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ABSTRACT 

The collective anomaly denotes a collection of nearby locations 

that are anomalous during a few consecutive time intervals in 

terms of phenomena collectively witnessed by multiple datasets. 

The collective anomalies suggest there are underlying problems 

that may not be identified based on a single data source or in a 

single location. It also associates individual locations and time 

intervals, formulating a panoramic view of an event. To detect a 

collective anomaly is very challenging, however, as different data-

sets have different densities, distributions, and scales. Additional-

ly, to find the spatio-temporal scope of a collective anomaly is 

time consuming as there are many ways to combine regions and 

time slots. Our method consists of three components: Multiple-

Source Latent-Topic (MSLT) model, Spatio-Temporal Likelihood 

Ratio Test (ST_LRT) model, and a candidate generation algorithm. 

MSLT combines multiple datasets to infer the latent functions of a 

geographic region in the framework of a topic model. In turn, a 

region’s latent functions help estimate the underlying distribution 

of a sparse dataset generated in the region. ST_LRT learns a 

proper underlying distribution for different datasets, and calcula-

tes an anomalous degree for each dataset based on a likelihood 

ratio test (LRT). It then aggregates the anomalous degrees of 

different datasets, using a skyline detection algorithm. We 

evaluate our method using five datasets related to New York City 

(NYC): 311 complaints, taxicab data, bike rental data, points of 

interest, and road network data, finding the anomalies that cannot 

be identified (or earlier than those detected) by a single dataset. 

Results show the advantages beyond six baseline methods.  
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H.2.8 [Database Management]: Database Applications - data 
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1. INTRODUCTION 
Advances in sensing technologies and large scale computing infr-

astructures have generated a diverse array of data on cities, such 

as traffic flow, human mobility and social media. These datasets 

are usually associated with spatio-temporal information and can 

be individually sparse. When deposited together, however, they 

may represent urban dynamics and rhythms collectively [18].  

In this paper, we detect the collective anomalies in a city 

instantaneously by using multiple spatio-temporal datasets across 

different domains. Here, ‘collective’ has two types of meanings. 

One denotes the spatio-temporal collectiveness. That is, a collec-

tion of nearby locations is anomalous during a few consecutive 

time intervals, while a single location in the collection may not be 

anomalous at a single time interval if being checked individually. 

The other is that an anomaly might not be that anomalous in terms 

of a single dataset but considered an anomaly when checking 

multiple datasets simultaneously. Such collective anomalies could 

denote an early stage of an epidemic disease, the beginning of a 

natural disaster, an underlying problem, or a potentially catastr-

ophic accident. The follows are two examples.  

Example 1: As illustrated in Figure 1, an unusual event has just 

happened at location 𝑟1, affecting its surrounding locations, e.g. 

from 𝑟2  to 𝑟6 . As a result, the traffic flow entering 𝑟1  from its 

surrounding locations increases 10 percent. Meanwhile, social 

media posts and bike rental flow around these locations change 

slightly. The deviation in each single dataset against its common 

pattern is not significant enough to be considered anomalous. 

However, when putting them together, we might be able to 

identify the anomaly, as the three datasets barely change simultan-

eously to that extent. In addition, locations from 𝑟1 to 𝑟6 formulate 

a collective anomaly in a few consecutive time intervals, e.g. from 

2 to 4 pm. If we check location 𝑟2 individually at 2pm, it might 

not be considered an anomaly. 

 

Figure 1. A collective anomaly witnessed by three sources  

Example 2: The groundwater under a village is being polluted. As 

a result, reports of sickness in the village increase slightly. The 

occurrences of birds flying over the village drop a bit, and the 

food production yield around the village is reduced by 10 percent. 

The change in each individual dataset is quite normal. If we check 

the three or more datasets together, however, we may find that 

this is very unusual. Like the first example, the anomaly exists in 

a certain spatial range covering the village and a time span, e.g. in 

the last half year. Being able to detect such anomalies is of great 

importance to social good and people’s daily lives. 

The main benefits of our research are two-fold. First, we can 

detect anomalies that cannot be identified using a single dataset. 

Intrinsically, a single dataset only describes an event (or a region) 

from one point of view. Particularly when the dataset is very 

sparse, which is very common in reality, the detection of anom-

alies with a single set becomes very difficult. Combining multiple 

(sparse) datasets can mutually reinforce each other, helping detect 

anomalies better and earlier. Second, such a collective anomaly 

offers a spatio-temporal scope that can pinpoint the underlying 

problem in time and formulate a panoramic view of an event. 
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To detect collective anomalies from cross-domain datasets is very 

challenging for three reasons. First, as some data sets are very 

sparse, it is difficult to estimate their true distributions based on 

limited observations. As a consequence, it is hard to measure the 

deviation of an instance from its normal distribution. Second, 

datasets of different domains have different distributions and 

scales. To integrate them together into a collective measurement 

remains a challenge. Third, as there are many ways to combine 

regions and time slots, finding the spatio-temporal scope of a 

collective anomaly is very time consuming. This conflicts with the 

instant detection of anomalies.  

To address these issues, we propose a probability-based anomaly 

detection method, which consists of three main components: a 

Multiple-Source Latent-Topic (MSLT) model, a Spatio-Temporal 

Likelihood Ratio Test (ST_LRT) model, and a candidate genera-
tion algorithm. The contributions of our work are as follows: 

 The MSLT model combines multiple datasets in a topic mod-

el to better estimate the underlying distribution of a sparse 

dataset, leading to more accurate anomaly detection.  

 The ST_LRT model aggregates the information of multiple 

datasets across multiple regions to detect anomalies, by adap-

ting Likelihood Ratio Test to a spatio-temporal setting. 

 We propose an efficient algorithm to find the anomaly candi-

dates that satisfy spatio-temporal constraints.  

 We evaluate our method using five datasets from NYC. We 

find the anomalies that cannot be identified if only using a 

single dataset. We can detect anomalies earlier than other 

methods only checking a single dataset. The datasets have 

been released at http://research.microsoft.com/apps/pubs/?id=255670.  

2. OVERVIEW 
Definition 1. Region: There are many definitions of location in 

terms of different granularities and semantic meanings. In this 

study, we partition a city into regions  𝒓 = {𝑟1, 𝑟2 , … , 𝑟𝑚 } by 

major roads, such as highways and arterial roads, using a map 

segmentation method [13]. Consequently, each region is bound by 

major roads, carrying a semantic meaning of neighborhoods or 

communities, as illustrated in Figure 2. We then use regions as the 

minimal unit of location in the following study, though a region 

can be a uniform grid in other applications.   

 
Figure 2. Map segmentation and regions 

Definition 2. Dataset: A dataset 𝑠 is a stream of instances, each of 

which can be simplified as a triplet < 𝑙,  𝑡,  𝑣 > , where 𝑙  is a 

geographic coordinate; 𝑡  is a timestamp; 𝑣 ∈ 𝑠. 𝐶 =< 𝑐1,𝑐2 ,…, 

𝑐𝑛 > is a categorical value, e.g. the level of traffic conditions. 

Problem Definition: Given multiple datasets 𝑺 = {𝑠1,𝑠2 , …} 

during the recent 𝑡 time intervals [𝑡1, 𝑡𝑡] and that over a period of 

historical time, we project 𝑺 onto regions 𝒓, formulating a spatio-

temporal set 𝓣 = {< 𝑟1, 𝑡1 > , < 𝑟2,𝑡1 > ,…,< 𝑟𝑚,𝑡1 >, < 𝑟1,𝑡2 >
, < 𝑟2,𝑡2 >…,< 𝑟𝑚,𝑡2 >,…, < 𝑟𝑚, 𝑡𝑡 >}. An entry < 𝑟, 𝑡 > in 𝓣 is 

associated with a vector,  𝒗 =< 𝑠1. |𝑐1|, 𝑠1. |𝑐2|,…,𝑠1. |𝑐𝑛|, 𝑠2. |𝑐′1| 
, 𝑠2. |𝑐′2|, … , 𝑠𝑛. |𝑐′′1|, 𝑠𝑛. |𝑐′′2|, … > , denoting the number of 

instances in each category of each dataset in region 𝑟  at time 

interval 𝑡 . We instantly detect a set of anomalies 𝒜 = {𝒯1, 𝒯2, ,  
… , 𝒯𝑚} each 𝒯𝑚 is a collection of spatio-temporal entries from 𝓣, 

satisfying the following three criteria:  

1) ∀𝑟𝑖 , 𝑟𝑗 ∈ 𝒯𝑚,  𝑑𝑖𝑠𝑡(𝑟𝑖 , 𝑟𝑗) ≤ 𝛿𝑑, 

2) ∀𝑡𝑖 , 𝑡𝑗 ∈ 𝒯𝑚,  |𝑡𝑖 − 𝑡𝑗| ≤ 𝛿𝑡,  

3) 𝑆𝑇_𝐿𝑅𝑇(𝒯𝑚)== true. 

