider the conditional



probability of a feature value given another feature value. These consistency
checks are referred to as second order consistency checks. We denote these likeli-
hoods P(X;|X;). Note that for each value of X, there is a different probability
distribution over Xj.

In our case, since we have 5 feature values, for each record, we have 5 first
order consistency checks and 20 second order consistency checks. If the likelihood
of any of the consistency checks is below a threshold, we label the record as
anomalous. PAD is designed to estimate all such consistency checks, some of
which may never possibly generate an anomaly alert. Some simple enhancements
to PAD may be made to eliminate or prune these consistency checks which
produces a computational performance improvement, but has no effect on the
detection performance of the pruned model.

What remains to be shown is how we compute the likelihoods for the first
order (P(X;)) and second order (P(X;|X;)) consistency checks. Note that from
the normal data, we have a set of observed counts from a discrete alphabet for
each of the consistency checks. Computing these likelihoods reduces to simply
estimating a multinomial. In principal we can use the maximum likelihood esti-
mate which just computes the ratio of the counts of a particular element to the
total counts. However, the maximum likelihood estimate is biased when there
is relatively small amounts of data. When estimating sparse data, this is the
case. We can smooth this distribution by adding virtual counts to every possible
element, thereby giving non-zero probability mass to yet unseen elements which
may appear in the future. This is equivalent to using a Dirichlet estimator [17].
For anomaly detection, as pointed out in Mahoney and Chan, 2001 [32], it is
critical to take into account how likely we are to observe an unobserved element.
Intuitively, if we have seen many different elements, we are more likely to see
unobserved elements as opposed to the case where we have seen very few ele-
ments. This intuition explains why PAD performs well as an anomaly detection
algorithm that trains well even with noisy training data.

To estimate our likelihoods we use the estimator presented in Friedman and
Singer, 1999 [22] which explicitly estimates the likelihood of observing a pre-
viously unobserved element. The estimator gives the following prediction for
element ¢

O[-’-NZ

( ) Koo+ N (1)
if element 7 was observed and
P(X =1i)= 71 (1-0) (2)
—U= L — kO

if element i was not previously observed. « is a prior count for each element, V;
is the number of times i was observed, N is the total number of observations,
k0 is the number of different elements observed, and L is the total number of
possible elements or the alphabet size. The scaling factor C' takes into account
how likely it is to observe a previously observed element versus an unobserved



element. C' is computed by
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where my, = P(S = k)ﬁ% and P(S = k) is a prior probability
associated with the size of the subset of elements in the alphabet that have non-
zero probability. Although the computation of C is expensive, it only needs to

be done once for each consistency check at the end of training.

While it is true that as more elements are observed, the less the prior influ-
ences the estimator and the better the estimator will become, this should hardly
be surprising. All estimators improve as the amount of observed data increases,
the job of the prior is to make intelligent predictions in the case of sparse data.
The risk of overwhelming useful information given by the data with the prior is
minimal since the hyperparameter o can be set as to modify the strength of the
prior.

The prediction of the probability estimator is derived using a mixture of
Dirichlet estimators each of which represent a different subset of elements that
have non-zero probability. Details of the probability estimator and its derivation
are given in [22].

PAD is relatively efficient in space and time, even though it builds an very
detailed model of the training data. The PAD algorithm takes time O(v?R?),
where v is the number of unique record values for each record component and
R is the number of record components. The space required to run the algorithm
is O(vR?).

Note that this algorithm labels every Registry access as either normal or
anomalous. Programs can have anywhere from just a few Registry accesses to
several thousand. This means that many attacks may be represented by large
numbers of anomalous records. In the experimental evaluation presented in Sec-
tion 6.2 we compare the statistical accuracy of RAD from the perspective of
correctly labeled Registry records as well as correctly labeled processes. Pro-
cesses are deemed anomalous if the record they generate with the minimum
score is below the threshold. (Alternative alert logic can of course be defined.)

The performance of the detector obviously varies with the threshold setting
and the particular decision logic (record based or process based). (A fuller treat-
ment evaluating anomaly detectors and their coverage is given by Maxion [13].)
However, since relatively few processes and malicious programs are available
in proportion to the number of Registry records, the comparison between PAD
and the OCSVM algorithm, described next, is best viewed in terms of the record
based performance results. The comparative evaluation of detection performance
is presented in Section 6.3 from which we can draw certain conclusions about
the alternative algorithms.



4.3 OCSVM Anomaly Detection Algorithm

As an alternative to the PAD algorithm for model generation and anomaly detec-
tion, we apply an algorithm, described in [23], based on the One-Class Support
Vector Machine (OCSVM) algorithm given in [35]. Previously, the OCSVM has
not been used in host-based anomaly detection systems. The OCSVM code we
used [14] has been modified to compute kernel entries dynamically due to mem-
ory limitations. The OCSVM algorithm maps input data into a high dimensional
feature space (via a kernel function) and iteratively finds the maximal margin
hyperplane which best separates the training data from the origin. As in the PAD
algorithm, the OCSVM trains on all normal data. The OCSVM may be viewed
as a regular two-class Support Vector Machine (SVM) where all the training
data lies in the first class, and the origin is taken as the only member of the
second class. Thus, the hyperplane (or linear decision boundary) corresponds to
the classification rule:

fx) =(w,x) +b (4)

where w is the normal vector and b is a bias term. The OCSVM solves an
optimization problem to find the rule f with maximal geometric margin. We
can use this classification rule to assign a label to a test example x. If f(x) <0
we label x as an anomaly, otherwise it is labeled normal. In practice there is
a trade-off between maximizing the distance of the hyperplane from the origin
and the number of training data points contained in the region separated from
the origin by the hyperplane.

