
Collaborative Location and Activity Recommendations 
with GPS History Data 

Vincent W. Zheng†, Yu Zheng‡, Xing Xie‡, Qiang Yang†
 

† 
Hong Kong University of Science and Technology 

‡ 
Microsoft Research Asia, 4F, Sigma building, No.49 Zhichun Road, Haidian District, Beijing 100190, China 

† {vincentz, qyang}@cse.ust.hk, ‡ {yuzheng, xingx}@microsoft.com 
 

ABSTRACT 

With the increasing popularity of location-based services, such as 

tour guide and location-based social network, we now have 

accumulated many location data on the Web. In this paper, we 

show that, by using the location data based on GPS and users’ 

comments at various locations, we can discover interesting 

locations and possible activities that can be performed there for 

recommendations. Our research is highlighted in the following 

location-related queries in our daily life: 1) if we want to do 

something such as sightseeing or food-hunting in a large city such 

as Beijing, where should we go? 2) If we have already visited 

some places such as the Bird’s Nest building in Beijing’s Olympic 

park, what else can we do there? By using our system, for the first 

question, we can recommend her to visit a list of interesting 

locations such as Tiananmen Square, Bird’s Nest, etc. For the 

second question, if the user visits Bird’s Nest, we can recommend 

her to not only do sightseeing but also to experience its outdoor 

exercise facilities or try some nice food nearby. To achieve this 

goal, we first model the users’ location and activity histories that 

we take as input. We then mine knowledge, such as the location 

features and activity-activity correlations from the geographical 

databases and the Web, to gather additional inputs. Finally, we 

apply a collective matrix factorization method to mine interesting 

locations and activities, and use them to recommend to the users 

where they can visit if they want to perform some specific 

activities and what they can do if they visit some specific places. 

We empirically evaluated our system using a large GPS dataset 

collected by 162 users over a period of 2.5 years in the real-world. 

We extensively evaluated our system and showed that our system 

can outperform several state-of-the-art baselines. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications – data 

mining. H.3.3 [Information Storage and Retrieval]: Information 

Search and Retrieval – clustering, information filtering. H.5.2 

[Information Interface and Presentation]: User Interface.  

General Terms 

Algorithms, Design, Experimentation 

Keywords 

Location and Activity Recommendations, Collaborative Filtering 

1. INTRODUCTION 
As the mobile devices with positioning function, such as GPS-

phones, become more and more popular, people now are able to 

know their locations easily. Based on these location data, various 

location-based services are provided on the Web and shown to be 

quite attractive to the users. For example, a bunch of outdoor 

sports forums have emerged to provide various geo-related Web 

services [1][2][20]. By using these services, the forum users can 

upload and share their outdoor sports (such as bicycle riding) 

trajectories with other users. In this way, they can conveniently 

manage their own outdoor sports trajectories and also share them 

with other outdoor sports fans. In addition, thanks to some Web-

based location data management services [7], the users can now 

share on Web not only their raw GPS trajectories with coordinates 

and time stamps, but also comments denoting what the user did, 

what she saw and/or how she felt on some locations. Figure 1 

gives an example of such a GPS data management system: a user 

uploaded a GPS trajectory to Forbidden City area in Beijing, and 

he also attached some comments (depicted as small pink boxes, 

each unfolded as a text box) about how he felt about the places. 

Such comments bring more semantics to the GPS trajectories, and 

make it easier for GPS users to share their travel experiences. 

Beyond directly sharing the GPS trajectories, we can also better 

understand the location trajectories by mining knowledge from the 

users’ location trajectories. In this way, we are capable to provide 

more interesting location-based services, including transportation 

routine prediction [3][4], location-based activity recognition [5] 

and location-based social network [6,22]. 

 

Figure 1. GPS data management services 

In this paper, we aim to mine more knowledge from the GPS 

location data, so that we can answer two typical questions that we 

often ask in our daily: 1) if we want to do something such as 

sightseeing or food-hunting in a large city such as Beijing, where 

should we go? 2) If we have already visited some places such as 

the Bird’s Nest building in Beijing’s Olympic park, what else can 

we do there? In general, the first question corresponds to location 

recommendation given some activity query (where “activity” can 

refer to various human behaviors such as food-hunting, shopping, 

watching movies/shows, enjoying sports/exercises, tourism, etc.), 

and the second question corresponds to activity recommendation 
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given some location query. By answering these two typical 

questions, we can satisfy many information needs for the users in 

both their daily routines and trip planning. We show to put both 

location recommendation and activity recommendation together in 

our knowledge mining, since locations and activities are closely 

related in nature. Specifically, to model the relationship between 

the locations and the activities, we can construct a location-

activity matrix (details are given in Section 3.2), whose rows 

denote the locations and columns denote the activities. Each entry 

in this location-activity matrix is a rating showing how often an 

activity is performed in a location. Therefore, as shown in Figure 

2, we can see location recommendation given some activity query 

as ranking over the rows given some column, and activity 

recommendation as ranking over the columns given some row.  

 
Figure 2. Illustration for location & activity recommendations 

However, it is not easy to obtain such a complete location-activity 

matrix for location and activity recommendations from the raw 

GPS data due to the following reasons: 1) the ratings in such a 

location-activity matrix are not easy to get the raw GPS data with 

merely location coordinates and timestamps. Recall that a rating 

in the matrix denotes how often an activity is performed in a 

location, so we may need to know what each user did on that 

location to get a rating. The raw GPS data may not convey such 

information, so we have to find another way. We propose to use 

the possibly available comments provided by the users, which 

indicate what the user did on some locations, as shown in Figure 

1. But unfortunately, in practice the users usually do not provide 

many comments. For example, in our dataset which is collected 

from a Web-based GPS data management service for over 2.5 

years, we have 12,765 GPS trajectories, but only 530 comments 

and many of them were attached to some same popular locations. 

It means, many locations do not have any comments attached to 

them, so when we try to get the ratings from these comments, we 

may have many missing entries in the matrix. 2) Based on the 

previous reason, we can only get a very sparse location-activity 

matrix (e.g. in our dataset, we have less than 0.6% entries with 

non-missing values), so it is difficult to do recommendations with 

such limited information. We suggest exploiting other additional 

information on the locations and activities, and use it to alleviate 

the data sparsity. Nevertheless, what kind of information we 

should extract? How can we incorporate it with the location-

activity matrix to do recommendations? These are non-trivial 

questions.  

In this paper, based on the GPS history data, including location 

information (i.e. coordinates and timestamps) and some available 

user comments, we develop a system to provide both location and 

activity recommendations. We achieve this goal by exploiting 

various useful information sources, i.e. meaningful location 

features and activity-activity correlations, and using them by 

collaborative filtering with the sparse location-activity matrix to 

do recommendations. Our collaborative location and activity 

recommendation (CLAR) model is based on collective matrix 

factorization to propagate information among the two additional 

information sources and the sparse location-activity matrix, so 

that we can collaboratively predict the missing entries in the 

location-activity matrix for recommendations. Our work is a step 

towards associating the locations and the activities to boost the 

location-based services on the Web by using mobile data. The 

contributions of this paper lie in three aspects: 

 We put forward a new problem for collaborative location 

and activity recommendations based on the GPS history 

data, so that we can provide more specific recommendations 

with location or activity constraints. 