Figure 3 presents an example illustrating the problem definition. 

Marked by red lines in the left part of Figure 3, three collective 

anomalies (𝑎1, 𝑎2 and 𝑎3) are detected based on two data sources 

𝑠1and 𝑠2 (denoted by circles and squares respectively) from four 

consecutive time intervals [𝑡1, 𝑡4]. To simplify the illustration, we 

assume each region is a cell in a uniform grid. The instance in 𝑠1 

pertains to two categories: 𝑐1and 𝑐2 (denoted by different colors); 

so does 𝑠2  (i.e. 𝑐′1 and 𝑐′2 ). By projecting 𝑠1 and 𝑠2  onto these 

regions, we can count the vector 𝒗 associated with each entry, e.g. 

the 𝒗  of < 𝑟5, 𝑡2 > is <0, 1, 0, 2>. Anomaly 𝑎1  contains three 

regions across two time intervals from 𝑡3 to 𝑡4  (i.e. 6 entries in 

total), while 𝑎2  is comprised of three entries: <𝑟5, 𝑡2>, <𝑟4, 𝑡3 > 

and <𝑟5, 𝑡3>. If we check 𝑠1 and 𝑠2 individually, <𝑟5, 𝑡2> only has 

one more instance occurring in each dataset, as compared to 

<𝑟5, 𝑡1>.  But, if checking 𝑠1 and 𝑠2  together, we find it is rare to 

see the two datasets increasing simultaneously. So, <𝑟5, 𝑡2> can be 

considered anomalous. In addition, if we check <𝑟5, 𝑡3> separ-

ately, it may not be considered anomalous either. However, when 

combing with <𝑟4, 𝑡3 > and <𝑟5, 𝑡2 >, we find that the overall 

presence of 𝑠1and 𝑠2  in the three entries increases significantly. 

Thus, they may be regarded as an anomaly collectively. When 

checking the combination of entries in 𝓣 , we require that the 

geographic distance between any two entries in the same anomaly 

should be smaller than a threshold 𝛿𝑑 (i.e. the first criterion). In 

addition, the time interval between any two entries in an anomaly 

should be smaller than another threshold 𝛿𝑡  (i.e. the second 

criterion). The two requirements ensure the spatio-temporal comp-

actness of a detected anomaly, while aggregating individual regi-
ons and time intervals that could describe the same anomaly.     

 
Figure 3. Illustration of the problem definition 

Framework: Algorithm 1 presents the procedure of our method, 

where Lines 1-4 are done in an offline process, while Line 5 is 

online. The MSLT model combines multiple datasets to infer the 

latent functions of a geographic region (Line 1), through a mutual-

ly reinforced learning process in the framework of a topic model. 

A region’s latent functions help, in turn, estimate the underlying 

distribution of a sparse dataset generated in the region (see Line 

3), leading to a more accurate anomaly detection. The ST_LRT 

model first learns an underlying distribution of different datasets. 

Particularly, it leverages the Zero-Inflated Poisson (ZIP) Model 

and the topic-word distribution (i.e. 𝝋, 𝜽 inferred by MSLT) to 

learn the underlying distribution for a sparse dataset. Second, The 

ST_LRT calculates an anomalous degree for each dataset by perf-

orming a likelihood ratio test across different regions and time 

intervals. Third, The ST_LRT aggregates the anomaly degrees of 

different datasets, using a skyline detection algorithm. Algorithm 

3 in Section 4 details the procedure of the ST_LRT. The candidate 
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generation algorithm (Line 4) employs computational geometry to 

check the spatial constraint between regions. In addition, it finds 

an upper bound likelihood ratio for the combination of <region, 

time> entries, pruning impossible combinations based on the 

skylines that have been detected. 

Algorithm 1: Collective_Anomaly_Detection 

Input: Datasets 𝑺, a collection of spatio-temporal entries 𝓣, threshold 

𝛿𝑑 and 𝛿𝑡, a list of skyline outlier degrees 𝑆𝐿𝐴 detected over a 
period of historical time 

Output: A set of collective anomalies 𝒜. 

1.  (𝝋, 𝜽) ⟵MSLT(𝑺, 𝓣);   //refer to Section 3 

2.  For each 𝑠 ∈ 𝑺 do 

3.         𝑠. 𝐷𝑖𝑠𝑡 ⟵ Learn_Distributions(𝑠, 𝝋, 𝜽);  //refer to Algorithm 2 

4.  𝓣′ ⟵Circel_Based_Spatial_Check(𝓣, 𝛿𝑑);  // refer to Section 5 

5.  𝒜 ⟵ST_LRT(𝓣′, 𝑺, 𝑆𝐿𝐴);    //refer to Algorithm 3 

6. Return 𝒜; 

3. Multiple-Source Latent-Topic Model 

3.1 Insight 
To determine if an instance is anomalous in a dataset, we usually 

need to measure how far the instance deviates from its underlying 

distribution. This calls for an estimation of the underlying distrib-

ution of a given dataset, which is very difficult when the dataset is 

sparse. For example, the occurrence of a specific disease in a reg-

ion may only occur once per several days. If we concatenate the 

occurrences into a series with zero values denoting the absences, 

i.e. <0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2,…>, the mean and variance of the 

series are very close to zero. At this moment, if using a distance-

based anomaly detection method, every non-zero entry in the 

series will be regarded as an anomaly, because its distance to the 

mean value (almost 0) is three times larger than the standard 

deviation (which is also close to 0). 

To address this issue, in the MSLT model, we combine multiple 

datasets to better estimate the distribution of a sparse dataset in a 

region. First, different datasets in a region can mutually reinforce 

each other. Different datasets generated in the same region desc-

ribe the region from different perspectives. For example, POIs and 

road network data describe the land use of a region, while taxi and 

bike flows indicate people’s mobility patterns in the region. Thus, 

combining individual datasets results in a better understanding of 

a region’s latent functions. Bridged by a region’s latent functions, 

there is an underlying connection and influence among these 

datasets. For instance, the land use of a region would somehow 

determine the traffic flow in the region, while the traffic patterns 

of a region may indicate the land uses of the region. After 

working together to better describe a region’s latent functions, 

different datasets in the region can mutually reinforce each other, 

thereby helping to better estimate their own distributions. Second, 

a dataset can reference across different regions. For instance, two 

regions (𝑟1, 𝑟2) with a similar distribution of POIs and a similar 

structure of roads could have a similar traffic pattern. So, even if 

we cannot collect enough traffic data in 𝑟1, we could estimate its 

distribution based on the traffic data from 𝑟2. 

3.2 Graphic Presentation of MSLT 
Motivated by the insight, we design a latent-topic model to fuse 

multiple datasets, as shown in Figure 4 A). In this model, we 

regard a geographical region as a document; the latent functions 

of a region correspond to the latent topics of a document; the 

categories of different datasets are regarded as words; the POIs 

and road network data in a region are deemed the key words of a 

document. A simple understanding of the MSLT model is that a 

region is represented by a distribution of latent functions, and a 

latent function is further represented by a distribution of words. In 

later presentation, the word ‘topic’ equals ‘function’, and ‘region’ 

is equivalent to ‘document’. 

 

Figure 4. The graphic presentation of the MSLT model 

More specifically, the gray nodes in Figure 4 A) are observations 

and the white nodes are hidden variables. 𝒇 is a vector storing the 

features extracted from the road network and POIs located in a 

region. The features include the number of POIs in different cate-

gories (e.g. 5 restaurants, 1 cinema, and 1 shopping mall), the total 

length of roads, and the number of road segments at different 

levels, etc. 𝜼 ∈ ℝ𝑘×|𝒇| is a matrix with each row 𝜼𝑡 corresponding 

to a latent topic; 𝑘 denotes the number of topics and |𝒇| means the 

number of elements in 𝒇. The value of each entry in 𝜼 follows a 

Gaussian distribution with a mean 𝜇 and a standard deviation 𝜎. 

𝜶 ∈ ℝ𝑘  is a parameter of the Dirichlet prior on the per-region 

topic distributions. 𝜽 ∈ ℝ𝑘  is the topic distribution for region 𝑑. 