4.4 Kernels

Solving the OCSVM optimization problem is equivalent to solving the dual
quadratic programming problem:

1
H}llng E aiajK(xi,xj) (5)
ij
subject to the constraints
0< ;< (6)
s < —
- 'l

and
Zai =1 (7)

where «; is a Lagrange multiplier (or “weight” on example i such that vectors as-
sociated with non-zero weights are called “support vectors” and solely determine
the optimal hyperplane), v is a parameter that controls the trade-off between
maximizing the distance of the hyperplane from the origin and the number of



data points contained by the hyperplane, [ is the number of points in the train-
ing dataset, and K (x;,x;) is the kernel function. By using the kernel function
to project input vectors into a feature space, we allow for nonlinear decision
boundaries. This means that although we only use a linear decision boundary to
cut out one region of feature space, this region can map to arbitrary multimodal
regions in input space (for example, in Gaussian RBF kernels, which we define
in the next few lines; the amount of multimodality can be controlled using the
variance, o, parameter).

Given a feature map:

¢: X — RN (8)

where ¢ maps training vectors from input space X to a high-dimensional feature
space, we can define the kernel function as:

K(z,y) = (¢(z), () 9)

Feature vectors need not be computed explicitly, and in fact it greatly improves
computational efficiency to directly compute kernel values K(z,y). We used
three common kernels in our experiments:

Linear kernel: K(z,y) = (x - y)
Polynomial kernel: K (z,y) = (z-y+1)?, where d is the degree of the polynomial
Gaussian RBF kernel: K (x,y) = e‘”’”‘y“2/(2"2), where o2 is the variance

Our OCSVM algorithm uses sequential minimal optimization to solve the
quadratic programming problem, and therefore takes time O(dL?), where d is
the number of dimensions and L is the number of records in the training dataset.
Typically, since we are mapping into a high dimensional feature space d exceeds
R? from the PAD complexity. Also for large training sets L® will significantly
exceed v?, thereby causing the OCSVM algorithm to be a much more computa-
tionally expensive algorithm than PAD. An open question remains as to how we
can make the OCSVM system in high bandwidth real-time environments work
well and efficiently. All feature values for every example must be read into mem-
ory, so the required space is O(d(L+T)), where T is the number of records in the
test dataset. Although this is more space efficient than PAD, we compute our
kernel values dynamically in order to conserve memory, resulting in the added
d term to our time complexity. If we did not do this the memory needed to run
this algorithm would be O(d(L + T)?) which is far too large to fit in memory on
a standard computer for large training sets (which are inherent to the Windows
anomaly detection problem).

5 Architecture

The basic architecture of the RAD system consists of three components, the
Registry auditing module (RegBAM), the model generator, and the real-time
anomaly detector. An overview of the RAD architecture is shown in Figure 1.
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Fig. 1. The RAD System Architecture. RegBAM outputs to the data warehouse during
training model and to the anomaly detector during detection mode.

5.1 Registry Basic Auditing Module

The RAD sensor is composed of a Basic Auditing Module (BAM) for the RAD
system which monitors accesses to the Registry. A BAM implements an archi-
tecture and interface for sensors across the system. It includes a hook into the
audit stream (in this case the Registry) and various communication and data-
buffering components. The BAM uses an XML data representation similar to
the IDMEF standard (of the IETF) for IDS systems [26]. The BAM is described
in more detail in [25].

The Registry BAM (RegBAM) runs in the background on a Windows ma-
chine as it gathers information on Registry reads and writes. RegBAM uses
Win32 hooks to the underlying Win32 subsystem to tap into and log all reads
and writes to the Registry. RegBAM is akin to a wrapper and uses a similar
architecture to that of SysInternal’s Regmon [36].

While gathering Registry data in real-time, RegBAM can be configured in
one of two ways. The first as the audit data source for model generation. When
RegBAM is used as the data source, the output data is sent to a database where
it is stored and later used by the model generator described in Section 5.2 [25].
The second use of RegBAM, is as the data source for the real-time anomaly
detector described in Section 5.3. While in this mode, the output of RegBAM
is passed directly to the anomaly detector where it is processed in real-time
and evaluated in real-time for anomalies. (The scores for the individual Registry
accesses, are displayed by a GUI as well.)



An alternative method of collecting Registry access data is to use the Win-
dows auditing mechanism over the Windows Registry. All Registry accesses can
be logged in the Windows Event Log with each read or write generating mul-
tiple records in the Event Log. However, this method was problematic in our
first implementation because the event logs are not designed to handle such a
large amount of data. Simple tests demonstrated that by turning on all Registry
auditing the Windows Event Logger caused a major resource drain on the host
machine, and in many cases caused the machine to crash. The RegBAM appli-
cation provides an efficient method for monitoring all Registry activity, with far
less overhead than the native tools provided by the Windows operating system
by only extracting the feature values needed by the modeler and detector. Re-
cent updates to Windows have improved the native auditing tools and hence
RegBAM could be redesigned (as originally planned) to take advantage of these
native utilities. In either case, it is the designers choice which of the methods of
tapping Registry queries would perform best in real-time operation.

5.2 Model Generation Infrastructure

The initial RAD system architecture is similar to the Adaptive Model Generation
(AMG) architecture reported in [25], but uses RegBAM to collect Registry access
records. Using this database of collected records from a training run, the model
generator computes a model of normal usage. A second version of RAD has
been implemented that is entirely host-based and operates in real-time as a
standalone sensor. Thus, RAD may be used as a network application gathering
remote sensor data using RegBAM running on each individual host, or as a
standalone application on each host. In the case where a centralized database is
used to store remote host data, models may be easily shared and distributed if
one so desires.

The model generator uses the algorithms discussed in Section 4 to build
models that represent normal usage. It utilizes the data stored in the database
which was generated by RegBAM during training. The model is stored in a
compact binary representation. A typical hour of normal usage generates about
100,000 records and in binary mode of storage totals about 15 Megabytes in size.