 We propose to exploit location features and activity-activity 

correlations for collaborative filtering, so as to address the 

data sparsity problem of the GPS histories. We also show 

how to well incorporate this additional information with the 

incomplete location-activity matrix in a collective matrix 

factorization model for final recommendations. 

 We evaluate our system using a large GPS dataset, which 

was collected by 162 users over a period of 2.5 year in the 

real world. The number of GPS points is around 4 million 

and its total distance was over 139,310 kilometers. 

The remainder of this paper is organized as follows. Section 2 

gives an overview of our system. Section 3 introduces the data 

modeling for location-activity matrix generation, location feature 

and activity-activity correlation extraction. Section 4 details our 

collaborative filtering model which takes the previous three pieces 

of information as inputs. In Section 5, we report on major 

experimental results and offer some discussions. In Section 6, we 

survey the related works. In Section 7, we draw our conclusions 

and present the future work.  

2. OVERVIEW OF OUR SYSTEM 
In this section, we first clarify some terms used in this paper. 

Then, we briefly introduce the architecture of our system and 

demonstrate the application scenarios of our system. 

2.1 Preliminary 
First, we will clarify some terms, including GPS trajectory (Traj), 

stay point (s) and stay region (r). 

Definition 1. GPS trajectory: A user’s trajectory Traj is a 

sequence of time-stamped points: 𝑇𝑟𝑎𝑗 =  𝑝0, 𝑝1 , … , 𝑝𝑘  , where a 

GPS point 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖), ∀0 ≤ 𝑖 < 𝑘, with 𝑡𝑖   as a timestamp 

(𝑡𝑖 < 𝑡𝑖+1), and (𝑥𝑖 , 𝑦𝑖) as the two-dimension coordinates. In the 

right part of Figure 3, we show a trajectory consisted of 7 GPS 

points. 

 

Figure 3. GPS trajectory and stay point 

Definition 2. Stay point: A stay point s is a geographical region 

where a user stayed over a time threshold 𝑇𝑟  within a distance 

threshold of 𝐷𝑟 . Denote 𝐷𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑗 )  as the geospatial distance 

between two points 𝑝𝑖  and 𝑝𝑗 , and 𝐼𝑛𝑡(𝑝𝑖 , 𝑝𝑗 )= |𝑝𝑖 . 𝑡𝑖 − 𝑝𝑗 . 𝑡𝑗 | as 

their time interval. In a user’s trajectory, s is characterized by a set 

of consecutive points 𝑃 =  𝑝𝑚 , 𝑝𝑚+1, … , 𝑝𝑛 , where ∀𝑚 < 𝑖 ≤ 𝑛, 

𝐷𝑖𝑠𝑡 𝑝𝑚 , 𝑝𝑖 ≤ 𝐷𝑟 , 𝐷𝑖𝑠𝑡 𝑝𝑚 , 𝑝𝑛+1 > 𝐷𝑟  and 𝐼𝑛𝑡(𝑝𝑚 , 𝑝𝑛) ≥ 𝑇𝑟 . 

Hence, a stay point 𝑠 = (𝑥, 𝑦, 𝑡𝑎 , 𝑡𝑙), where 

𝑠. 𝑥 =  𝑝𝑖 . 𝑥
𝑛
𝑖=𝑚  𝑃  ,  𝑠. 𝑦 =  𝑝𝑖 . 𝑦

𝑛
𝑖=𝑚  𝑃  ,              (1) 
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respectively stands for the average x and y coordinates of the 

collection 𝑃; 𝑠. 𝑡𝑎 = 𝑝𝑚 . 𝑡𝑚  is the user’s arriving time on s and 

𝑠. 𝑡𝑙 = 𝑝𝑛 . 𝑡𝑛  represents the user’s leaving time. 

Compared with raw GPS points, stay points are more meaningful 

in representing the locations a user stays by capturing the time 

duration and vicinity information, and they are commonly used as 

the basic units in representing the GPS data [4][6]. However, in 

practice, when we consider many GPS trajectories together, we 

may find that some stay points refer to a same interested region. 

This is because the users can stay in different parts (e.g. the west 

and east wings) of an interested region (e.g. Bird’s Nest stadium). 

In recommendation, we focus on a whole interested region such as 

Bird’s Nest rather than its two wings, so we need to further extract 

some geographical region by clustering the nearby stay points. We 

call these regions as stay regions. 

Definition 3. Stay region (location): Given all the stay points 

extracted from the GPS data as 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁}  and a 

clustering algorithm Alg(S) taking S as input, we have a stay 

region r as a geographic region which contains a set of stay points 

𝑆′ = {𝑠 ′
𝑚 , 𝑠 ′

𝑚+1 , … , 𝑠 ′
𝑛

|𝑠′𝑖 ∈ 𝑆, ∀𝑚 ≤ 𝑖 ≤ 𝑛} belonging to some 

same cluster. Hence, a stay region 𝑟 = (𝑥, 𝑦), where  

𝑟. 𝑥 =  𝑠𝑖 . 𝑥
𝑛
𝑖=𝑚  𝑆′  ,  𝑟. 𝑦 =  𝑠𝑖 . 𝑦

𝑛
𝑖=𝑚  𝑆′  ,              (2) 

stand for the average x and y coordinates of the collection 𝑆. In 

this work, stay regions are used as the basic units for location 

recommendation, i.e. when we recommend locations, in fact we 

recommend stay regions. 

We instantiate Alg as a grid-based clustering algorithm as shown 

in Figure 6. Notice that we do not directly extract stay regions by 

clustering on the raw GPS points from all the trajectories. This is 

because we may lose the sequential information by mixing the 

raw GPS points from different trajectories together, and thus it is 

hard to detect the meaningful stays. 

2.2 Application Scenarios 
The work reported in this paper is an important component of our 

GeoLife project [7], whose prototype has been internally 

accessible within Microsoft since Oct. 2007. So far, we have had 

162 individuals using this system.  

 

Figure 4. User interface for our system 

Figure 4 shows our system’s user interface. It’s organized as a 

Website (similar to a search engine) so that both PCs and hand-

held devices can access it. To use our system, for example, in 

activity recommendation, a user can input a location, such as 

“Bird’s Nest”, as a location query; then, our system can show the 

queried location on the map and suggest a ranking list of activities 

(top 5 here). The user can provide some feedbacks about the 

results by giving some ratings. For location recommendation, the 

user can input an activity, such as “Tourism and amusement”, as 

an activity query; then our system can suggest a ranking list of 

candidate locations (top 10 here) and display them on the map, so 

that the user can zoom in on the map and get more details (e.g. 

transportations). The user can also view the location candidates 

ranked lower than 10 to get more recommendations. Similarly, the 

user can also provide feedbacks on location recommendation. 

2.3 Architecture 
We demonstrate our system’s architecture in Figure 5. Our system 

consists of 6 parts, including data inputs, stay region extraction, 

location-activity information extraction, location feature 

extraction, activity-activity correlation mining and collaborative 

location and activity recommendations. In the first 5 parts, we 

model the data and extract knowledge as inputs to train a 

recommendation system. This process can be performed off-line. 

In real-time (for part 6), the users can access the recommender 

through internet using laptops/PCs or PDAs/smart-phones, and 

submit the query (i.e. activity or location names). Our system will 

then return a ranking list of locations or activities given the 

activity or location query. 