𝓦 = {𝑾1, 𝑾2, … , 𝑾|𝑺|} is a collection of word sets, where 𝑾𝑖 is 

a word set corresponding to dataset 𝑠𝑖 and |𝑺| denotes the number 

of datasets involved in the MSLT. 𝜷 ∈ ℝ|𝑾𝒊| is the parameter of 

the Dirichlet prior on the per-topic word distributions of 𝑾𝒊. A 

word 𝑤 in 𝑾𝑖 is one of the categories which 𝑠𝑖’s instances pertain 

to, e.g. 𝑾1 = {𝑐1, 𝑐2, … , 𝑐𝑚}. As illustrated in Figure 4 B), diff-

erent datasets share the same distribution of topics controlled by 

𝜽𝑑, but having its own topic-word distributions 𝝋𝑖, 1 ≤ 𝑖 ≤ |𝑺|, 
indicated by arrows with different colors. 𝝋𝑖𝑧 is a vector denoting 

the word distribution of topic 𝑧 in word set 𝑾𝑖 . The generative 

process of the MSLT model is: 

1. For each topic 𝑡, draw 𝜼𝑡~𝒩(0, 𝜎2𝐼) 

2. For each word-set 𝑾𝑖 and each topic 𝑡, draw 𝝋𝑖𝑡~𝒟𝑖𝑟(𝜷) 

3. For each document 𝑑 (i.e. a region) 

a. For each topic 𝑡, let 𝛼𝑑𝑡 = 𝑒𝑥𝑝(𝒇𝑑
𝑇𝜼𝑡) 

b. Draw 𝜽𝑑~𝒟𝑖𝑟𝑖𝑐ℎ𝑖𝑙𝑒𝑡(𝜶𝑑) 

c. For each word 𝑤 in document 𝑑  

i. Draw 𝑧~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜽𝑑); 
ii. Choose 𝝋𝑖 of the corresponding word set 

that 𝑤 belongs to; 

iii. Draw 𝑤~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑧,  𝝋𝑖𝑧)  

Different from Latent Dirichlet Allocation and its variant DMR 

[7][14], the words of MSLT come from different datasets. Thus, 

there are multiple topic-word distributions 𝝋𝑖. In addition, the Di-

richlet prior 𝜶𝑑 of a region also depends on its geographical pro-

perties, such as POIs and road networks, rather than an empirical 

setting. The MSLT model can be re-trained every a few months, as 

a region’s latent functions do not change quickly over time. The 

topic distribution 𝜽𝑑 of a region and the topic-word distribution 

𝝋𝑖 of a dataset 𝑠𝑖 are used in the ST_LRT model to calculate the 
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underlying distribution of each category in 𝑠𝑖, if 𝑠𝑖 is very sparse. 

Section 6.1.2 gives a detailed configuration of the MSLT model.  

3.3 Learning Process 
While 𝜎2, 𝜷 and 𝑘 are fixed parameters, we need to learn  𝜼 and 

𝝋 based on observed 𝒇 and 𝓦. We train the model with a stoch-

astic EM algorithm, in which we alternate between the following 

two steps. One is sampling topic assignments from the current 

prior distribution conditioned on the observed words and features. 

The other is numerically optimizing the parameters 𝜼 given the 

topic assignments.  

The estimation step: This step allocates the topics to words by 

using Gibbs sampling with the following equation: 

          𝑝(𝑧𝑖 = 𝑡|𝒘, 𝒛−𝒊, 𝜶, 𝛽) =
𝛼𝑑𝑡+𝐶𝑡

−𝑖

Σ𝑡(𝛼𝑑𝑡+𝐶𝑡
−𝑖)

𝛽+𝐶𝑡,𝑤𝑖,𝑗
−𝑖

Σ𝑤∈𝕎(𝛽+𝐶𝑡,𝑤,𝑗
−𝑖 )

,          (1) 

Equation 1 denotes the probability that topic 𝑡 is assigned to word 

𝑤𝑖 (𝑤𝑖 ∈ 𝒘), which is the 𝑖-th word in document 𝑑; 𝛼𝑑𝑡 is the 𝑡-th 

dimension of Dirichlet prior of region 𝑑; 𝕎 is the word-set that 

word 𝑤𝑖  belongs to; 𝐶𝑡,𝑤,𝑗  is the times that topic 𝑡  has been 

assigned to word 𝑤 in the 𝑗-th word-set; 𝐶𝑡 is the times that topic 

𝑡  has been assigned to words,  𝐶𝑡 = ∑ ∑ 𝐶𝑡,𝑤,𝑗𝑤𝑗 ; 𝐶𝑡
−𝑖  calculates 

the times that topic 𝑡 has been assigned to words excluding 𝑤𝑖 ; 

𝒛−𝒊 stands for the excluded topics that have been assigned to 𝑤𝑖.  

The numerical optimization step: Integrating over the multinomial 

𝜽, we can construct the complete log likelihood for the portion of 

the model involving the topics 𝒛: 

         𝑃(𝑧, 𝜼) = ∏ (
Γ(Σ𝑡 exp(𝒇𝑑

𝑇𝜼𝑡))

Γ(Σ𝑡 exp(𝒇𝑑
𝑇𝜼𝑡)+𝑛𝑑)

∏
Γ(exp(𝒇𝑑

𝑇𝜼𝑡)+𝑛𝑡|𝑑)

Γ(exp(𝒇𝑑
𝑇𝜼𝑡))

)𝑡𝑑 ×

                              ∏
1

√2𝜋𝜎2
exp (−

𝜂𝑡𝑝
2

2𝜎2)𝑡,𝑝  ;                                    (2) 

where 𝑛𝑑 is the number of words in document 𝑑, 𝑛𝑡|𝑑 is the time 

that topic 𝑡 occurs in document 𝑑. The derivative of the log of 

Equation 2 with respect to the parameter  𝜂𝑡𝑝 for a given topic 𝑡 

and the 𝑝-th feature in 𝒇. 

          
∂ln𝑃(𝑧,𝜼)

∂𝜂𝑡𝑝
= ∑ 𝑓𝑑𝑘 exp(𝒇𝑑

𝑇𝜼𝑡) × (𝜓(∑ exp(𝒇𝑑
𝑇𝜼𝑡)𝑡 ) −𝑑

                        𝜓(∑ exp(𝒇𝑑
𝑇𝜼𝑡) + 𝑛𝑑𝑡 ) + 𝜓(exp(𝒇𝑑

𝑇𝜼𝑡) + 𝑛𝑡|𝑑) −

                        𝜓(exp(𝒇𝑑
𝑇𝜼𝑡))) −

𝜂𝑡𝑝

𝜎2
                                           (3) 

The numerical optimization step is solved by BFGS algorithm, 

which is an iterative method for solving unconstrained nonlinear 

optimization problems. We set 𝜶 to an initial value and perform 

the aforementioned two steps iteratively, until the convergence or 

a certain round of iterations has been conducted.  

4. ST_LRT 
In this section, we first outline the general idea of the likelihood 

ratio test, applying this model to the detection of spatio-temporal 

anomalies with a single dataset. Second, we address the sparsity 

problem in a dataset and aggregate the results of multiple datasets.  

4.1 Likelihood Ratio Test 

4.1.1 Preliminaries of LRT 
In statistics, a likelihood ratio test is used to compare the fit of two 

models, one of which (the null model) is a special case of (or 

‘nested within’) the other (the alternative model). This often occ-

urs when testing whether a simplifying assumption for a model is 

valid, as when two or more model parameters are assumed to be 

related. Each of the two competing models, the null model and the 

alternative model, is separately fitted to the data with the log-

likelihood recorded. The test statistic (often denoted by Λ ) is 

negative twice the difference in these log-likelihoods: 

                  Λ = −2log
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑜𝑟 𝑛𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑜𝑟 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙
;               (4) 

Whether the alternative model fits the data significantly better 

than the null model can be determined by deriving the probability 

or p-value of the obtained difference Λ. In many cases, the proba-

bility distribution of the test statistic Λ can be approximated by a 

chi-square distribution χ2(Λ, 𝑑𝑓) with 𝑑𝑓 = 𝑑𝑓2 − 𝑑𝑓1, where 𝑑𝑓1 

and 𝑑𝑓2 represent the number of free parameters of the null model 

and the alternative model, respectively.  

4.1.2 Applying LRT to a Single Set in one Region 
When applying LRT to a single dataset 𝑠 in a single region 𝑟, i.e. 

{< 𝑟, 𝑡1 >, < 𝑟, 𝑡2 >, … , < 𝑟, 𝑡𝑛 >}, we assume < 𝑟, 𝑡𝑖 > follows 

a certain distribution 𝒫 with parameter 𝛩, e.g. the Poisson distrib-

ution with an arrival rate of 𝜆. Suppose the number of occurrences 

of 𝑠 observed in < 𝑟, 𝑡𝑖 > is 𝑥𝑖, the likelihood ratio is defined as: 

               𝛬(𝑠) = −2log (
𝒫(𝑥𝑖|𝛩)

𝑠𝑢𝑝{𝒫(𝑥𝑖 |𝛩′)}
),                   (5) 

where 𝛩′  is the new parameter changing over 𝛩  that fits the 

observed data best; 𝑠𝑢𝑝 denotes the supremum function that finds 

the 𝛩′ maximizing 𝒫(𝑥𝑖|𝛩′) and returns the latter [12]. The anom-

alous degree 𝑜𝑑 of this test is calculated by Equation 6: 

                                   𝑜𝑑 = χ2_cdf(Λ, 𝑑𝑓);                               (6) 

where χ2_cdf denotes the cumulative density function of the Chi-

Square distribution; 𝑓𝑑 is the freedom defined in Section 4.1.1. 