This core architecture builds a model from some particular set of training
data acquired during some chosen period of time. The question then is how
to treat changing or drifting environments; models may have to be relearned
and refreshed as the host environment changes over time. In the real-time RAD
implementation recently completely, the system is entirely hands-free and capa-
ble of automatic model update. The models computed can either be cumulative
or adaptive. In the mode where a cumulative model is built, a single model is
computed and constantly updated with new data (data that is deemed by the
detector as normal) from all available data inspected by the detector and the
model is used in perpetuity. Adaptive models are trained incrementally in train-
ing epochs. During some period of time, some percentage of available training
data is used to generate a model. A model computed during one epoch may
be retired in favor of a second new model computed during a second training



epoch. The former tends to grow a model that increases in size over time, while
the latter tends to use fairly constant space. The tradeoffs, however, in accuracy
between the two approaches is not fully understood and is an active part of our
ongoing research.

5.3 Real-Time Anomaly Detector

For real-time detection, RegBAM feeds live data for analysis by the anomaly
detector. The anomaly detector will load the normal usage model created by
the model generator and begin reading each record from the output data stream
of RegBAM. The algorithm discussed in Section 4 is then applied against each
record of Registry activity. The score generated by the anomaly detection algo-
rithm is compared to a configurable threshold to determine if the record should
be considered anomalous. A list of anomalous Registry accesses are stored and
displayed as part of the detector output. A user configured threshold allows the
user to customize the alarm rate for the particular environment. Lowering the
threshold, will result in more alarms being issued. Although this can raise the
false positive rate, it can also decrease the rate of false negatives.

We note that the activity of the RegBAM itself is also evaluated both during
the training and testing of the system. RegBAM will access the Registry to
load and save user configurations of the GUI and model checksums from trained
models. Hence, RegBAM is itself modeled by RAD.

The alarm system on the real-time version of RAD also gives the user the
ability to kill a running process or to add the specific binary of the process to a
white list so it is not incorrectly killed in the future. Thus, RAD provides user
control over incorrect actions applied by the real-time version of RAD.

5.4 Efficiency Considerations

In order for a system to detect anomalies in a real-time environment it can not
consume excessive system resources. This is especially important in Registry
attack detection because of the heavy amount of traffic that is generated by
applications interacting with the Registry. While the amount of traffic can vary
greatly from system to system, in our experimental setting (described below)
the traffic load was about 100,000 records per hour.

We created efficient data structures to buffer data writes and anomaly de-
tection calculations. In addition per-process history is efficiently stored and re-
trieved using a hashtable structure along with other efficient data structures for
calculating average history.

Although the system can run efficiently on most machines, our distributed
architecture is designed to minimize the resources used by the host machine
making it possible to spread the work load on to several separate machines.
This allows a light installation of only the RegBAM sensor on the host machine,
while processing takes place in a central location. Having a lightweight install
will increase network load due to the communication between components. These
two loads can be balanced by configuring a group of hosts to create the proper



proportion between host system load and network load. The RegBAM module
is a far more efficient way of gathering data about Registry activity than full
auditing with the Windows Event Log.

Our measurements indicated a CPU usage between 3% and 5% in total for
both the real-time RegBAM and PAD processes running on a Pentium Celeron
1GHZ with 512MB RAM. The actual memory footprint was under 3 Megabytes
of system RAM, far less than most typical programs which can consume from
10 to 30 Megabytes of system memory.

6 Evaluation and Results

The system was evaluated by measuring the detection performance over a set
of collected data which contains some attacks. Since there are no other existing
publicly available detection systems that operate on Windows Registry data we
were unable to compare our performance to other systems directly. However, our
goal is to evaluate the relative performance between the two algorithms, PAD
and OCSVM. We describe these results in the following sections.

6.1 Data Generation

In order to evaluate the RAD system, we gathered data by running a Reg-
istry sensor on a host machine. Beyond the normal installation and execution of
standard programs, such as Microsoft Word, Internet Explorer, and Winzip, the
training also included performing housekeeping tasks such as emptying the Recy-
cling Bin and using the Control Panel. All data was acquired during routine use
of a Windows machine by a real user. All data used for this experiment is publicly
available online in text format at http://www.cs.columbia.edu/ids/rad. The
data includes a time stamp and frequency of the launched programs in relation
to each other.

The RegBAM system can run on any flavor of Windows. This includes Win-
dows 98, Windows XP, Windows 2000, NT 4.0 and above. We used NT 4.0
for the experiments reported in this paper since at the time of the experiment
we had a sufficient collection of malicious programs designed for that operating
system running on a machine we were willing to victimize.

The training data for our experiment was collected on Windows NT 4.0 over
two days of normal usage (in our lab). We informally define normal usage to mean
what we believe to be typical use of a Windows platform in a home setting. For
example, we assume all users would log in, check some internet sites, read some
mail, use word processing, then log off. This type of session is assumed to be
relatively typical of many computer users. Normal programs are those which
are bundled with the operating systems, or are in use by most Windows users.
Creating realistic testing environments is a very hard task and testing the system
under a variety of environments is a direction for future work.

The simulated home use of Windows generated a clean (attack-free) dataset
of approximately 500,000 records. The system was then tested on a full day of test



data with embedded attacks executed. This data was comprised of approximately
300,000 records most of which were normal program executions interspersed with
approximately 2,000 attacks. The normal programs run between attacks were
intended to simulate an ordinary Windows session. The programs used were
Microsoft Word, Outlook Express, Internet Explorer, Netscape, AOL Instant
Messenger, and others.

The attacks run include publicly available attacks such as aimrecover, browselist,
bo2kss (back orifice), install.exe xtxp.exe both for backdoor. XTCP, 10phtcrack,
runattack, whackmole, and setuptrojan. Attacks were only run during the one
day of testing throughout the day. Among the twelve attacks that were run, four
instances were repetitions of the same attack. Since some attacks generated mul-
tiple processes there are a total of seventeen distinct processes for each attack.
All of the processes (either attack or normal) as well as the number of Registry
access records in the test data is shown in Table 2.