 

Figure 5. Architecture of our system 

Data inputs: In addition to the users’ GPS trajectories with some 

comments, our system also exploits various information sources, 

including Point-of-Interest (POI) category database and World 

Wide Web, to alleviate the data sparsity problem that occurs when 

there are few comments to get reliable statistics of the location-

activity relations. We will give more details about using these two 

information sources in Section 3.2 and Section 3.3.  

Stay region extraction: As the stay points sometimes may refer to 

some common locations, we extract stay regions by clustering the 

stay points and use them for location recommendations. Notice 

that in practice, the recommended locations are supposed to have 

limited region sizes, so we take this constraint into consideration 

and propose a grid-based clustering algorithm to extract the stay 

regions. More details are in Section 3.1. 

Location-activity information extraction: With the available user 

comments to the GPS trajectories, we can get the statistics about 

what kinds of activities the users performed on some location, and 

how often they performed these activities. By organizing this 

statistics’ data in a matrix form, we can have a location-activity 
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matrix, with rows as locations and columns as activities. An entry 

in the matrix denotes the frequency for the users to perform some 

activity on some location. We will give the details in Section 3.2 

to show how to get these entries. Note that, due to the limited 

amount of comments, the obtained location-activity matrix is 

quite sparse. Our ultimate objective is to appropriately fill all the 

missing entries in that matrix, so that we can rank all the entries 

for collaborative location and activity recommendation. 

Location feature extraction: We exploit the location features with 

the help of POI category database. The database is based on the 

city yellow pages, and it can provide us the knowledge that what 

kinds of POIs we have in an area. For example, by query the POI 

category database with some location area, we can know how 

many restaurants (and theaters, museums, etc.) exist in this area. 

This helps us to get some sense of this location’s functionalities, 

so that we can use them as features for better recommendations. 

Similarly, by organizing the data in a matrix form, we can have a 

location-feature matrix, with rows as locations and columns as 

features. Each entry of the matrix denotes some feature value on 

that location. We give more details in Section 3.3. 

Activity-activity correlation mining: We exploit the World Wide 

Web, to get the knowledge about the activity correlations. With 

this knowledge, we may better infer that if a user performs some 

activity on a location, then it is likely that she will also perform 

another activity. For example, when the users go to see a movie in 

some place, it is quite likely they will also have some foods/drinks 

there. One possible way to get such activity-activity correlation 

information is directly having some statistics over the activity 

occurrence in the GPS data; however, as the amount of available 

comments is few, we may not get reliable statistics. Therefore, we 

refer to the World Wide Web, which is a huge knowledge source, 

to get such statistics. By organizing the data in a matrix form, we 

have an activity-activity matrix, with rows and columns both as 

activities. Each entry of the matrix denotes the correlation 

between a pair of activities. We give more details in Section 3.4. 

Collaborative location and activity recommendations: Having the 

knowledge of location-activity matrix, location-feature matrix and 

activity-activity correlation matrix, we can train a recommender 

system. We propose a collaborative filtering model under the 

collective matrix factorization framework [11], and manage to fill 

the missing entries in the location-activity matrix. Based on the 

filled location-activity matrix, we will rank and retrieve the top k 

locations/activities for recommendations to the users who access 

our system by PCs/PDAs. More details are given in Section 4.  

3. DATA MODELING 
In this section, we will introduce how to model the data in order to 

obtain the location-activity, location-feature and activity-activity 

matrices as inputs for training the recommender.  

3.1 Stay Region Extraction 
In practice, the recommended locations should not be too large in 

size; otherwise, the user may not easily find the true interesting 

locations in a large area. As a result, when we consider clustering 

the stay points to get stay regions, we need to take such a limit 

into account. Previous clustering algorithms used in GPS data 

processing, such as the classic k-means algorithm and the density-

based OPTICS clustering algorithm [19], do not constrain the 

output cluster sizes. So we propose a new grid-based clustering 

algorithm, as described in Figure 6.  

The basic idea is as follows. First, let’s denote 𝑈 =  𝑢𝑘, 1 ≤ 𝑘 ≤

 𝑈   as a set of users. For each user 𝑢𝑘 ∈ 𝑈, we parse her GPS 

trajectories (𝑇𝑟𝑎𝑗𝑘 ) and detect the stay points (𝑆𝑘 ) from each 

trajectory by seeking some spatial regions where 𝑢𝑘  spent a period 

over a certain threshold 𝑇𝑡ℎ𝑟𝑒𝑠ℎ  and the distance between any two 

consecutive GPS points in it is less than 𝐷𝑡ℎ𝑟𝑒𝑠ℎ . For more details, 

please refer to our previous work [6]. After steps 1-3 in the 

algorithm, we have a stay point set 𝑆𝑃 = {𝑆𝑘 , 1 ≤ 𝑘 ≤ |𝑈|} where 

each 𝑆𝑘 = {𝑠1, 𝑠2 , … , 𝑠𝑁} is the stay point set for user 𝑢𝑘 . 

Algorithm ExtractStayRegion(𝐷𝑡ℎ𝑟𝑒𝑠ℎ , 𝑇𝑡ℎ𝑟𝑒𝑠ℎ , 𝑑) 

Input: A collection of GPS trajectories 𝜑 = {𝑇𝑟𝑎𝑗𝑘 , 1 ≤ 𝑘 ≤ |𝑈|}. 

Output: A set of stay regions 𝑅 =  𝑟𝑖 , 1 ≤ 𝑖 ≤ 𝑚 , where 𝑚 =  𝑅 . 
1.  Foreach 𝑢𝑘 ∈ 𝑈 do 

2.           𝑆𝑘= StayPointDetection( 𝑇𝑟𝑎𝑗𝑘 , 𝐷𝑡ℎ𝑟𝑒𝑠ℎ , 𝑇𝑡ℎ𝑟𝑒𝑠ℎ);  

3.           SP.Add( 𝑆𝑘);                           // the collection of stay points 

4.   G = GridDivision( d );                    // divide the map into grids 

5.   Foreach 𝑔𝑖 ∈ 𝐺 do 

6.            𝑔𝑖 . 𝑠𝑝 = {𝑠𝑘 |𝑠𝑘 ∈ 𝑆𝑃 within the region of 𝑔𝑖}; 

7.   For all 𝑠𝑘 ∈ 𝑆𝑃, set 𝑠𝑘 . 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 = −1;         // initialization 

8.   While (exists 𝑠𝑘 ∈ 𝑆𝑃 with 𝑠𝑘 . 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 = −1) do                 

9.           Find 𝑔𝑖  with max |𝑔𝑖 . 𝑠𝑝| and unassigned to any stay region. 

10.           𝑛𝑔 = GetNeighborGrids( 𝑔𝑖 , G );          // 𝑛𝑔 is a set of grids 

11.           𝑟 = 𝑔𝑖 ∪ 𝑛𝑔;             // assign 𝑔𝑖  and 𝑛𝑔 to a new stay region 

12.           (𝑟. 𝑙𝑎𝑡, 𝑟. 𝑙𝑛𝑔) = GetCentroidCoordinates( SP, r ); 

13.           R.Add( r ) ; 

14.           Foreach 𝑠𝑗 ∈ 𝑔𝑙 . 𝑠𝑝 where 𝑔𝑙 ∈ 𝑟 do 

15.                    𝑠𝑗 . 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 =  𝑅 ;              // assign region ID                  

16.  Return R;   

Figure 6. Grid-based clustering for stay region extraction  

Second, we divide the map into grids (step 4), in order to 

constrain our output stay region to be limited in size. In particular, 

we set each grid as a square with width of 𝑑 3 , where d is a 

parameter to constrain our output stay region size as no larger 

than 𝑑 × 𝑑 as showed later. After dividing the map into grids, we 

project all the detected stay points in these grids (steps 5-6), so 

that we have a set of grids 𝐺 =  𝑔𝑖 , 1 ≤ 𝑖 ≤  𝐺   with each 𝑔𝑖 ∈ 𝐺 

has its stay point set 𝑔𝑖 . 𝑠𝑝. 