The time slots, with 𝑜𝑑 larger than a given threshold (i.e. 𝛬 value 

drops in the tail of χ2 distribution), are likely to be anomalous.  

Figure 5 presents two examples. As shown in Figure 5 A), we first 

consider a single region and a single time slot, i.e. < 𝑟, 𝑡 >, with 

an underlying Gaussian distribution whose variance is proportion-

al to the mean (𝑚𝑒𝑎𝑛=200 and 𝑣𝑎𝑟=1300). Suppose the number 

of occurrences of 𝑠  at time slot 𝑡  (i.e. 𝑥𝑡 ) is 70, then the 

anomalous degree of 𝑠 is calculated as follows: 

 
Figure 5. Illustration of applying LRT to a single dataset 

1) Calculate the Likelihood of the null model: 

           𝐿𝑛𝑢𝑙𝑙 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(70|𝑚𝑒𝑎𝑛 = 200, 𝑣𝑎𝑟 = 1300);       (7) 

2) Calculate 𝛩′ : In this case, we can achieve the maximum 

likelihood for the alternative model by setting its mean to 70. 

Since we assume that the distribution’s variance is proportional to 

its mean, we should multiply the variance by 𝑝 =
70

200
= 0.35 . 

Thus, the new parameter 𝛩′ for the alternative model is (𝑚𝑒𝑎𝑛= 

200×0.35=70; 𝑣𝑎𝑟 =1300×0.35=455); 

3) Calculate the Likelihood of the alternative model 

           𝐿𝑎𝑙𝑡𝑒𝑟 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(70|𝑚𝑒𝑎𝑛 = 70, 𝑣𝑎𝑟 = 455);         (8) 

4) Calculate 𝛬(𝑠)  and 𝑜𝑑 : As we assume the invariant linear 

relationship between the variance and mean,  𝑑𝑓 is 1. According 

to Equation 5 and 6, the outlier degree is calculated as follows:  

                          𝛬(𝑠) = −2 log (
𝐿𝑛𝑢𝑙𝑙

𝐿𝑎𝑙𝑡𝑒𝑟
) = 14.05; 

                          𝑜𝑑 = χ2_cdf(14.05, 𝑓𝑑 = 1)=0.999;                      (9) 
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As depicted in Figure 5 B), if we set the threshold of 𝑜𝑑 to 0.95, 

< 𝑟, 𝑡 > is apparently an anomaly. The 𝛬 corresponds to 0.95 in 

the χ2 distribution with 1-freedom is 3.84. So, 𝛬(𝑠)=14.05 > 3.84 

is considered the tail of the χ2 distribution. 

In the second example, as illustrated in Figure 5 C), we consider a 

region 𝑟 across three consecutive time slots: {< 𝑟, 𝑡1 >, < 𝑟, 𝑡2 >
, < 𝑟, 𝑡3 >}. We suppose the underlying distribution is a Poisson 

Distribution but different time slots have a different λ : 𝜆1  =8, 

𝜆2=10, and 𝜆3=6. The number of occurrences of the dataset at the 

three times slots are 14, 14, and 8. 

1) Calculate the likelihood of the null model: 

  𝐿𝑛𝑢𝑙𝑙 = 𝑃𝑜𝑖(14|𝜆1 = 8) × 𝑃𝑜𝑖(14|𝜆2 = 10) × 𝑃𝑜𝑖𝑠(8|𝜆3 = 6);  

2) Calculate 𝛩′ = {𝜆′
1, 𝜆′

2, 𝜆′3}: To maximize the likelihood of 

the alternative model, we multiply λs by (assuming 𝑓𝑑=1): 

                                𝑝 =
14+14+8

8+10+6
= 1.5; 

              𝜆′1 =8×1.5=12, 𝜆′2=10×1.5=15, 𝜆′3=6×1.5=9;         (10) 

3) Calculate the likelihood of the alternative model: 

           𝐿𝑎𝑙𝑡𝑒𝑟 = 𝑃𝑜𝑖(14|𝜆′1) × 𝑃𝑜𝑖(14|𝜆′2) × 𝑃𝑜𝑖𝑠(8|𝜆′3);    (11) 

4) Calculate 𝛬(𝑠) and 𝑜𝑑:  

                           𝛬(𝑠) = −2 log (
𝐿𝑛𝑢𝑙𝑙

𝐿𝑎𝑙𝑡𝑒𝑟
) =5.19; 

                       𝑜𝑑 = χ2_cdf(5.19, 𝑓𝑑 = 1) = 0.978;                    (12) 

According to Figure 5 B), if setting the threshold of 𝑜𝑑 to 0.95, 

the three time slots are regarded as an anomaly.  

4.1.3 Apply to a Single Set in Multiple Regions 
When applying LRT to multiple regions, there are two situations:  

In the first situation, a dataset varies in different regions consist-

ently. For example, when an event happens, the volume of social 

media posted by people may increase simultaneously in the regi-

ons around the place where the event is happening. In this case, 

different regions can share the same new parameter space 𝛩′ , 
therefore having a collective 𝑜𝑑 calculated based on the process 

of the 2nd example mentioned above. If a dataset has multiple 

categories, we calculate a new parameter space for each category 

according to Equation 10, and then calculate a joint likelihood of 

multiple categories in different regions by Equation 11.  

In the second situation, a dataset changes differently in different 

regions. E.g. the inflow of taxicabs in some regions increases 

during an anomaly, while others drop. Thus, we need to calculate 

a different parameter space 𝛩′ for different entries. As a result, 

each < 𝑟, 𝑡 >  has its own 𝑜𝑑  for a dataset. We then aggregate 

these individual 𝑜𝑑s by Equation 13, where 𝑚 is the number of 

𝑜𝑑s. When a dataset contains multiple properties, e.g. inflow and 

outflow of traffic, we calculate the 𝑜𝑑  for each property in <
𝑟, 𝑡 >  individually and then aggregate them by Equation 13. 

                               𝑜𝑑(𝑠) = √
∑ 𝑜𝑑2({<𝑟𝑖 ,𝑡𝑖>})𝑖

𝑚
 ;                         (13) 

Equation 13 aggregates a dataset’s different behavior across diffe-

rent regions and time intervals, making different combinations of 

spatio-temporal entries comparable. 

4.2 Deal with Multiple Datasets 
When applying LRT to multiple datasets, we face two challenges: 

1) different underlying distributions and scales, and 2) the aggre-

gation of anomalous degrees of different datasets. 

4.2.1 Dealing with Different Distributions and Scales 
1) Different distributions. In the field of Stochastic Process, the 

arrival of a time series is usually assumed to follow a Poisson Pro-

cess. So, Poisson distributions are widely used to model under-

lying distributions of spatio-temporal data, e.g. the arrival of a 311 

complaint or a report of disease in a region. For some datasets, 

like the mobility of taxicabs, however, a Poisson distribution is 

not suitable, because they are often over-dispersed, i.e. the varia-

nce of the data is much larger than its mean. To model such data-

sets, we use a Gaussian distribution with its variance proportional 

to its mean. A more sophisticated way of choosing a proper model 

for a given dataset can be done by applying the χ2 test to the data 

over a period of time. After knowing the underlying model, we 

match the occurrences of a dataset against its distribution, turning 

different datasets’ values into a likelihood ratio. 

2) Different scales and densities. Some datasets, such as the mobi-

lity of taxicabs, are relatively dense, while other datasets, like 311 

complaints and disease reports, are very sparse. For example, the 

number of insurance claims within a population for a certain type 

of risk would be zero-inflated by those people who have not taken 

out insurance against the risk and thus are unable to claim. If for-

mulating the data in a time series (with 0 denoting no reports and 

𝑥𝑡 ≠ 0 standing for the number of observed reports), over 90 

percent of entries in the series are zero. The excess zero count 

data brings trouble to identifying the underlying distribution of a 

dataset, further affecting the anomaly detection. In the ST_LRT 

model, we tackle the sparsity problem in a dataset by using two 

strategies: the zero-inflated Poisson model and the topic-word 

distribution inferred by the MSLT model. 

The zero-inflated Poisson (ZIP) model concerns a random event 

containing excess zero-count data in unit time. The ZIP employs 

two components that correspond to two zero generating processes 

[4]. The 1st process is governed by a binary distribution that gen-

erates structural zeros. The 2nd is governed by a Poisson distribu-

tion that generates counts, some of which may be zero.  