Some of the attacks were run twice or more. Many programs act differently
when executed a second time within a Windows session. In the experiments
reported below our system was less likely to detect a previously successful attack
on the second execution of that attack. The reason is that a successful attack
creates permanent changes to the Registry and hence on subsequent queries
the attack no longer appears abnormal. Thus the next time the same attack is
launched it is more difficult to detect since it interacts less with the Registry.

We observed that this is common for both malicious and regular applications
since many applications will do a much larger amount of Registry writing during
installation or when executed for the first time.

6.2 Experiments

We trained the two anomaly detection algorithms presented in Section 4 over
the normal data and evaluated each record in the testing set. We evaluate our
system by computing two statistics. We compute the detection rate and the false
positive rate.

The typical way to evaluate the performance of RAD would be to measure
detection performance over processes labeled as either normal or malicious. How-
ever, with only seventeen malicious processes at our disposal in our test set, it is
difficult to obtain a robust evaluation for the system. We do discuss the perfor-
mance of the system in terms of correctly classified processes, but also measure
the performance in terms of the numbers of records correctly and incorrectly
classified. Future work on RAD will focus on testing over long periods of time to
measure significantly more data and process classifications as well as alternative
means of alarming on processes. (For example, a process may be declared an
attack on the basis of one anomalous record it generates, or perhaps on some
number of anomalous records.) There is also an interesting issue to be investi-
gated regarding the decay of the anomaly models that may be exhibited over
time, perhaps requiring regenerating a new model.

The detection rate reported below is the percentage of records generated by
the malicious programs which are labeled correctly as anomalous by the model.



The false positive rate is the percentage of normal records which are mislabeled
anomalous. Each attack or normal process has many records associated with it.
Therefore, it is possible that some records generated by a malicious program
will be mislabeled even when some of the records generated by the attack are
accurately detected. This will occur in the event that some of the records as-
sociated with one attack are labeled normal. Each record is given an anomaly
score, S, that is compared to a user defined threshold. If the score is greater
than the threshold, then that particular record is considered malicious. Figure 2
shows how varying the threshold effects the output of the detector. The actual
recorded scores for the PAD algorithm plotted in the figure are displayed in Ta-
ble 3. In Tables 5 and 6, information on the records and their discriminants are
listed for the linear and polynomial kernels using binary feature vectors within
the OCSVM algorithm.

Table 2 is sorted in order to show the results for classifying processes. From
the table we can see that if the threshold is set at 8.497072, we would label
the processes LOADWC.EXE and ipccrack.exe as malicious and would detect
the Back Orifice and IPCrack attacks. Since none of the normal processes have
scores that high, we would have no false positives. If we lower the threshold to
6.444089, we would have detected several more processes from Back Orifice and
the BrowseList,BackDoor.xtcp, SetupTrojan and AimRecover attacks. However,
at this level of threshold, the following processes would be labeled as false pos-
itives: systray.exe, CSRSS.EXE, SPOOLSS.EXE, ttssh.exe, and winmine.exe.
Similarly, for the OCSVM algorithm results in Table 5, it is seen that if the
threshold is set at —1.423272, then the bo2kcfg.exe would be labeled as attack,
as would msinit.exe and ononce.exe. False labels would be given to WINLO-
GON.exe, systray.exe and other normal records. The measurements reported
next are cast in terms of Registry query records. Recall, our primary objective
in this work is to compare the alternative algorithms, PAD and OCSVM, where
we now turn our attention.

6.3 Detection

We can measure the performance of our detection algorithms on our test data by
plotting their Receiver Operator Characteristic (ROC) curves. The ROC curve
plots the percentage of false positives (normal records labeled as attacks) versus
the percentage of true positives. As the discriminant threshold increases, more
records are labeled as attacks. Random classification results in 50% of the area
lying under the curve, while perfect classification results in 100% of the area
lying under the curve. We plot the ROC curve for the PAD algorithm shown in
Figure 2 and Table 3.

We obtained kernels from binary feature vectors by mapping each record into
a feature space such that there is one dimension for every unique entry for each
of the five given record values. This means that a particular record has the value
1 in the dimensions which correspond to each of its five specific record entries,
and the value 0 for every other dimension in feature space. We then computed
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Fig. 2. ROC showing performance by varying the score threshold on the data set.

linear kernels, second order polynomial kernels, and Gaussian kernels using these
feature vectors for each record.

We also computed kernels from frequency-based feature vectors such that for

any given record, each feature corresponds to the number of occurrences of the
corresponding record component in the training set. For example, if the second
component of a record occurs three times in the training set, the second feature
value for that record is three. We then used these frequency-based feature vectors
to compute linear and polynomial kernels.

Results from our OCSVM system are shown with the results of the PAD

system on the same dataset in Figures 3 and 4. Figure 3 is the ROC curve for the
linear and polynomial kernels using binary feature vectors. We have used a sigma
value of 0.84 for our Gaussian function. The binary linear kernel most accurately

classifies the records. Figure 4 is the ROC curve for the linear and polynomial

kernels using frequency-based feature vectors. The frequency-based linear and

frequency-based polynomial kernels demonstrate similar classification abilities.
Overall, in our experiments, the linear kernel using binary feature vectors results
in the most accurate model.

Many of the false positives were from processes that were simply not run
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Fig. 3. ROC curve for the kernels using binary feature vectors with the OCSVM algo-
rithm (false positives versus true positives).

as a part of the training data but were otherwise normal Windows programs. A
thorough analysis of what kinds of processes generate false positives is a direction
for future work.

Part of the reason why the RAD system is successfully able to discriminate
between malicious and normal records is that accesses to the Windows Registry
are very regular, which makes normal Registry activity relatively easy to model.