Third, we employ a greedy strategy to cluster grids (containing 

stay points). At each round (steps 8-15), we start with finding a 

grid 𝑔𝑖  that is unassigned to any stay region yet and has the 

maximal number of stay points |𝑔𝑖 . 𝑠𝑝|. Then, we will extract its 8 

neighboring grids (i.e. consider a square shape with 3 × 3 grids 

and 𝑔𝑖  in the center). The unassigned grids among these 8 

neighboring grids, denoted as 𝑛𝑔, are clustered with 𝑔𝑖  to form a 

new stay region 𝑟 = 𝑔𝑖 ∪ 𝑛𝑔. Hence, all the stay points in 𝑔𝑖  and 

𝑛𝑔 are clustered into the stay region 𝑟. Note that at most there will 

be 3 × 3 grids clustered to a stay region, so we can constrain the 

extracted stay region size as 𝑑 × 𝑑 . Finally, we calculate the 

centroids of all the stay points’ latitude and longitude coordinates 

in 𝑟 as 𝑟’s coordinates. At last, we output a set of stay regions R. 

3.2 Location-Activity Information Extraction 
Based on stay region extraction, we can get a set of stay regions 

from the stay points. For each stay region 𝑟𝑖  in the stay region set 

𝑅 =  𝑟𝑖 , 1 ≤ 𝑖 ≤ 𝑚 , we can first extract the comments from the 

GPS data that attached to this stay region. After that, we parse the 

comments, which in general are texts, to get the activities. For 

example, if a comment mentions “delicious” or “restaurant”, then 

it implies that the user had some foods or drinks at this location. 

Hence, we can have an activity of “Food and Drink” on this 

location. By parsing all the comments, we can get the counts of 

various activities on each stay region (location). Specifically, for a 

location i, we can have an n-dimensional count vector 𝒄𝑖 =
[𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑛 ] for n activities, where each 𝑐𝑖𝑗  is the number of 



times when activity j performed at location i according to the 

comments. Denote the location-activity matrix as 𝑋𝑚×𝑛 ; then we 

can define its entries as: 

𝑋𝑖𝑗 = 𝑐𝑖𝑗 , ∀𝑖 = 1, … , 𝑚;  𝑗 = 1, … , 𝑛  (2) 

Note that some locations may not have any comments, so their 

count vectors are zero vectors and the corresponding entries in the 

matrix X are zeros. However, when 𝑋𝑖𝑗 = 0, it doesn’t mean that 

there is no possibility to perform activity j at location i. It is just 

because there is no comment that records that activity. So we treat 

all these entries equal to 0 as missing values for predictions.  

3.3 Location-Feature Extraction 
As discussed in the Section 2, we can use the POI category 

database to get the statistics (counts) of different POIs in an 

interested region. In particular, given a stay region 𝑟𝑖 ∈ 𝑅, 1 ≤ 𝑖 ≤
𝑚, we will count the number of different POIs in an enclosing 

rectangle of the stay points in 𝑟𝑖 , with the coordinates as [ri.lat - 

d/2, ri.lat + d/2] × [ri.lng – d/2, ri.lng + d/2]. Here, d is the size 

parameter as introduced in Section 3.1. Therefore, the size of the 

enclosing rectangle is 𝑑 × 𝑑 . Denote the count vector for a 

location i as qi = [qi1, qi2, …, qil] for l types of POIs. Consider that 

some types of POIs (e.g. restaurants) are more popular than others 

(e.g. movie theaters), we follow information retrieval to further 

normalize these counts in the form of term-frequency inversed-

document-frequency (TF-IDF) [8] to obtain a location-feature 

matrix 𝑌𝑚×𝑙 . Specifically, we have each entry of Y as 

𝑌𝑖𝑗 =
𝑞𝑖𝑗

 𝑞𝑖𝑗
𝑙
𝑗=1

∙ 𝑙𝑜𝑔
|{𝒒𝑖}|

| 𝒒𝑖 : 𝑞𝑖𝑗 >0 |
, ∀𝑖 = 1, … , 𝑚;  𝑗 = 1, … , 𝑙, (3) 

where |{qi}| is the number of all the count vectors (i.e. number of 

locations), and |{qi: qij > 0}| is the number of count vectors (i.e. 

locations) having non-zero j-th type POIs. In this way, we 

reasonably increase the weights for those important POIs that are 

fewer but unique (e.g. movie theaters), and decrease the weights 

for those extensively distributed POIs (e.g. restaurants).  

3.4 Activity-Activity Correlation Extraction 
Knowing the correlations between the activities can help us to 

better infer what the users may do in some location based on the 

observation of the activities performed before. One possible way 

to get such correlations is to calculate them directly from the GPS 

data; but due to the limited number of comments, we may not get 

reliable results. Fortunately, such activity correlations are usually 

common senses and possibly reflected on the World Wide Web. 

To facilitate such common sense knowledge mining, we turn to 

Web search for help. In particular, for each pair of activities 𝑎𝑖  

and 𝑎𝑗 , we put their names together as a query and submit it to 

some commercial search engine to get the Webpage hit counts. 

For example, for activities “Food and Drink” and “Shopping”, we 

generate a query “Food and Drink, Shopping” and send it to Bing. 

Bing will then return a list of Webpages that describe these two 

activities together, and as expected, the number of such returned 

Webpages implies the correlation between them. In general, we 

find the hit count for “Food and Drink, Shopping” (30.3 million 

hits from Bing) is higher than that for “Food and Drink, Sports 

and Exercises” (7.56 million hits), showing that the correlations of 

“Food and Drink” with “Shopping” is higher than that with 

“Sports and Exercise”, coinciding with the common sense.  

Based on such a method, we can then have an activity-activity 

matrix 𝑍𝑛×𝑛 , with each entry defined as 

𝑍𝑖𝑗 = ℎ𝑖𝑗 ℎ∗ , ∀𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑛,  (4) 

where ℎ𝑖𝑗 is the hit count for activity i and activity j based on some 

search engine. ℎ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 ℎ𝑖𝑗 , ∀𝑖, 𝑗 is the maximal hit count 

among all the hit counts for each pair of activities.  

4. COLLABORATIVE LOCATION AND 

ACTIVITY RECOMMENDATIONS 
After the data modeling, we have the location-activity, location-

feature and activity-activity matrices. As the location-activity 

matrix is incomplete with many missing entries, our objective is 

to fill those missing entries so as to get a full location-activity 

matrix for location and activity recommendations. Since the 

location-activity matrix is very sparse, we try to borrow some 

more information from location-feature and activity-activity 

matrices for prediction based on collaborative filtering.  