                     1)  𝑋 = 0, with a probability 𝑝; 

                     2) 𝑋~Poisson(𝜆), with a probability 1 − 𝑝; 

Thus, the data with excess zeros can be modeled as follows: 

                        𝑋 = 0, with probability 𝑝 + (1 − 𝑝)𝑒−𝜆;            (14) 

                        𝑋 = ℎ, with probability (1 − 𝑝)
𝑒−𝜆𝜆ℎ

ℎ!
;                (15)  

where the outcome variable 𝑋 has any non-negative integer value, 

𝜆 is the expected Poisson count; 𝑝 is the probability of extra zeros. 

Using latent topic-word distribution: An instance of a dataset is 

associated with multiple categories, e.g. different types of compl-

aints or diseases. Though following the same distribution, para-

meters for different categories can be different. Learning para-

meters of distributions for different categories in a sparse dataset 

becomes even more challenging, as we need to further allocate 

sparse observations into different categories, i.e. a sparser pro-

blem in each category. At this moment, the ZIP model cannot 

handle it very well either. To address this issue, for each region, 

we first learn an overall parameter for a dataset, e.g. the total 

arrival rate 𝜆 of all categories of instances, by using the ZIP model 

(suppose it is a Poisson distribution). We then leverage the latent 

topic distribution 𝜽𝑑 and the topic-word distribution 𝝋 in a region 

to calculate the proportion of each word 𝑝𝑟𝑜𝑝(𝑤𝑖)  as follows 

(note that a category is denoted as a word in the MSLT model): 

                          𝑝𝑟𝑜𝑝(𝑤𝑖) = ∑ 𝜃𝑑𝑡𝜑𝑡𝑤𝑖𝑡 ;                        (16) 

where 𝜃𝑑𝑡 is the distribution of topic 𝑡 in region 𝑑, and 𝜑𝑡𝑤 denot-

es the distribution of topic 𝑡  on word 𝑤 . As the MSLT model 

learns 𝜽𝑑 and 𝝋 based on multiple datasets, which mutually rein-

force each other, it is more accurate to estimate 𝑝𝑟𝑜𝑝(𝑤𝑖) by Equ-



ation 16 than based on the count of each category. Later, given the 

overall 𝜆 of a region, 𝜆𝑖 of different categories is calculated as: 

                                   𝜆𝑖 = 𝜆 × 𝑝𝑟𝑜𝑝(𝑤𝑖);                               (17) 

Algorithm 2 gives an implementation that learns the distributions 

of each category of a dataset, concerning the scale of the dataset.  

Algorithm 2: Learn_Distributions 

Input: A data source 𝑠 with 𝑠. 𝐶 =< 𝑐1,𝑐2,…, 𝑐𝑛 >, 𝝋, 𝜽 from MSLT.  

Output: The underlying distributions of each category 𝑠. 𝐷𝑖𝑠𝑡. 

1. If 𝑠 is sparse (i.e. many zero valued entries, 𝜇, 𝜎 close to 0) 

2.        𝜆 ⟵ Zero-Inflated Poisson(𝑠); 

3.        𝑠. 𝐷𝑖𝑠𝑡[𝑖] ⟵ 𝜆 × ∑ 𝜃𝑑𝑡𝜑𝑡𝑐𝑖𝑡 ; 

4.  Else if variance(𝑠) ≫ 𝑚𝑒𝑎𝑛(𝑠) 

5.          𝑠. 𝐷𝑖𝑠𝑡 ⟵ Gaussian(𝜇, 𝜎);  

6.          Else  𝑠. 𝐷𝑖𝑠𝑡 ⟵ Poisson(𝜆). 

7. Return 𝑠. 𝐷𝑖𝑠𝑡;   

4.2.2 Aggregate ods of Multiple Datasets 
We cannot directly apply distance-based methods to multiple 

datasets which may have different distributions, densities and 

scales. To address this issue, we first learn an underlying distri-

bution for a dataset. Then, we calculate the likelihood of the null 

and alternative models, generating an anomalous degree 𝑜𝑑  for 

each dataset according to the method introduced in Section 4.1.2. 

Given 𝑜𝑑s of multiple data sources 𝑺 = {𝑠1,𝑠2, …}, we can repre-

sent an anomaly candidate as a point in a |𝑺|-dimension space. 

Then, we perform a two-step outlier detection as follow: 

Step 1: Using a skyline detection algorithm [1], we can find the 

skyline points that are not dominated by other points. Here, “point 

A dominates point B’ means every dimension of point A has a 

larger 𝑜𝑑 then point B. So, ‘not dominated’ means we cannot find 

any other anomaly candidates that simultaneously have a bigger 

𝑜𝑑 in each dataset than these skyline points. Figure 6 illustrates an 

example of detecting anomalies using three datasets (i.e. in a three 

dimension space), where the red solid dots denote skyline points. 

Since different datasets have different meanings and scales, the 

skyline algorithm integrates different datasets properly without 

losing information from each dataset. The skyline-based method 

captures not only the anomalies in which only one dataset has 

changed tremendously but also the anomalies where a few 

datasets changed for a certain degree but not that tremendously.  

 

Figure 6. Aggregate multiple ods by skyline algorithms 

Setp 2: Since we will always find some skyline points from a dete-

ction, we need to further check if these skyline points are truly 

anomalous. A simple solution is to set a threshold for ||𝒐𝒅||𝟐 . 

Another approach is to deposit the skyline points detected (at the 

same time of day) from the data over a long period (e.g. in the 

recent 3 months) in a collection 𝑆𝐿𝐴. Then, we can check if the 

distance between a newly detected skyline point and 𝑆𝐿𝐴’s mean 

is three times larger than 𝑆𝐿𝐴’s variance. If so, the skyline point is 

considered truly anomalous. The Mahalanobis distance, which 

normalizes the effect of variances along different dimensions, can 
be used to measure the extremeness of skyline points.  

The first step checks the spatial neighbors of an anomaly at curr-

ent time intervals, while the second step checks its temporal neig-

hbors in the history. The procedure of ST_LRT is presented in 

Algorithm 3, with a setting introduced in Section 6.1.2. 

5. Anomaly Candidate Generation 
There are many combinations of spatio-temporal entries < 𝑟, 𝑡 > 

that could satisfy the spatial and temporal constraints (𝛿𝑑 and 𝛿𝑡). 

To find the entry combinations is a time-consuming process. In 

addition, the computational cost of ST_LRT is very high. This 

does not allow us to check many combinations in a short period. 

To address this issue, we devise an efficient candidate-generation 

algorithm consisting of two components: 1) A circle-based spatial 

search and 2) a pruning strategy.  

5.1 Checking Spatial Constraint 
The circle-based spatial searching algorithm seeks a collections of 

regions, in each of which any two regions has a distance smaller 

than the spatial constraint 𝛿𝑑. The goal of this algorithm can be 

converted to finding the candidate regions that fall in a circle with 

a diameter of 𝛿𝑑  , e.g. (𝑟1, 𝑟3, 𝑟4) depicted in Figure 7 A). This 

algorithm consists of three major steps:  

Step 1: We start from a region, e.g. 𝑟1, searching for its neighbors 

with a distance to 𝑟1 smaller than 𝛿𝑑, e.g. (𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6) shown 

in Figure 7 A). The distance between two regions is represented 

by the Euclidian distance between the two regions’ centers. This 

step is further expedited by using an R-Tree spatial index, which 

organizes the centers of regions with a tree of bounding boxes. 

 

Figure 7. circle-base spatial-search algorithm 

Step 2:  As demonstrated in Figure 7 B), if the distance between 

two regions are within 𝛿𝑑, the center of the circle covering the two 

regions can be any point on the curve 𝑝1𝑝3. Likewise, as illus-

trated in Figure 7 C), the center of the circle covering three 

regions (𝑟1, 𝑟5, 𝑟6) should lie on the curve 𝑝2𝑝3 . We draw such 

circles between 𝑟1 and its neighbors (returned by Step 1), marking 

the intersection points between any two circles.  

Step 3:  We detect the qualified combination of regions by going 

through the intersection points found in Step 2. As illustrated in 

Figure 7 D), by moving the red broken line from 𝑝1 to 𝑝4, we can 

find three region sets: (𝑟1, 𝑟5),  (𝑟1, 𝑟5, 𝑟6), and  (𝑟1, 𝑟6).  

We repeat the three steps for each region, generating a collection 

of region sets that satisfy the spatial constraint. The collections of 

regions will be used as a basis to generate entry combinations. 

The computational complexity of this algorithm is 𝑂(𝑛2). As the 

spatial coordinates of a region does not change over time, this 

spatial test can be an offline process.  