The results of the OCSVM system produce less accurate results than the
PAD system. The PAD model is able to more accurately discriminate between
normal and anomalous records. The OCSVM system labels records with fair
accuracy, but could be improved with a stronger kernel, where more significant
information is captured in the data representation.

The ability of the OCSVM to detect anomalies is highly dependent on the
information captured in the kernel (the data representation). Our results show
that the kernels computed from binary feature vectors or frequency-based feature
vectors alone do not capture enough information to detect anomalies as well as
the PAD algorithm. With other choices of kernels, similar results will likely occur
unless a novel technique which incorporates more discriminative information is
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Fig.4. ROC curve for the kernels using frequency-based feature vectors with the
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used to compute the kernel. A simple example of this is if we have a dataset in
which good discrimination depends upon pairs of features, then we will not be
able to discriminate well with a linear decision boundary regardless of how we
tweak its parameters. However, if we use a polynomial kernel we can account
for pairs of features and will discriminate well. In this manner, having a well
defined kernel which accounts for highly discriminative information is extremely
important. For the purpose of this research, we believe our kernel choices are
sufficient to reliably compare the OCSVM system with PAD.

The advantage of the PAD algorithm over the OCSVM system lies in the use
of a hierarchical prior to estimate probabilities. A scaling factor (see equation
(4)) is computed and applied to a Dirichlet prediction which assumes that all
possible elements have a non-zero chance of being seen, giving varying probability
mass to outcomes unseen in the training set. In general, knowing the likelihood
of encountering a previously unobserved feature value is extremely important
for anomaly detection, and it would be valuable to be able to incorporate this
information into a kernel for use in an OCSVM system.



7 Discussion and Future Work

The work on RAD and anomaly detection in general has created a furtile ground
for future research covering practical issues of useability and reliability, as well
as some fundamental issues regarding adversaries who will seek the means of
thwarting this new generation of detection systems. We address several of these
issues and highlight our future work.

7.1 False Positives and Correlated Sensors

The RAD system has been presented as a component sensor of a host-based
intrusion detection system that signals an alert if and when anomalous Registry
accesses are detected. These alerts are intended to be correlated with other sensor
alerts to mitigate against false positives, and identify true attacks more reliably.
Hence, the results for PAD, for example, indicating a 5% false positive rate with
a perfect detection capability for the data sets used in this study, should not
be viewed as a noisy sensor with too many false positives. Rather, one should
regard RAD as a fairly good sensor providing substantive evidence of a security
event to be validated by other evidence from other sensors.

We plan on testing the system under a variety of environments and con-
ditions to better understand its performance in a long-lived real-time setting.
Future plans include combining the RAD system with another detector that
evaluates Windows Event Log data, and a file system access anomaly detector.
This will allow for various correlation algorithms to be used to make more ac-
curate system behavior models which we believe will provide a more accurate
anomaly detection system with better coverage of attack detection. Part of our
future plans for the RAD system include adding data clustering and aggrega-
tion capabilities. Aggregating alarms will allow for subsets of Registry activity
records to be considered malicious as a group initiated from one complex multi-
stage attack rather than individual attacks.

Furthermore, a system of correlated sensors to detect true attacks can be
extended to an intrusion prevention system by integrating the detector output
with a decision process that challenges the execution of a process that has caused
an alert (or a set of alerts). This challenge may either terminate the process, or
alternatively the alert may be presented to the user who may decide to allow the
process to complete or not. This has the advantage of informing the user of an
anomalous event that he or she otherwise would not be aware of, and provides
the means of mitigating against any false positives from the component sensors
causing an incorrect action. Of course the rate or frequency of user challenges
may render such a host-based intrusion prevention system a frustratingly annoy-
ing security system if it generates too many alarms in too short a time frame.
The results reported for the test cases studied indicate that RAD can be an
effective sensor with high accuracy and low false positive rates. However, the
conditions that led to an incorrect RAD decision may be regarded and used as
additional training data to reduce the implied false positives even further. This
interactive mode is familiar to many users who are likely already accustomed



to interact with security systems, such as browser-initiated pop-up Windows
asking whether to accept a cookie from a website, or to allow certain network
connections from personal firewall applications.

7.2 Training Regimen

The experimental results reported were completed using a pristine Windows ma-
chine where the Registry data was guaranteed to be normal data without em-
bedded attacks. This approach is sensible if one presumes a standard Windows
environment is shipped with a first factory standard Registry data model pre-
computed for the user. However, each machine would require subsequent training
of updated models specific to how the machine is used and updated with ad-
ditional software. This process must be completely automated in a hands-free
fashion with little user intervention. The newer real-time version of RAD has
been designed for this purpose. (Our ongoing work concerns long-lived process
execution, and a full evaluation of RAD performance over many thousands of
process executed over weeks of typical use. Results of this test of RAD are forth-
coming.)

When training updated models one cannot legitimately assume training data
would be attack free. We have cast the anomaly detection algorithms in a fashion
that allows training over data that does not necessarily need to be clean, normal
data. The very nature of the training algorithms (the Probabilistic Anomaly
Detection algorithm is based upon an estimated probability distribution and the
Support Vector Machine algorithm is based on a maximal margin hyperplane)
allow for some amount of noise in the training data to still operate effectively. We
have not tested this feature in the work reported here on a Windows platform.
However, PAD has been effectively deployed in a network sensor that trains a
normal model in a completely unsupervised fashion. The core requirement is the
assumption that attacks or noise are a minority of the training data. (If this is
not the case, then normal data will be the statistical outliers, which in practical
contexts is rather unlikely.)