 

Figure 7. Demonstration of our model 

Figure 7 demonstrates the main idea of our model based on 

collective matrix factorization. Given the location-activity matrix 

𝑋𝑚×𝑛 , we decompose it by low-rank approximation as a product 

of two matrices 𝑈𝑚×𝑘  and 𝑉𝑛×𝑘  (the superscript “T” for 𝑉𝑛×𝑘
𝑇  

denotes the matrix transpose), where 𝑘 < 𝑛. It shares the location 

information through sharing matrix 𝑈𝑚×𝑘  with the location-

feature matrix 𝑌𝑚×𝑙 , which is decomposed as a product of 

matrices 𝑈𝑚×𝑘  and 𝑊𝑙×𝑘 . Similarly, the location-activity matrix 

shares the activity information through sharing matrix 𝑉𝑛×𝑘  with 

the activity-activity matrix 𝑍𝑛×𝑛 , which is decomposed as a self 

product of 𝑉𝑛×𝑘 . Hence, we put forward a collective matrix 

factorization model and formulate our objective function as: 

𝐿 𝑈, 𝑉, 𝑊 =
1

2
∥ 𝐼 ∘  𝑋 − 𝑈𝑉𝑇 ∥𝐹

2 +
𝜆1

2
∥ 𝑌 − 𝑈𝑊𝑇 ∥𝐹

2 + 

   
𝜆2

2
∥ 𝑍 − 𝑉𝑉𝑇 ∥𝐹

2 +
𝜆3

2
 ∥ 𝑈 ∥𝐹

2 +∥ 𝑉 ∥𝐹
2 +∥ 𝑊 ∥𝐹

2 , (5) 

where ∥∙∥𝐹denotes the Frobenius norm. I is an indicator matrix 

with its entry 𝐼𝑖𝑗 = 0  if 𝑋𝑖𝑗  is missing, 𝐼𝑖𝑗 = 1  otherwise. The 

operator “∘” denotes the entry-wise product. As shown in the 

Figure 7 and the objective function, we aim to propagate the 

information among 𝑋𝑚×𝑛 , 𝑌𝑚×𝑙  and 𝑍𝑛×𝑛 , by requiring them to 

share some low-rank matrices 𝑈𝑚×𝑘  and 𝑉𝑛×𝑘 . The first three 

terms in the objective function (5) control the loss in matrix 

factorization, and the last term controls the regularization over the 

factorized matrices so as to prevent overfitting.  

In general, this objective function is not jointly convex to all the 

variables 𝑈𝑚×𝑘 , 𝑉𝑛×𝑘  and 𝑊𝑙×𝑘 , and we cannot get closed-form 

solutions for minimizing the objective function. Therefore, we 

will turn to some numerical method such as gradient descent to 

get the local optimal solutions. Specifically, we have the gradients 

(denoted as ∇) for each variable as 

∇U𝐿 =  𝐼 ∘  𝑈𝑉𝑇 − 𝑋  𝑉 + 𝜆1 𝑈𝑊𝑇 − 𝑌 𝑊 + 𝜆3𝑈, 

         ∇V𝐿 =  𝐼 ∘  𝑈𝑉𝑇 − 𝑋  𝑇𝑈 + 2𝜆2 𝑉𝑉𝑇 − 𝑍 𝑉 + 𝜆3𝑉,   (6) 

∇W𝐿 = 𝜆1 𝑈𝑊𝑇 − 𝑌 𝑇𝑈 + 𝜆3𝑊. 

After having the gradients, we can use gradient descent to 

iteratively minimize the objective function. The details of the 

algorithm are given in Figure 8. 
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Algorithm CLAR 

Input: Incomplete location-activity matrix 𝑋𝑚×𝑛 , location-feature 

matrix 𝑌𝑚×𝑙  and activity-activity matrix 𝑍𝑛×𝑛 .  

Output: Complete location-activity matrix 𝑋𝑚×𝑛 . 

1.  𝑡 = 1; 

2.  While (𝑡 < 𝑇 and 𝐿𝑡 − 𝐿𝑡+1 > 𝜖) do          // T is #(max iterations) 

3.           Get the gradients ∇𝑈𝑡
, ∇𝑉𝑡

 and ∇𝑊𝑡
by Eq.(6); 

4.           𝛾 = 1; 

5.          While (𝐿(𝑈𝑡 − 𝛾∇𝑈𝑡
, 𝑉𝑡 − 𝛾∇𝑉𝑡

, 𝑉𝑡 − 𝛾∇𝑉𝑡
) ≥ 𝐿(𝑈𝑡 , 𝑉𝑡 , 𝑊𝑡)) do 

6.                     𝛾 = 𝛾 2 ;        // search for the maximal step size 

7.           𝑈𝑡+1 = 𝑈𝑡 − 𝛾∇𝑈𝑡
, 𝑉𝑡+1 = 𝑉𝑡 − 𝛾∇𝑉𝑡

 and 𝑊𝑡+1 = 𝑊𝑡 − 𝛾∇𝑊𝑡
; 

8.           𝑡 = 𝑡 + 1; 

9.   Return X; 
Figure 8. Algorithm description for our model 

After having the complete location-activity matrix 𝑋𝑚×𝑛 , for a 

user query of some location, we can look up the rows of  𝑋𝑚×𝑛 . If 

this location exists in our system (i.e. the location coordinates fall 

in some stay region), for example, the i-th row of 𝑋𝑚×𝑛 , we rank 

the i-th row’s values in a descending order and return a list of 

corresponding activities for activity commendation. For example, 

we search “Bird’s Nest” in our system and find it matched with 

10th row (i.e. 10th location) of 𝑋𝑚×𝑛 , then we will extract the 10th 

row’s ratings, e.g. x=[2, 3, 4, 5, 1], where each entry denotes the 

rating for an activity. Assume from left to right in x, the activities 

are “Food”, “Shopping”, “Sports”, “Tourism” and “Movie”, then 

we will recommend a ranking list of activities with “Tourism” > 

“Sports” > “Shopping” > “Food” > “Movie”. Similarly, for 

location recommendation, given a user query of some activity, we 

look up the columns of 𝑋𝑚×𝑛 . If this activity is matched in our 

system, for example, the j-th column of 𝑋𝑚×𝑛 , we rank the j-th 

column’s values in a descending order and return a list of the top 

N corresponding locations for location commendation. 

5. EXPERIMENTS 
In this section, we will first present the experimental settings. 

Second, we will introduce the evaluation approaches. Third, we 

will deliver some major results followed by some discussions. 

5.1 Settings 

5.1.1 GPS Users, Devices and Data 
In total, we have 162 users (61 females and 101 males, and more 

statistics is shown in Figure 9) carrying the GPS devices to record 

their outdoor trajectories from April 2007 to Oct. 2009.  

 

Figure 9. GPS user statistics 

Figure 10(A) shows the GPS devices used to collect data. They 

are comprised of stand-alone GPS receivers and GPS phones. In 

general, the sampling rate for GPS devices is set as two seconds. 

The GPS logs were collected in China, as well as a few cities in 

the USA, South Korea, and Japan. As most parts of the logs were 

generated in Beijing, and for easier evaluation of our system, we 

extract the logs from Beijing for our experiments. After this data 

preprocessing, we obtain a dataset having 12,765 GPS trajectories 

with total GPS points number over 3,980,320 and total trajectory 

length over 139,310 kilometers. We have totally 530 comments. 