5.2 Pruning Strategy for Entry Combination 
In the second component, we find the combinations of entries of 

consecutive time slots. For example, (𝑟1, 𝑟5) of two consecutive 

time slots have 15 combinations: {< 𝑟1, 𝑡1 >}, {< 𝑟1, 𝑡1 >, < 𝑟5,  
𝑡1 > , {< 𝑟1, 𝑡1 > , < 𝑟5, 𝑡2 > }, …, { < 𝑟1, 𝑡1 > , < 𝑟5, 𝑡1 >, <
𝑟1, 𝑡2 > }, …,{ < 𝑟1, 𝑡1 > , < 𝑟5, 𝑡1 > , < 𝑟5, 𝑡1 >, < 𝑟1, 𝑡2 > }. We 

can prune the unnecessary combinations based on the following 
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insight: If a set of entries’ upper bound of 𝑜𝑑 is dominated by 

existing skyline combinations, all the combinations of its subsets 

will be dominated by the skyline too. This component is embedded 

in the anomaly detection process.  

We first calculate the upper bound of 𝑜𝑑 for 𝓣 ={< 𝑟1, 𝑡1 >,<
𝑟5, 𝑡1 >,< 𝑟5, 𝑡1 >, < 𝑟1, 𝑡2 >}. An entry’s upper bound of 𝑜𝑑 can 

be computed by assuming the mean (for an underlying Gaussian 

distribution) or the 𝜆 (for an underlying Poisson distribution) is 

the observed value. The upper bound of a dataset in 𝓣 can then be 

calculated based on Equation 11 or 13. By putting together the 

upper bound of 𝑜𝑑  for each dataset, we obtain the final vector 

𝒐𝒅𝑢𝑝 for multiple datasets. If 𝒐𝒅𝑢𝑝 is dominated by any item in 

the skyline, we can prune  𝓣 and do not need to check the combin-

ation of its subsets. If 𝓣’s 𝒐𝒅𝑢𝑝 is not dominated by the skyline, 

we need to calculate the actual 𝑜𝑑 for each dataset and double ch-

eck if it can be inserted into the skyline buffer. In this case, we 

need to check its real 𝑜𝑑 and the three-entry combinations of 𝓣. If 

a three-entry combination is dominated by the existing skyline, we 

can prune it and do not check its subsets, and so on.  

Algorithm 3 details ST_LRT, which involves the pruning strategy 

(Line 18-19). The spatio-temporal constraints have been ensured 

by Line 4 of Algorithm 1. 

Algorithm 3: ST_LRT 

Input: Data sources 𝑺, a collection of spatio-temporal entries 𝓣′, a list 

of skyline outlier degrees 𝑆𝐿𝐴 detected over a period of time 

Output: A set of collective anomalies 𝒜. 

1.  𝑆𝑘𝑦𝐿𝑖𝑛𝑒 ⟵ ∅; 𝒜 ⟵ ∅; 𝒐𝒅 ⟵ ∅; 

2.  While 𝓣′ ≠ ∅ Do 

3.        Select a 𝒯 with the maximum entries from 𝓣′; 
4.        For each 𝑠 ∈ 𝑺  

5.                 If 𝑠 varies in 𝒯 consistently 

6.                         𝑜𝑑(𝑠) ⟵ LRT(𝑠. 𝐷𝑖𝑠𝑡, 𝒯. 𝒗); //refer to Section 4.1.2 

7.                 Else  

8.                         For each < 𝑟𝑖, 𝑡𝑖 >∈ 𝒯 

9.                                 𝑜𝑑({< 𝑟𝑖 , 𝑡𝑖 >} ⟵ LRT(𝑠. 𝐷𝑖𝑠𝑡, < 𝑟𝑖 , 𝑡𝑖 >. 𝒗); 

10.                       𝑜𝑑(𝑠) ⟵ √
∑ 𝑜𝑑2({<𝑟𝑖,𝑡𝑖>})𝑖

𝑚
; 

11.                 𝒐𝒅 ⟵ 𝒐𝒅||𝑜𝑑(𝑠);  

12.        If  𝑜𝑑 is NOT dominated by 𝑆𝑘𝑦𝐿𝑖𝑛𝑒 

13.                 Insert 𝑜𝑑 into 𝑆𝑘𝑦𝐿𝑖𝑛𝑒;  

14.                 Remove points dominated by 𝑜𝑑 from 𝑆𝑘𝑦𝐿𝑖𝑛𝑒; 

15.                 Remove 𝒯 from 𝓣′.   
16.                 If |𝑜𝑑 − 𝑆𝐿𝐴. 𝑚𝑒𝑎𝑛| > 3 × 𝑆𝐿𝐴. 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒; 

17.                            Insert 𝒯 into 𝒜; 

18.      Else if  Upper bound 𝒐𝒅𝑢𝑝 is dominated by 𝑆𝑘𝑦𝐿𝑖𝑛𝑒; 

19.              Remove all the spatio-temporal entries 𝒯 contains from 𝓣′; 

20.  Return 𝒜; 

6. Experiments and Case Studies 

6.1 Settings 

6.1.1 Datasets 
We evaluate our method with five datasets collected in New York 

City (NYC): (Detailed in Table 1).  

1) POIs: In NYC, there are 24,031 POIs of 14 categories: "Arts & 

Entertainment", "Automotive & Vehicles", "Business to Business", 

"Computers & Technology", "Education", "Food & Dining", "Go-

vernment & Community", "Health & Beauty", "Home & Family", 

"Legal & Finance", "Real Estate & Construction", "Shopping", 

"Sports & Recreation", and others. Each POI has a name, categ-

ory, address and geo-coordinates.  

2) Road network data: Each road segment is associated with two 

terminal points and a series of intermediate points, as well as 

some properties, such as level, capacity and speed limit. Road 

segments with a level from 𝐿1  to 𝐿5 are used as major roads to 

partition NYC, resulting in 862 regions. 

3) 311 data: 311 is NYC’s governmental non-emergency service 

number, allowing people in the city to complain about everything 

that is not urgent by making a phone call, or texting, or using a 

mobile app. When making a complaint, people are required to 

provide the location, time, and choose from a category of compla-

ints, such as noise, traffic, or construction. The data is very sparse 

in each region, as people do not complain about the city anywhere 

and anytime. Sometimes, they are too busy (or lazy) to make a 

complaint call. Or, we have very few people in a given region.   

4) Taxicab data: This dataset is generated by over 14,000 taxicabs 

in NYC, consisting of two types of information: taxi fare data and 

trip data. The trip data includes: pick-up and drop-off locations 

and times, the duration and distance of each trip, taxi ID and the 

number of passengers, etc. The fare data records the taxi fare, tips 

and tax of each trip.  

5) Bike renting data: The data is generated by the bike sharing 

system in NYC, which has 340 bike stations and about 7,000 

bikes. Each record in the data includes the time, bike ID, station 

ID, and an indication of check-out or return. The location of each 

station is also disclosed to the public. 

Table 1. Description on datasets 

Data sources Properties values 

Taxicab data 

1/1/2014-1/1/2015 

number of taxicabs 14,144 

number of trips 165M 

total duration (hour) 36.5M 

total distances (km) 5,671M 

Bike Data 
1/1/2014-1/1/2015  

number of stations 344 

number of bikes 6,811 

number of trips 8,081,216 

total duration (hour) 1.9M 

311 Complaints 

5/26/2013-12/13/2014 

number of categories 10 

number of instances 197,922 

Road network  

2013 

number of nodes 79,315 

number of road segments 

(level≤5) 

 32,210 

 number of road segments (level>5) 83,655 

 number of regions 862 

POIs 

2013 

number of categories 14 

number of instances 24,031 

Figure 8 presents the geographical distributions of the taxicab, 

bike, and 311 data on a digital map. As shown in Figure 8 A), 

each red point stands for a bike station and a blue edge denotes 

the aggregation of bike commutes between two stations. To gener-

ate a clear graph of stations, we remove the edges with the num-

ber of commutes smaller than 700 from 7/1/2013 to 5/31/2014. 

Figure 8 B) is a heat map of the drop-off and pickup points of all 

the taxi trips from 1/1/2013 to 12/31/2013. The lighter the denser. 

As depicted in Figure 8 C), the height of a bar stands for the 

number of 311 calls that have been made in a particular area. 

Different colors denote different categories of complaints. 

6.1.2 Model Configuration  

Settings of MSLT: We project the POIs, bike data, taxicab data 

and 311 complaints onto the 862 regions; each region is regarded 

as a document. We aggregate all the 311 data generated on week-

days into a day (and that of weekends into another day), training a 

different MSLT model for them respectively. As illustrated in Fig-

ure 9 A), we divide a day into 6 time intervals, counting the num-

ber of 311 calls of each complaint category at each time interval 

in each region. The 311 complaint categories of the six time inter-

vals are regarded as words (i.e. 6×10=60words, 𝑤1, 𝑤2, … , 𝑤60). 