7.3 Continuous Learning and Self-Calibration

In our future work several additional features are required to make RAD an easy
to deploy and use security technology. This includes the means of continuously
learning updated models, as the platform is updated and the environment drifts,
and self-calibration of the model output thresholds. In the former case, we are
experimenting with several strategies to continuously update learned models. In
the simplest case once a model has been produced by the training algorithm and
deployed to the run-time detector, the learning algorithm continues to operate in
the background training a new model in a scheduled fashion. The new model may
replace the previously deployed model. Alternative strategies are being evaluated
including incremental learning versions of each algorithm as well as strategies
based upon model comparisons, i.e. comparing performance of two models to
either correlate their outputs or as a means of deciding which model to use at



run-time. The significant issues that are not yet well understood involve the
tradeoff between efficiency and accuracy. Ideally, the sensor, the learning system
and the detector should not require an inordinate amount of system resources.
As the system now stands, no model has grown beyond 200 MB’s of data, and
the load is under 5%.

With respect to self-calibration, the current approach that seems most sen-
sible is to measure the distribution of model scores of the training data and to
select a threshold that admits a small percentage of alerts over that data. Hence,
a user specified percentage (say .1%) may be used as an initial starting point to
allow the threshold setting to be automatically adjusted. The operational im-
pact of this process is part of our ongoing study on anomaly detection systems.
What we do not yet understand is whether a threshold setting for RAD should
remain static or whether it should be self adjusted at run time to account for
the dynamics of the environment and how it may shift.

7.4 Mimicry Attack

It is entirely possible that a system such as RAD may be thwarted by malicious
code that avoids any access to the Registry, or that may mimic a normal Registry
query. The mere fact that each Windows environment is shipped to many millions
of users implies that there are many potential vulnerable systems with exactly
the same standard environments. (Each such system has a standard Windows
and System32 directory with all of the key OS DLL’s and executables targeted
by malicious code.) Hence, crafty attackers may study this common information
and architect malicious code to behave like other normal Windows processes
avoiding detection altogether by a mimicry attack. Other have been studying
this issue as well and have posited the concept of diversity; essentially to make
each machine, platform and environment as unique and distinct as possible so
that common behaviors are not so common and are not trivially mimicked.

7.5 Self-protection

Any host-based security system is subject to insider attack in a variety of ways.
One such inside attack is to stealthily alter the anomaly detection models ren-
dering the sensor useless. (Of course other brute force methods may be more
effective, such as killing detector processes, yet these actions may also may be
easily detectable.)

We also plan to store the system Registry behavior model as part of the
Registry itself. The motivation behind this is to use the anomaly detector to
protect the system behavior model from being maliciously altered, hence making
the model itself secured against attack. These additions to the RAD system will
make the system a more complete and effective tool for detecting malicious
behavior on the Windows platform.



8 Conclusion

By using Registry activity on a Windows system, we were able to label all
processes as either attacks or normal, with relatively high accuracy and low
false positive rate, for the experiments performed in this study. We have shown
that Registry activity is regular, and described ways in which attacks would
generate anomalies in the Registry. Thus, an anomaly detector for Registry data
may be an effective component in an intrusion detection system augmenting
other host-based detection systems. It would also improve protection of systems
in cases of new attacks that would otherwise pass by scanners that have not
been updated on a timely basis.

In the comparative evaluation of our OCSVM algorithm and our PAD algo-
rithm, we have shown that the PAD algorithm is more reliable, with substantially
better computational complexity. The PAD algorithm perfectly classifies all true
anomalies while mislabeling only 5% of normal data; whereas the OCSVM will
misclassify nearly 40% of normal data before perfectly detecting true anomalies.
Also, the OCSVM algorithm has time complexity O(dL?), where d is the number
of dimensions and L is the number of records in the training dataset, and space
complexity O(d(L + T)), where T is the number of records in the test dataset.
PAD has time complexity O(v2R?), where v is the number of unique record
values for each record component and R is the number of record components,
and space complexity O(vR?), making PAD a much more efficient algorithm
as well. The OCSVM system needs a fair amount of improvement before it is
competetive with PAD. However, understanding the reasons for PAD’s higher
classification accuracy will lead to an improvement of the OCSVM learning algo-
rithm and will expedite the future development of anomaly detectors using the
SVM framework. Since there is currently no effective way to learn a most optimal
kernel for a given dataset, we must rely on our domain knowledge in order to
develop a kernel that leads to a highly accurate anomaly detection system. PAD
only requires an estimate of the possible range of values of each feature sampled
from the data stream. By analyzing algorithms such as PAD which currently
discriminate well, we can identify information which is important to capture in
our data representation and is crucial for the development of a more optimal
kernel for the SVM framework.
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Program Name |[Number of Records|Maximum Record Value/Minimum Record Value|Classification
LOADWC.EXE[2] 1 8.497072 8.497072 ATTACK
ipccrack.exe[6] 1 8.497072 8.497072 ATTACK
mstinit.exe[2] 11 7.253687 6.705313 ATTACK
bo2kss.exe[2] 12 7.253687 6.62527 ATTACK
runonce.exe(2] 8 7.253384 6.992995 ATTACK
browselist.exe[4] 32 6.807137 5.693712 ATTACK
install.exe[3] 18 6.519455 6.24578 ATTACK
SetupTrojan.exe[8] 30 6.444089 5.756232 ATTACK
AimRecover.exe[1] 61 6.444089 5.063085 ATTACK
happy99.exe[5] 29 5.918383 5.789022 ATTACK
bo2k_1_0_intl.e[2] 78 5.432488 4.820771 ATTACK
_INS0432._MP|[2] 443 5.284697 3.094395 ATTACK
xtep.exe[3] 240 5.265434 3.705422 ATTACK
bo2kefg.exe[2] 289 4.879232 3.520338 ATTACK
10phtcrack.exe[7] 100 4.688737 4.575099 ATTACK
Patch.exe[2] 174 4.661701 4.025433 ATTACK
bo2k.exe[2] 883 4.386504 2.405762 ATTACK
systray.exe 17 7.253687 6.299848 NORMAL
CSRSS.EXE 63 7.253687 5.031336 NORMAL
SPOOLSS.EXE 72 7.070537 5.133161 NORMAL
ttssh.exe 12 6.62527 6.62527 NORMAL
winmine.exe 21 6.56054 6.099177 NORMAL
em_exec.exe 29 6.337396 5.789022 NORMAL
winampa.exe 547 6.11399 2.883944 NORMAL
PINBALL.EXE 240 5.898464 3.705422 NORMAL
LSASS.EXE 2299 5.432488 1.449555 NORMAL
PING.EXE 50 5.345477 5.258394 NORMAL
EXCEL.EXE 1782 5.284697 1.704167 NORMAL
WINLOGON.EXE 399 5.191326 3.198755 NORMAL
rundll32.exe 142 5.057795 4.227375 NORMAL
explore.exe 108 4.960194 4.498871 NORMAL
netscape.exe 11252 4.828566 -0.138171 NORMAL
java.exe 42 4.828566 3.774119 NORMAL
aim.exe 1702 4.828566 1.750073 NORMAL
findfast.exe 176 4.679733 4.01407 NORMAL
TASKMGR.EXE 99 4.650997 4.585049 NORMAL
MSACCESS.EXE 2825 4.629494 1.243602 NORMAL
IEXPLORE.EXE 194274 4.628190 -3.419214 NORMAL
NTVDM.EXE 271 4.59155 3.584417 NORMAL
CMD.EXE 116 4.579538 4.428045 NORMAL
WINWORD.EXE 1541 4.457119 1.7081 NORMAL
EXPLORER.EXE 53894 4.31774 -1.704574 NORMAL
msmsgs.exe 7016 4.177509 0.334128 NORMAL
OSA9.EXE 705 4.163361 2.584921 NORMAL
MYCOME 1.EXE 1193 4.035649 2.105155 NORMAL
wscript.exe 527 3.883216 2.921123 NORMAL
WINZIP32.EXE 3043 3.883216 0.593845 NORMAL
notepad.exe 2673 3.883216 1.264339 NORMAL
POWERPNT.EXE 617 3.501078 -0.145078 NORMAL
AcroRd32.exe 1598 3.412895 0.393729 NORMAL
MDM.EXE 1825 3.231236 1.680336 NORMAL
ttermpro.exe 1639 2.899837 1.787768 NORMAL
SERVICES.EXE 1070 2.576196 2.213871 NORMAL
REGMON.EXE 259 2.556836 1.205416 NORMAL
RPCSS.EXE 4349 2.250997 0.812288 NORMAL