To make sure that we recommend useful locations and activities, 

we already removed some GPS points for work and homes. The 

data distribution in Beijing is shown in Figure 10(B). To protect 

the users’ privacy, we use these data anonymously. 

 

(A) GPS devices                     (B) Data distribution in Beijing 

Figure 10. GPS devices and data distribution 

We defined 5 activities to recommend from the GPS data. As 

shown in Table 1, these 5 activities basically cover people’s daily 

routines. Therefore, n=5 for the matrices X and Z in Eq.(5). 

Table 1. Activities that we used in the experiments. 

Activities Descriptions 

Food and Drink Dinning/drinking at restaurants/bars, etc. 

Shopping Supermarkets, department stores, etc. 

Movie and Shows Movie/shows in theaters and exhibition in 

museums, etc. 

 Sports and Exercise Doing exercises at stadiums, parks, etc. 

Tourism and Amusement Tourism, amusement park, etc. 

5.1.2 Parameter Selection 
Data processing parameters. In this experiment, to obtain stay 

points from raw GPS data, we follow our previous work [9] to set 

Tthreh as 20 minutes and Dthreh as 200 meters for stay point 

detection. To extract stay regions from stay points, we tentatively 

set the stay region size as 300×300 square meters, i.e. d = 300, 

and we will study its impact in Section 5.3.2.  

Model parameters. Our model has 3 parameters: 𝜆1 , 𝜆2  and 𝜆3, 

where  𝜆1 and 𝜆2 control the contributions of location features and 

activity correlations respectively, and we will study their impacts 

in Section 5.3.1. 𝜆3 controls the regularization term, and we set it 

as 10 through all our experiments. As our model is based on low-

rank matrix factorization, we set the rank k=3 for the matrices U, 

V and W in Eq.(5). 

5.2 Evaluation Methodology 
To evaluate our recommendation system, we invited 5 subjects 

who are familiar with Beijing, to individually use our system and 

provide the feedbacks. For activity recommendation, we asked the 

subjects to evaluate the top 20 popular locations according to the 

GPS logs; and for location recommendation, we asked them to 

evaluate top 10 recommended locations. Our system’s user 

interface is shown in Figure 4, where users can provide ratings to 

the recommended locations/activities. 

Table 2. Rating criteria for locations and activities 

Ratings Explanations 

3 I’d like to visit this location / do this activity 

2 I’d like to visit this location if passing by / do this activity 
if time spared 

1 I have no feeling to visit this location / do this activity 

0 This location does not deserve to visit / this activity is not 
suitable to do there. 
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In Table 2, we list the rating criteria. To get the ground truths for 

evaluation, we aggregate all the subjects’ feedbacks to get an ideal 

ranking list. As our recommendations are based on ranking 

results, we employ normalized discounted cumulative gain 

(nDCG) [8] to measure our retrieved location/activity list. nDCG 

is commonly used in information retrieval to measure the search 

engine’s performance. A higher nDCG value to a list of search 

results means that, the highly relevant items appearing earlier 

(with higher ranks) in the result list. In particular, nDCG[p], or 

referred as nDCG@p, measures the relevance of top p results: 

𝑛𝐷𝐶𝐺[𝑝] =
𝐷𝐶𝐺 𝑝 

𝐼𝐷𝐶𝐺 𝑝 
, 𝐷𝐶𝐺[𝑝] = 𝑟𝑒𝑙1 +  

𝑟𝑒𝑙 𝑖

log 2 𝑖

𝑝
𝑖=2 , 

where IDCG[p] is the DCG[p] value of ideal ranking list. reli is a 

relevance value. nDCG ranges from 0 to 1. The higher nDCG is, 

the better a ranking result list is. For example, given a ranking list 

of 4 items with relevance as <1,3,0,2>,  the nDCG@4 is  

 𝑛𝐷𝐶𝐺 𝑝 =
1+3 𝑙𝑜𝑔22 +0+2 𝑙𝑜𝑔24 

3+2 𝑙𝑜𝑔22 +1 𝑙𝑜𝑔23 
= 0.89. 

5.3 Results and Discussions 
In this section, we will first study our system’s performances 

under different model parameters. Then, we will employ two 

baselines for comparison under several settings. Finally, we will 

give some more insights to our model. 

5.3.1 System performance 

5.3.1.1 Impact of the location feature information 
The parameter 𝜆1 controls the contribution of the location feature 

information to the objective function (5). To study the impact of 

this information, we vary the value of 𝜆1  and plot our model’s 

performances with the average nDCG values over all the subjects 

in Figure 11. In this study, we fix 𝜆2 =200, which is in the 

magnitude of division of the location-feature matrix size by the 

activity-activity matrix size. In this way, we make sure that both 

location features and activity correlations can contribute to the 

objective function. We use nDCG@5 to evaluate the results for 

activity recommendation and nDCG@10 for location recommend-

ation in this paper if without specific references.  

  

(A) activity recommendation     (B) location recommendation. 

Figure 11. Impact of the location features 

As shown in Figure 11(A), the model’s performance first 

increases and later decreases as 𝜆1  increases. This is because 

when 𝜆1  is too small, the model cannot fully utilize the 

information from the location features to understand the location 

functionalities and the connections among the locations. When 𝜆1 

is too large, the location feature information will dominate the 

objective function (5), thus overwhelming the activity information 

from the location-activity matrix X and activity-activity matrix Z.  

It will cause some problem; for example, given two locations i 

and j with similar location features, if location i has no rating for 

“food and drink” but has ratings for “movie and shows”, 

according to location similarity, we cannot recommend to users to 

try “food and drink” at location j although usually there are some 

nice restaurants near the movie theatres. In Figure 11(B), we 

observe the similar pattern for location recommendation. When 

the location-activity ratings are not well inferred with too small or 

too large𝜆1, the recommended location list also may miss some 

interesting places. Note that, when 𝜆1=0, the model equals to only 

exploiting one additional information source, i.e. the activity-

activity correlation, to help recommendation. As the performance 

at 𝜆1=0 can be lower than the performance at 𝜆1>0 (e.g. 𝜆1=0.1), 

we demonstrate the benefit of using both additional information. 

5.3.1.2 Impact of the activity correlation information 
We also study the impact of parameter𝜆2 , which controls the 

contribution of the activity correlation information to the objective 

function (5). We vary the value of 𝜆2  and plot our model’s 

performances in Figure 12. In this study, we fix 𝜆1=0.1 according 

to the previous study in Figure 11. 

   

(A) activity recommendation      (B) location recommendation 

Figure 12. Impact of the activity correlations 

As shown in Figure 12(A), similarly we observe the model’s 

performance first increasing and later decreasing as 𝜆2 increases. 

When 𝜆2 is too small, the activity correlation information cannot 

contribute much to the objective function. When 𝜆2 is too large, 

the activity correlations will dominate the objective function, so 

that for a location it will recommend the activities mostly based 

the correlation values while not fully considering whether such a 

location is suitable for some activity. For example, if a location 

has some ratings for “food and drink”, then with too large 𝜆2, the 

model will also recommend the user to see “movie and shows” 

without carefully considering whether this location has theatre or 

not. In Figure 12(B), we can observe the similar pattern for 

location recommendation. Note that, when 𝜆2=0, the model equals 

to only exploiting one additional information source for location 

features. Again, as the performance at 𝜆2=0 can be lower than the 

performance at 𝜆2>0 (e.g. 𝜆2=200), we demonstrate the benefit of 

exploiting both additional information sources. 