The count of 311 calls of a category, at a time interval in a region,  



   
A) Bike data                                      B) Taxicab data 

 
C) 311 complaint data 

Figure 8. Visualization of the data sources 

is deemed as the number of occurrences of a word in a document. 

Regarding the taxicab data, we count the volume of inflow (I) and 

outflow (O) in every 30 minutes over a day in a region. So, there 

are 96 in/out-flows in total, which are deemed to be another word 

set (𝑤′1 , 𝑤′2 , … , 𝑤′96 ). The count of each flow in a region is 

considered a word’s number of occurrences in a document. The 

taxi data on weekdays and weekends are averaged by day 

respectively. Since the bike stations are mainly located in the 

south part of Manhattan, we do not involve them in the MSLT 

models for this case study; but, it will be used in the ST_LRT. We 

set the initial value of every entry of 𝜶 and 𝜷 to 0.1. 

Settings of ST_LRT: We perform anomaly detection every hour, 

based on the taxicab, bike, and 311 datasets of the past 10 hours. 

Given a 10-hour time span, we partition it into five 2-hour inter-

vals, as illustrated in Figure 9 B). Based on the 311 data arriving 

every two hours in a region, we use the ZIP model to learn a total 

arrival rate 𝜆 for the region at the time interval (e.g. 𝜆 for 2:00-

4:00 and 𝜆′ for 0:00-2:00). Given a 2-hour time interval, we find 

the words that the categories of the time interval correspond to. 

For instance, the ten 311 categories at 2:00-4:00 correspond to 

words 𝑤1~𝑤10. We then retrieve the proportion 𝑝𝑟𝑜𝑝(𝑤𝑖) of each 

word (1 ≤ 𝑖 ≤ 10) inferred by the MSLT model (see Eq. 16), cal-

culating the proportion of a category at 2:00-4:00 by Eq. 18. 

 

Figure 9. Configurations of models 

                     𝑝𝑖 = 𝑝𝑟𝑜𝑝(𝑤𝑖)/ ∑ 𝑝𝑟𝑜𝑝(𝑤𝑖)1≤𝑖≤10 .                   (18) 

𝜆𝑖 of time interval 2-4 is then calculated by 𝜆𝑖 = 𝜆 × 𝑝𝑖. We find 

that 311 data increases or decreases simultaneously across differ-

ent regions (i.e. consistently), while the taxicab and bike data do 

not. So, they are handled by Line 6 and Line 8-10 of Algorithm 3, 

respectively. The mean and variance of the underlying Gaussian 

distributions for taxicab and bike data are estimated based on the 

historical data occurring in a time interval. 

6.2 Results 

6.2.1 Evaluation on MSLT 
We select some regions with dense 311 data, calculating the distr-

ibution of the data across different 311 categories as a ground 

truth for each region. We then randomly sample the data down to 

sparsity. Figure 10 shows the KL-Divergence between the estima-

ted distribution and the ground truth in two regions. The horizon-

tal axis denotes 1/𝑋 data sampled. Estimating the distribution of 

the 311 data based on the counts of each category results in an 

increasing KL-Divergence as the sampling percentage decreases. 

With the help of the MSLT model, we find a much smaller KL-

Divergence, thereby estimating the distribution more accurately.  

 
Figure 10. KL-Divergence for the evaluation on the MSLT  

6.2.2 Evaluation on ST_LRT 
Evaluating anomaly detection in a real-world setting is an open 

challenge, as it is impossible to have a full set of ground truth rec-

ording all anomalies that have ever happened. In this section, we 

correlate the anomalies detected by our method with the events 

that have been reported by nycinsiderguide.com over the period 

from Nov. 1, 2014 to Nov. 30, 2014. Table 2 presents the time and 

location of the 20 reported events.  

We compare our approach with six baselines (shown in Table 3), 

showing the approach’s advantages beyond distance-based meth-

ods and those solely using a single dataset. In the distance-based 

(DB) methods, if the distance between an observation and the 

mean of the data is three times larger than the data’s standard dev-

iation, the observation is regarded as an anomaly (for simplicity, 

we call it the 3-time deviation requirement). DB-S-Taxi-S denotes 

the distance-based (DB-) anomaly detection method that identifies 

an anomaly from a single (S-) dataset (i.e. taxi) when either taxi 

inflow or outflow satisfies the 3-time standard deviation require-

ment. DB-S-Taxi-B means the distance-based method that detects 

an anomaly from a single dataset (i.e. taxi) but requires both (-B) 

inflow and outflow of taxi data to exceed the 3-time deviation. 

DB-M-One detects an anomaly from multiple datasets (M-), as 

long as one property of a dataset satisfies the 3-time deviation 

requirement. On the other hand, DB-M-All requires all properties 

of each dataset to satisfy the 3-time deviation requirement. Here, 

we do not include 311 data as it is very sparse, thus cannot be 

applied to distance-based anomaly detection methods.  

Table 4 presents the results of ST_LRT and baseline methods, 

where the first column denotes the average number of anomalies 
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detected by a method per day; the second column shows the IDs 

of events that have been retrieved (from Table 2) by a method. A 

detected anomaly is regarded as a correct recall if the anomaly has 

an overlap with a reported event in both spatial and temporal 

spaces. ST_LRT detects 9 out of the 20 events, having a much hig-

her recall than other baselines. Moreover, the number of anomal-

ies detected per day is much smaller than DB-S-Taxi-S and DB-M-

One. Overall, ST_LRT outperforms all baselines in terms of prec-

ision and recall, detecting about 28 anomalies per day in NYC. 

Table 2. Events reported by nycinsiderguide.com 

   
Event Name Address 

Start 

Time 
End Time 

1 
Bowlloween 2014 New 

York Halloween 

624-660 W 

42nd St 

10/31/2014 

9PM 

11/1/2014 

2AM 

2 
Largest Halloween Singles 

Party in NYC 

247 West 

37th Street 

10/31/2014 

7AM 

11/1/2014 

3AM 

3 
Kokun Cashmere Sample 

and Stock Sale 

237 W 37th 

Street 

11/5/2014 

10:30AM 

11/7/2014 

5:45PM 

4 Big Apple Film Festival 54 Varick St 
11/5/2014 

6PM 

11/9/2014 

11PM 

5 
InterHarmony Concert 

Series: The Soul of 

élégiaque 

881 7th 

Avenue 

11/6/2014 

8PM 

11/6/2014 

10PM 

6 
Hiras Master Tailors New 

York Trunk Show 

301 Park 

Avenue 

11/6/2014 

9AM 

11/9/2014 

1PM 

7 
in Collaboration with 

Carnegie Halls 

Neighborhood Concerts 

881 Seventh 

Avenue 

11/7/2014 

6PM 

11/7/2014 

10PM 

8 Thomas/Ortiz Dance Show 
248 West 

60th Street 

11/7/2014 

7PM 

11/8/2014 

9PM 

9 
Rebecca Taylor Sample 

Sale 
260 5th Ave 

11/11/2014 

10AM 

11/15/2014 

8PM 

10 
The News NYC Sample 

Sale 

495 

Broadway  

11/13/2014 

9AM 

11/15/2014 

6AM 

11 
Giorgio Armani Sample 

Sale 

317 W 33rd 

St 

11/15/2014 

9:30AM 

11/19/2014 

6:30PM 

12 
Get Buzzed 4 Good 

Charity Event NYC 
200 5th Ave 

11/15/2014 

1PM 

11/15/2014 

4PM 

13 
Ment’or Young Chef 

Competition 

462 

Broadway 

11/15/2014 

2PM 

11/15/2014 

6PM 

14 Gotham Comedy Club 
208 West 

23rd Street 

11/17/2014 

6PM 

11/17/2014 

9PM 

15 
Kal Rieman NYC Sample 

Sale 

265 West 

37th Street 

11/18/2014 

11AM 

11/20/2014 

8PM 

16 
Inhabit Cashmere Sample 

Sale 

250 West 

39th St 

11/18/2014 

10AM 

11/20/2014 

6 PM 

17 
Shoshanna NYC Sample 

Sale 

231 W. 39th 

St 

11/19/2014 

10AM 

11/20/2014 

6:30PM 

18 
ICB / J. Press NYC Sample 

Sale 

530 Seventh 

Avenue 

11/19/2014 

12AM 

11/21/2014 

12AM 

19 
Thanksgiving in New York 

City 2014 

1675 

Broadway 

11/27/2014 

6AM 

11/27/2014 

10PM 

20 
Thanksgiving Day Dinner 

at Croton Reservoir Tavern 

108 West 

40th St 

11/27/2014 

12PM 

11/27/2014 

9PM 

Figure 11 A) presents a collective anomaly, which is comprised of 

two regions 𝑟1 and 𝑟2 at two successive time intervals (𝑡1:18-20, 

𝑡2: 20-22). We find that this anomaly was caused by the News 

NYC Sample Sale (the 10th event in Table 2), which is a two-day 

event occurring at blue point A shown in Figure 11 A). Figure 11 

B)–I) present the in/out-flow of taxicabs and bikes in (𝑟1, 𝑟2) at 

(𝑡1, 𝑡2), where the vertical gray range at each time interval denotes 

the 3-time standard deviation of the base distribution (learned 

from historical data at the interval). The black points standing in 

the middle of each range are the mean of the base distribution. 