Table 2. Information about all processes in testing data for the PAD algorithm includ-
ing the number of Registry accesses and the maximum and minimum score for each
record as well as the classification. The top part of the table shows this information for
all of the attack processes and the bottom part of the table shows this information for
the normal processes. The reference number (by the attack processes) give the source
for the attack. Processes that have the same reference number are part of the same
attack. [1] AIMCrack. [2] Back Orifice. [3] Backdoor.xtcp. [4] Browse List. [5] Happy
99. [6] IPCrack. [7] LOpht Crack. [8] Setup Trojan.




Threshold Score|False Positive Rate (%) |Detection Rate (%)
6.847393 0.1192 0.5870
6.165698 0.2826 2.7215
5.971925 0.3159 3.0416
5.432488 0.4294 6.4034
4.828566 0.5613 9.9253
4.565011 0.6506 17.7161
3.812506 0.9343 28.8687
3.774119 0.9738 31.4301
3.502904 1.1392 53.3084
3.231236 1.2790 53.5219
3.158004 1.4740 57.7908
2.915094 1.9998 57.8442
2.899837 2.0087 62.7001
2.753176 3.3658 62.9136
2.584921 3.4744 80.8431
2.531572 3.8042 86.9797
2.384402 5.0454 100.0000

Table 3. Varying the threshold score for the PAD algorithm and its effect on False
Positive Rate and Detection Rate.

Threshold Score|False Positive Rate (%) |Detection Rate (%)
-1.08307 0.790142 0.373533
-1.08233 0.828005 0.480256
-1.07139 1.54441 0.533618
-0.968913 1.65734 1.17396
-0.798767 3.58736 3.89541
-0.79858 3.63784 5.60299
-0.798347 3.68999 6.77695
-0.767411 3.72054 6.83031
-0.746663 4.35691 7.47065
-0.746616 4.63025 8.00427
-0.71255 8.34283 20.9712
-0.712503 8.75201 22.0918

Table 4. The effects of varying the threshold for the OCSVM algorithm on False
Positive Rate and Detection Rate.