5.3.2 Investigation into Our System 

5.3.2.1 Comparison with baselines 
We employ two baselines: single collaborative filtering (SCF) and 

unifying collaborative filtering (UCF). In SCF, we only use the 

incomplete location-activity matrix as input for collaborative 

filtering. We employ the popular low-rank matrix factorization 

approach to accomplish such a collaborative filtering task [18]. In 

particular, SCF aims to solve an singular value decomposition 

problem by min 𝐽 𝑈, 𝑉 =∥ 𝐼 ∘ (𝑋 − 𝑈𝑉𝑇) ∥𝐹
2 , where X denotes 

the incomplete location-activity matrix, U and V are the low-rank 

matrices, I is the indicator matrix same with Eq.(5). It can be seen 

that this optimization problem equals to the case when our 

objective function (5) has both 𝜆1 and 𝜆2 as zeros. We employ this 

baseline to show that with limited number of comments (and thus 

sparse in location-activity matrix), the recommendation results 
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may not be satisfying. So we can validate our motivation to use 

additional information sources to help improve recommendation.  

We also follow [10] to provide a solution, UCF, which can use the 

additional information sources for unifying collaborative filtering. 

In UCF, for each missing entry in the location-activity matrix, it 

will extract a set of top N similar locations and top N similar 

activities, and then use the ratings for these users over these items 

in a probabilistic way to calculate a value for the missing entry. 

After all the missing entries are filled in the location-activity 

matrix, similar ranking strategy with our system can be used to 

output the location and activity ranking list for recommendations. 

We use this baseline to testify the effectiveness of our model over 

other collaborative filtering methods given the same inputs. 

Table 3. Comparisons under different p-values for nDCG@p 

 Activity Recommend. Location Recommend. 

p=3 p=5 p=5 p=8 p=10 

CLAR 0.83±0.04 0.91±0.03 0.84±0.06 0.84±0.04 0.86±0.04 

UCF 0.72±0.06 0.87±0.03 0.76±0.03 0.74±0.03 0.75±0.03 

SCF 0.70±0.07 0.84±0.05 0.63±0.08 0.62±0.07 0.63±0.06 

 

In Table 3, we report the performances of our model and other 

two baselines for both activity and location recommendations. We 

vary the p-values for nDCG@p to extensively evaluate the 

systems’ performances. The entry value in Table 3 denotes the 

mean and standard deviation of the nDCG values. As shown in the 

table, our model CLAR consistently outperforms the two 

baselines under different measurements. We also conduct the t-

test over the results and find our results are significantly better 

than the baselines’ results (one-tailed test p1<0.01, two-tailed test 

p2<0.01) in both location and activity recommendations. Both our 

CLAR and UCF can outperform SCF due to using more 

information. Besides, our CLAR can outperform UCF because in 

UCF, the information flow is in a single direction from location 

features and activity correlations while our CLAR enables the 

information flow in both directions. In other words, in UCF, the 

location similarities and activity similarities are learned from the 

location features and activity correlations; then they are passed to 

the location-activity matrix for collaborative filtering. This 

collaborative filtering does not have further feedback to the 

location-features and activity correlations. So, if the similarities 

learned from this additional information are not accurate, there is 

no second chance to refine. In contrast, in our CLAR, we put the 

location-activity matrix and the two pieces of additional 

information together in an objective function for optimization, so 

that we can have the feedback from the matrix factorization in 

location-activity matrix to the location-feature matrix and activity-

activity correlation matrix. In this way, our CLAR can have bi-

directional information flows and thus outperform UCF. 

5.3.2.2 Impact of the stay region size 
We also study the impact of stay region size in recommendation. 

As discussed above, in recommendations, we may prefer smaller 

stay region size so that the users can easily find what she wants in 

the recommended location. Therefore, we vary the stay region 

size by varying the region width d from 200 to at most 500 

(d=500 means that the stay region size is 500×500 square meters).  

As shown in Table 4, as the stay region size increases, the number 

of stay regions extracted by grid-based clustering (shown in 

Figure 6) decreases. Our CLAR model consistently outperforms 

the two baselines UCF and SCF. We also conduct the t-test and 

find our results are better than the baselines’ results (one-tailed 

test p1<0.05, two-tailed test p2<0.05) in both location and activity 

recommendations. When d=300, our CLAR works the best, 

showing that too small region size may make the extracted stay 

regions’ location features insufficient to represent the location 

functionalities and too large region size may lead to difficulty in 

finding interested points of interests from a big area. 

Table 4. Impact of stay region size 

 #(stay 

region) 

Activity Recommend. Location Recommend. 

CLAR UCF SCF CLAR UCF SCF 

d=200 3329 0.86 

±0.02 

0.85 

±0.02 

0.83 

±0.02 
0.82 

±0.03 

0.72 

±0.03 

0.58 

±0.05 

d=300 2503 0.91 

±0.03 

0.87 

±0.03 

0.84 

±0.05 
0.86 

±0.04 

0.75 

±0.03 

0.63 

±0.06 

d=500 1696 0.86 

±0.01 

0.81 
±0.03 

0.83 
±0.02 

0.86 

±0.03 

0.74 
±0.03 

0.67 
±0.02 

 

5.3.2.3 Impact of the user number 
As the GPS devices become popular, we will have more and more 

users and accumulate such GPS data on the Web as time goes by. 

We study the impact of user numbers so as to see whether our 

system can handle the data well.  

Table 5. Impact of user number 

 #(stay 

point) 

Running 

Time (ms) 

Activity 

Recommend. 

Location 

Recommend. 
#user=50 3895 5780.15 0.84±0.04 0.75±0.03 

#user=100 8039 10828.45 0.88±0.03 0.89±0.02 

#user=162 12656 15053.6 0.90±0.03 0.91±0.03 

 

As the user number increases, the GPS data size increases and 

thus the number of stay points also increases. As shown in Table 

5, the running time for our CLAR model is almost linear to the 

number of stay points. This is because the computational 

complexity of our CLAR model is linear to the number of stay 

points. Consider the algorithm for our CLAR model in Figure 8. 

Given the input matrices 𝑋𝑚×𝑛 , 𝑌𝑚×𝑙 , 𝑍𝑛×𝑛  and their low-rank 

factorized matrices 𝑈𝑚×𝑘 , 𝑉𝑛×𝑘 , 𝑊𝑙×𝑘 , we have the computational 

complexity of evaluating the objective function (5) is: 𝑚 × 𝑘 ×
𝑛 + 𝑚 × 𝑘 × 𝑙 + 𝑛 × 𝑘 × 𝑛 +  𝑚 × 𝑛 + 𝑛 × 𝑘 + 𝑙 × 𝑘 , which is 

𝑂(𝑚) since n, l and k are much smaller than m (e.g. in our case 

with 162 users, m=12656, n=5, l=13, k=3). Similarly, we can have 

the computational complexity for the gradients as 𝑂(𝑚). As our 

algorithm has an iteration limit and in practice it converges fast 

(in less than 300 iterations), the whole computational complexity 

for our model is linear to the number of stay points 𝑂(𝑚). Hence, 

our model can be quite efficient. From Table 5, we also observe 

that as the user number increases, there are more GPS data and 

thus we can keep improving the system’s performance. 