The red points are the real observations in each data source.  

According to the data, we find that the event attracted many peo-

ple from 𝑟1 and 𝑟2 to go shopping after work. That is the reason 

why the anomaly was detected after 6pm. As the two regions are 

very close to point A, people can travel on foot without taking a 

taxi or riding a bike as usual. Consequently, the outflows of taxi 

and bike in the two regions does not increase at the two time 

intervals 𝑡1 and 𝑡2. Instead, these flows decrease after 8pm, since 

people can choose to leave for home from place A after shopping 

(without returning to place A). In other words, excluding the 

people going shopping at place A, 𝑟1  and 𝑟2  have fewer people 

departing from there after 8pm. 

Table 3. Baseline methods 

 Taxi Inflow Taxi Outflow Bike Inflow Bike Outflow 

Single 

Dataset 

DB-S-Taxi-S: one property     DB-S-Bike-S: one property     

DB-S-Taxi-B: both properties DB-S-Bike-B: both properties 

Multi-

Datasets 

DB-M-One: one of the properties satisfying the 3-time deviation 

DB-M-ALL: all the properties need to satisfy the 3-time deviation 

Table 5 presents the 𝑜𝑑 of each dataset in each spatio-temporal 

entry for the example illustrated in Figure 11. For example, the 𝑜𝑑 

of taxi inflow is 0.274 in spatio-temporal entry <𝑟1, 𝑡1> and 0.593 

in <𝑟1, 𝑡2>. Calculated by Equation 13, the aggregated 𝑜𝑑(s) of 

the taxicab data is 0.404 in 𝑟1 and 0.571 in the two regions. There 

are two 311 complaints that occur in 𝑟1, resulting in a collective 

𝑜𝑑  of 0.256 for the two regions. The final anomalous degree 

vector 𝒐𝒅  across the three datasets is <0.571, 0.912, 0.256>. 

Learning from this case, we make three discoveries:  

Table 4. Detected anomalies and events hit  

Methods Detected Anomalies/day Hit Event IDs 

DB-S-Taxi-S 336.3 1, 9, 19, 20 

DB-S-Bike-B 25.7 9, 19, 20 

DB-S-Taxi-S 18.1 4, 19 

DB-S-Bike-B 1.83 None 

DB-M-One 353.2 1, 4, 9, 19, 20 

DB-M-ALL 0.12 None  

ST_LRT 28.5 1, 3, 9, 10, 11, 13, 15, 16, 20 

1) Beyond a single dataset: If checking each single data source 

individually based on LRT, none of the two regions’ 𝑜𝑑 is greater 

than 0.95 (a threshold for χ2 test). So, they cannot be detected as 

an anomaly. After putting the three 𝑜𝑑( s) in a vector 𝒐𝒅  and 

applying a skyline detection, we found no other skyline points that 

can dominate 𝒐𝒅. In short, it is rare to see that the three datasets 

be that anomalous simultaneously.  

 
Figure 11. An anomaly caused by The News NYC Sample Sale 

2) Beyond single regions: If checking 𝑟1 individually, its taxi and 

bike flows are not that anomalous as compared to its normal patt-

erns. As shown in Table 5, its total 𝑜𝑑 of taxi flow in <𝑟1, 𝑡1> and 

<𝑟1, 𝑡2> is 0.404, which is dominated by other skyline points too. 

After checking together with 𝑟2, we find the anomalous degree of 

taxi flow in the two regions becomes larger. In other words, one 

can barely see the changes in traffic flow of two nearby regions to 

that extent simultaneously. Detecting anomalies across multiple 

regions helps identify the spatio-temporal scope impacted by an 

event. In this case, (𝑟1, 𝑟2) are affected by the event from 6pm-

10pm. 

3) Beyond distance-based method: As depicted in Figure 11 B)-I), 

all spatio-temporal entries w.r.t. 𝑡1 and 𝑡2 have a value within the 

gray ranges (i.e. smaller than the 3-time standard deviation). Thus, 

B) Taxi inflow- C) Taxi outflow- D) Bike inflow- E) Bike outflow-

F) Taxi inflow- G) Taxi outflow- H) Bike inflow- I) Bike outflow-

A) The News NYC Sample Sale 

od=<0.571, 0.912, 0.256> 

A



applying distance-based methods to a single dataset cannot identi-

fy the anomaly. Simply putting together the values of different 

datasets into a vector and then applying the Mahalanobis distance 

cannot help either, because of the different scales and distributions 

of data. For instance, the 311 data follows a ZIP model rather a 

Gaussian distribution. 

Table 5. Computing anomaly degrees for Figure 11 

Data sources Properties 
𝑟1 𝑟2 𝑜𝑑(s) 

𝑡𝟏 𝑡𝟐 𝑡𝟏 𝑡𝟐 

Taxicab Data 
In flow 0.274 0.593 0.822 0.932 

 0.571 Out flow 0.383 0.282 0.612 0.202 

Total 0.404 0.700 

Bike Data 

In flow 0.796 0.901 0.932 0.901 

0.912 Out flow 0.872 0.953 0.983 0.987 

Total 0.882 0.940 

311 Data Complaint

s 
\ \ \ \ 0.256 

6.2.3 Efficiency  
Using a single core of a server (with a 2.93GHZ CPU and 8GB 

memory) and the configurations introduced in Section 6.1.2, we 

can train the MSLT model in 21 minutes and perform the circle-

based search algorithm in 0.5 seconds. Figure 12 shows the oper-

ating time of ST_LRT changing over the spatial threshold 𝛿𝑑 

(𝛿𝑡=4hours). When setting 𝛿𝑑 to 600 meters, we can detect all the 

collective anomalies in NYC in 3 minutes. The skyline-based pru-

ning further saves about 20% of computational workloads. 

 
Figure 12. Efficiency study of ST_LRT 

7. RELATED WORK 
Anomaly detections have been studied extensively over the past 

decades [2]. In this section, we only study the relevant research 

that detects anomalies from spatio-temporal data, e.g. detecting 

outlier trajectories [5][15], identifying traffic anomalies based on  

trajectories [10][11], diagnosing traffic anomalies [3], and glean-

ing problematic design in urban planning [6][18]. As one dataset 

only describes an event from one point of view, many underlying 

problems cannot be found based on a single source. These techni-

ques cannot be directly adapted to datasets across different dom-

ains either, as they cannot handle different distributions and scales 

of data. E.g. though LRT has been used in [11][12] to detect 

spatial anomalies, these techniques are not concerned with data 

sparsity and data fusion issues. In our method, data sparsity is 

handled by the ZIP model and the MSLT model. Data fusion is 

implemented by the MSLT model and skyline detection. A survey 

on data fusion methodologies can be found at [16]. 

Recently, a few research projects have started combining multiple 

spatio-temporal datasets to detect anomalies [8][9]. For example, 

Pan et al. [9] first detect the spatio-temporal scope of a traffic 

anomaly based on vehicles’ GPS trajectories and then try to 

describe the anomaly by using social media that have been 

generated in the spatial and temporal scope. In the research, the 

two datasets are used successively rather than simultaneously. 

There is no organic integration between different datasets. To the 

best of our knowledge, our method is the first research that detects 

anomalies from multiple datasets across different regions.   

8. CONCLUSION 
In this paper, we propose a method to detect collective anomalies 

from multiple spatio-temporal datasets with different distributio-

ns, densities and scales, which is comprised of the MSLT model, 

ST_LRT and a candidate generation algorithm. The MSLT model 

fuses multiple datasets to learn the latent functions of a geograph-

ical region, which helps in turn to estimate the distribution of 

sparse datasets. ST_LRT first learns a proper distribution to model 

different datasets, measuring the value of a dataset against its und-

erlying distribution to generate an anomaly degree. ST_LRT then 

uses a skyline-based detection algorithm to identify the final ano-

malies. Besides the anomalies caused by a single dataset, ST_LRT 

also captures the anomalies where a few datasets have changed for 

a certain degree but not that tremendously. The detected skyline 

also helps prune the combinations of spatio-temporal entries. We 

evaluated our method based on five datasets in NYC, finding the 

anomalies that can be correlated with public events. The results 

showcase the advantages of our method beyond approaches using 

a single dataset in a single region, or using distance-based metrics. 

With a single machine, we can detect all possible anomalies (with 

a 600-meter spatial constraint and a 4-hour temporal constraint) in 

NYC in 3 minutes from data collected over the previous 10 hours.  
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