Program Name

Classification

Number of Records

Minimum Record Value

Maximum Record Value

REGMON.EXE NORMAL 259 -0.794953 -0.280406
SPOOLSS.EXE NORMAL 72 -1.152717 -0.021361
CloseKey NORMAL 429 -1.082720 -0.374784
OpenKey NORMAL 502 -0.959895 -0.365539
QueryValue NORMAL 594 -1.082909 -0.374972
EnumerateValue NORMAL 28 -0.570206 -0.284935
DeleteValueKey NORMAL 3 -1.078758 -0.370822
AimRecover.exe NORMAL 61 -1.082720 -0.374784
aim.exe NORMAL 1702 -1.064796 -0.356860
ttssh.exe NORMAL 12 -0.969706 -0.375161
ttermpro.exe NORMAL 1639 -1.083098 -0.285123
NTVDM.EXE NORMAL 271 -0.798204 -0.410065
notepad.exe NORMAL 2673 -1.083098 -0.285123
CMD.EXE NORMAL 116 -1.139322 -0.375161
TASKMGR.EXE NORMAL 99 -0.570017 -0.284935
_INS0432._MP NORMAL 443 -1.423272 -1.423272
WINLOGON.EXE| NORMAL 399 -1.423272 -1.423272
systray.exe NORMAL 17 -1.423272 -1.423272
em_exec.exe NORMAL 29 -1.423272 -1.423272
OSA9.EXE NORMAL 705 -1.083098 -0.375161
findfast.exe NORMAL 176 -1.083098 -0.375161
WINWORD.EXE NORMAL 1541 -1.083098 -0.375161
winmine.exe NORMAL 21 -0.429351 -0.429351
POWERPNT.EXE| NORMAL 617 -1.083098 -0.285123
PING.EXE NORMAL 50 -1.083098 -0.375161
QueryKey NORMAL 11 -0.712317 -0.375161
wscript.exe NORMAL 527 -1.083098 -0.375161
AcroRd32.exe NORMAL 1598 -1.083098 -0.375161
0” NORMAL 404 -1.083098 -0.375161
WINZIP32.EXE NORMAL 3043 -1.083098 -0.375161
explore.exe NORMAL 108 -1.083098 -0.375161
EXCEL.EXE NORMAL 1782 -1.083098 -0.375161
bo2kss.exe[2] ATTACK 12 -0.712317 -0.375161
bo2k_1_0_intl.e[2] ATTACK 78 -1.083098 -0.375161
browselist.exe[4] ATTACK 32 -0.798770 -0.411763
bo2kcfg.exe[2] ATTACK 289 -1.423272 -1.423272
bo2k.exe([2] ATTACK 883 -1.423272 -1.091776
mstinit.exe[2] ATTACK 11 -1.423272 -1.423272
runonce.exe(2] ATTACK 8 -1.423272 -1.423272
Patch.exe[2] ATTACK 174 -1.083098 -0.375161
install.exe[3] ATTACK 18 -1.083098 -0.375161
xtep.exe[3] ATTACK 240 -1.083098 -0.285123
10phtcrack.exe[7] ATTACK 100 -0.798581 -0.285123
LOADWC.EXE[2] ATTACK 1 -1.423272 -1.423272
happy99.exe[5] ATTACK 29 -0.570017 -0.411575

Table 5. Information about test records using the OCSVM algorithm with a linear
kernel and binary feature vectors. The maximum and minimum discriminants are given
for each process, as well as the assigned classification label. Listed next to the attack
processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3] Backdoor.xtcp. [4]
Browse List. [5] Happy 99. [6] IPCrack. [7] LOpht Crack. [8] Setup Trojan.




Program Name

Classification

Number of Records

Minimum Record Value

Maximum Record Value

REGMON.EXE NORMAL 259 -4.062785 -1.524777
SPOOLSS.EXE NORMAL 72 -5.422540 -0.272565
CloseKey NORMAL 429 -5.210662 -1.788163
OpenKey NORMAL 502 -4.828603 -1.758730
QueryValue NORMAL 594 -5.211228 -1.789106
EnumerateValue NORMAL 28 -3.311164 -1.542890
DeleteValueKey NORMAL 3 -5.1955757 -1.766465
AimRecover.exe NORMAL 61 -5.210285 -1.792879
aim.exe NORMAL 1702 -5.148589 -1.703827
ttssh.exe NORMAL 12 -4.860299 -1.794766
ttermpro.exe NORMAL 1639 -5.211794 -1.543456
NTVDM.EXE NORMAL 271 -4.234352 -1.794766
notepad.exe NORMAL 2673 -5.211794 -1.543456
CMD.EXE NORMAL 116 -5.388013 -1.794766
TASKMGR.EXE NORMAL 99 -3.309843 -1.543456
_INS0432._MP NORMAL 443 -6.239865 -6.239865
WINLOGON.EXE| NORMAL 399 -6.239865 -6.239865
systray.exe NORMAL 17 -6.239865 -6.239865
em-_exec.exe NORMAL 29 -6.239865 -6.239865
OSA9.EXE NORMAL 705 -5.211794 -1.789672
findfast.exe NORMAL 176 -5.211794 -1.794766
WINWORD.EXE NORMAL 1541 -5.211794 -1.789672
winmine.exe NORMAL 21 -1.794766 -1.794766
POWERPNT.EXE| NORMAL 617 -5.211794 -1.543456
PING.EXE NORMAL 50 -5.211794 -1.789672
QueryKey NORMAL 11 -4.022096 -1.789672
wscript.exe NORMAL 527 -5.211794 -1.789672
AcroRd32.exe NORMAL 1598 -5.211794 -1.794766
0” NORMAL 404 -5.211794 -1.789672
WINZIP32.EXE NORMAL 3043 -5.211794 -1.789672
explore.exe NORMAL 108 -5.211794 -1.789672
EXCEL.EXE NORMAL 1782 -5.211794 -1.789672
bo2kss.exe[2] ATTACK 12 -4.022096 -1.789672
bo2k_1_0_intl.e[2] ATTACK 78 -5.211794 -1.789672
browselist.exe[4] ATTACK 32 -4.087124 -1.789672
bo2kcfg.exe[2] ATTACK 289 -6.239865 -6.239865
bo2k.exe[2] ATTACK 883 -6.239865 -5.245378
mstinit.exe[2] ATTACK 11 -6.239865 -6.239865
runonce.exe[2] ATTACK 8 -6.239865 -6.239865
Patch.exe[2] ATTACK 174 -5.211794 -1.789672
install.exe[2] ATTACK 18 -5.211794 -1.794766
xtcp.exe[3)] ATTACK 240 -5.211794 -1.543456
10phtcrack.exe[7] ATTACK 100 -4.194165 -1.543456
LOADWC.EXE[2] ATTACK 1 -6.239865 -6.239865
happy99.exe[5] ATTACK 29 -3.309843 -1.794766

Table 6. Information about test records using the OCSVM algorithm with a second
order polynomial kernel and binary feature vectors. The maximum and minimum dis-
criminants are given, as well as the assigned classification label. Listed next to the
attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3] Backdoor.xtcp.
[4] Browse List. [5] Happy 99. [6] IPCrack. [7] LOpht Crack. [8] Setup Trojan.