5.3.3 Discussions 

5.3.3.1 Impact of the location types to activity 

recommendation 
Is our system doing equally well on activity recommendation for 

different types of locations? We summarize the experimental 

results for the setting with d=300 and #user=162 to answer this 

question in Figure 13. As can be seen from the figure, for the 20 

most popular locations, our system works the best on the locations 

that are in the type of “food and sports area”, and the worst on the 

locations that are in the type of “shopping and movie area” (here 

we aggregate the user evaluations and pick the top 2 activities as 

the location types). This is because the activity “food and drink” 

happens more often in our daily life; and it’s also more likely to 

have many restaurant POIs in the location feature for predicting 



this activity. For “sports” areas, the location features can capture 

the location functionality by detecting the parks and stadiums. For 

“tourism” areas, there are more comments from the GPS users, so 

that the prediction on such areas can be comparatively accurate. 

For the “shopping & movie” area, the activity recommendation 

results are not as good as the other areas, because there are fewer 

comments from the GPS users on these activities and thus fewer 

ratings in collaborative filtering. Besides, such areas are usually 

also suitable for food hunting and sometimes tourism, so that they 

are overwhelmed by the recommendations to food and tourism. 

 

Figure 13. Impact of location types to activity recommend. 

5.3.3.2 Impact of the activity types to location 

recommendation 
We also ask the question whether our system does equally well on 

location recommendation for different activity types? Based on 

the same setting with previous section, we summarize the location 

recommendation results on each activity type in Figure 14.  

 

Figure 14. Impact of activity types to location recommend. 

As expected, for activity “food and drinks” which more often 

happens, and activity “tourism and amusement” which has more 

user comments, the recommendation results are quite satisfying. 

For “movie and shows”, the results are still good. For “shopping”, 

the performance is worse due to less user comments in modeling 

the location-activity matrix for collaborative filtering. For “sports 

and exercises”, the performance is also worse than other activities; 

and an interesting observation is that, in Figure 13, our system 

usually performs well on the “sports” areas. Is there something 

wrong? By analyzing the data, we find that this is reasonable; 

because in our system the locations with more comments are more 

likely to be recommended (i.e. the higher ratings on other 

activities can propagate to the activity “sports”), but most of these 

locations are related to food hunting and tourism which are 

loosely connected with “sports”. As a result, the location 

recommendation for the activity “sports” is worse than the others. 

5.3.3.3 Prediction for new locations and activities 
Our system is based on some GPS data which is limited in size. 

Therefore, there could be some locations that we do not see in the 

existing GPS dataset. Similarly, we also only define 5 main 

activities, what if the user wants to get recommendations for some 

more-detailed activities (i.e. in smaller granularity such as “Thai 

Food” instead of general “Food”)? One possible solution could be 

relying on the data accumulation on the Web. As the GPS devices 

become popular, there can be more and more GPS data and they 

can be related to more detailed activities in people’s daily life. 

Once we have these data, we can keep updating our system. Since 

our model’s computational complexity is linear to the number of 

GPS stay points (i.e. the data size), such updates could be easy. 

Another possible solution is to get such location-activity 

information from the Web. As there are blogs describing such 

information (e.g. travel logs), we may mine such knowledge from 

the Web to enhance our system. However, considering that the 

blog contents can be quite noisy, it’s not clear how much it helps. 

We may leave it as our future study. 

6. RELATED WORK 

6.1 Location Recommendation 
Location recommendation has been an important topic in geo-

related services. Some systems, based on an individual user’s 

current location, retrieve important surrounding locations and 

their contexts for recommendations. For example, in [12], a 

mobile application framework, which enables a mobile phone user 

to query the geo-coded Wikipedia articles for landmarks in 

vicinity, is presented. In [13], a Cyberguide system is developed 

to provide the librarian information which describes the nearby 

buildings and related people identities. Comparatively, our system 

exploits the user location histories and recommends the interesting 

locations all round the city instead of only nearby locations.  

There are some systems focusing on recommending some specific 

types of locations. For example, in [14], a CityVoyager system is 

developed to recommend shops. It collects the users’ shop visiting 

histories based on GPS logs, and uses an item-based collaborative 

filtering method to recommend to a user some shops that are 

similar to his/her previously visited shops. In [15], a system 

considering both users’ preferences and location contexts is 

shown to recommend restaurants. It uses Bayesian learning to 

calculate some recommendation values for restaurants so as to 

provide a ranking list for recommendation. Similarly, in [16], a 

Geowhiz system is also used to recommend restaurants. It uses a 

user-based collaborative filtering algorithm to recommend to a 

user some restaurants that other similar users previously visited. 

In [9], the recommended locations are hot spots for tourism. A 

HITS-based model is proposed to take into account a user’s travel 

experience and the interest of a location in recommendation, so 

that only the locations that are really popular and also 

recommended by experienced users can be recommended. In 

contrast to those systems limited in modeling only one type of 

location for recommendations, our system is capable to handle 

various types of locations. That is, we can recommend locations 

not only for foods and drinks but also for shopping, etc.  

6.2 Activity Recommendation 
Activity recommendation is a pretty new research issue with little 

research on it so far. Yet it is a quite common question in our 

daily life to ask what we can do if we want to visit some place. 

Most of the previous work related to activity study focuses on 

how to recognize an activity from sensor data by ubiquitous 

computing [21]. For example, in [5], based on GPS data, a 

hierarchical conditional random field model is used to recognize 

whether a user is at work, or sleeping at home, or taking leisure, 

or visiting friend, etc. In [17], activities of daily living such as 

brushing teeth or making a snack in indoor environment are 

recognized by using RFID sensors. Some object use common 
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sense knowledge is extracted from Web to help training a 

recognition model in an unsupervised way. In contrast, rather than 

recognize the activity for an individual user in real time, we aim 

to do mining over the  users’ activity histories (i.e. GPS logs) and 

recommend what a user can do on some location.  

7. CONCLUSION 
In this paper, we studied how to mine knowledge from the real-

world GPS data to answer two common questions in our daily life. 

The first question is, if we want to do something, where shall we 

go? This question corresponds to location recommendation. The 

second question is, if we visit some place, what can we do? This 

question corresponds to activity recommendation. We show that 

these two questions are inherently related, as they can be seen as a 

ranking problem over a location-activity rating matrix. Because 

the location-activity matrix is very sparse in practice, we proposed 

to exploit other information, including the location features and 

the activity-activity correlations from various information sources, 

to enhance the performance. We provided a collaborative filtering 

approach based on collective matrix factorization to take these 

information sources as inputs and train a location and activity 

recommender. Both PC and hand-held device users can access our 

recommender through the Web to get recommendations for better 

trip planning, etc. We evaluated our system on a large GPS 

dataset, and showed 7% improvement on activity recommendation 

and over 20% improvement on location recommendation over the 

simple baseline without exploiting any additional information. 

In the future, we will consider more information, such as user 

features, to further enhance the performance. Our current system 

is for general recommendations; if we have the user features, we 

may be able to personalize our recommendation system so as to 

better satisfy the user’s information needs. Besides, we may also 

use the user features to establish a social network among the users 

so that the experiences from friend (similar) users can contribute 

more in retrieving recommendation results.  
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