
Code Canvas: Zooming towards Better
Development Environments

Robert DeLine

Microsoft Research
One Microsoft Way

Redmond WA USA 98052
rob.deline@microsoft.com

Kael Rowan
Microsoft Research
One Microsoft Way

Redmond WA USA 98052
kael.rowan@microsoft.com

Figure 1. Code Canvas displaying the contents of a game project, at three
levels of zoom, along with the debugger stack trace (curved dashed ar-
rows) and search results (yellow boxes).

ABSTRACT
The user interfaces of today’s development environments have a
“bento box” design that partitions information into separate areas.
This design makes it difficult to stay oriented in the open docu-
ments and to synthesize information shown in different areas.
Code Canvas takes a new approach by providing an infinite
zoomable surface for software development. A canvas both hous-
es editable forms of all of a project’s documents and allows mul-
tiple layers of visualization over those documents. By uniting the
content of a project and information about it onto a single surface,
Code Canvas is designed to leverage spatial memory to keep de-
velopers oriented and to make it easy to synthesize information.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments

General Terms
Design, Human Factors.

Keywords
Integrated development environments, software visualization,
zoomable user interfaces.

1. INTRODUCTION
Integrated development environments (IDEs) were introduced
thirty years ago, with the goal of increasing developer productivi-
ty by uniting then-separate development tools, like editors, compi-
lers, debuggers, and analyzers, under a common user interface.
This idea has been extremely successful, and many programmers
today use IDEs, like Eclipse, Apple Xcode, and Microsoft Visual
Studio. While many aspects of IDEs have improved over time,
their user interfaces have remained largely the same. Today’s
IDEs have a “bento box” design: the screen is partitioned into
rectangular areas that contain editors (e.g., code editors, user in-
terface designers), navigators (e.g., project viewers, class view-
ers), and tool output (e.g., search results, compilation errors).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2–8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

areas of the screen, the bento box design makes frequent use of
symbol cross-referencing and hyperlinks. A method name, for
example, could appear in class viewers, search results, and analy-
sis results; clicking on the method name acts as a hyperlink to
jump to the methods’ definition.

While this bento box design has proved robust over the years, it
nonetheless has several shortcomings. · First, the frequent use of hyperlinks to jump around the project

causes both disorientation and a frustrating number of open
documents. A programmer can “get lost in the code,” that is,
struggle to find a given definition among the open documents.
This disorientation can be frequent, given that programmers
spend a large fraction of their time seeking answers to questions
about their code. [13] · Second, researchers are increasingly data mining a project’s
artifacts to provide more information about the project and its
history (for example, the Mining Software Repositories confe-
rence). When the output of these analyses are shown in separate
areas of the display, synthesizing the information is difficult.
As one example, answering the question Which methods on the
call stack have changed recently? would require mentally syn-
thesizing information across a debugger window and a revision
system window. · Finally, many developer’s desktop machines have both multiple
monitors and high-performance graphics cards, with even more
pixels and processing power likely in the future. The bento box
design does not exploit these technical trends.

In this paper, we present a new style of user interface for IDEs,
implemented as a prototype called Code Canvas. Code Canvas
replaces all of the bento box’s rectangular areas with a single
zoomable surface, called a canvas, that houses all of a project’s
documents – source code, user interface designs, images, etc. A
user zooms in to edit a document and zooms out to get an over-
view. To help keep the user oriented, Code Canvas serves as a
map of the project, allowing the user to form and exploit spatial
memory to find items. Code Canvas also serves as a visualization
surface, displaying layers of information about the project, includ-
ing search results, test coverage, and execution traces.

2. THE DESIGN OF CODE CANVAS
Figure 1 shows a small game, written in C#, at three levels of
zoom in Code Canvas. Zooming in on the indicated portion of the
top screenshot produces the middle screenshot; zooming in on the
indicated portion of the middle screenshot produces the bottom
screenshot. Code Canvas can display any document in any lan-
guage that Visual Studio supports: C# code, XML data, user inter-
face designs, images, etc. As an example of this heterogeneity, the
top screenshot shows C# code side by side with user interfaces
designs. The screenshots also show two active visualizations: the
debugger call stack is shown as dash, curved arrows; and the re-
sults of searching for the term “new” are shown in yellow boxes.

2.1 Semantic Zoom and Navigation
Code Canvas uses a semantic zoom technique to show different
levels of detail at different levels of zoom. When the user views a
C# file at 100% zoom (bottom screenshot), she sees the typical
code editor and can browse, edit and debug the code in the normal
fashion. As she zooms out and the code becomes less readable,
Code Canvas introduces a set of labels (middle screenshot) with

the names of types and members, whose text is always kept at a
readable size, regardless of zoom level. There is a pecking order
on the labels. As the user zooms out and less screen space is
available, lower priority labels (e.g. private methods, field names)
are dropped to leave room for higher priority labels (e.g. public
methods). At the outermost level of zoom, the canvas shows a
diagram of the system’s structure, both the directory and file
structure and the class structure.
All navigation in Code Canvas is through pan and zoom of the
whole canvas and all display transitions are animated, reinforcing
a physical sense of space. Even when the user follows a hyperlink
(for example with the go-to-definition command), Code Canvas
pans and zooms the canvas to reach the hyperlink target. Code
Canvas displays the full content of all documents on the canvas to
avoid having two competing kinds of scrolling.

2.2 Code Layout
Code Canvas uses a mixed initiative strategy for layout. We use
the MSAGL1 graph layout engine to create an initial layout of the
project documents. The user can then modify that layout in three
ways. First, many of the items on the screen, including directories,
files and editors, have drag handles by which the user can directly
position the items. Code Canvas invokes the graph layout engine
during these drag interactions to maintain containment and edge
relationships in the diagram. Similarly, if a user adds text to a
document and thereby increases its size, Code Canvas invokes the
layout engine to push away the neighboring documents and to
maintain containment and edge relationships.
The second way that the user can affect layout is to introduce new
containers to represent concepts that are not syntactically explicit
in the code, such as cross-cutting concerns. We added this feature
based on previous research showing that developers represent
such concepts when drawing diagrams of their code [3].
As the final way to affect layout, the user can “tear off” an indi-
vidual method or a set of consecutive methods in a code file,
which splits the file into fragments. For example, the bottom of
Figure 1 shows the method InitFigure in its own fragment; its
class TetrisGrid is drawn as a rounded green rectangle around the
method fragments. Each fragment is simply a different editor view
on the same underlying file. No changes to the compiler nor
source revision system are needed for this feature.
The ability to lay out source code in units smaller than a file offers
several advantages. First, when layout is based on whole files (as
with Seesoft [9] or Code Thumbnails [6]), files appear as awk-
wardly long “filmstrips,” which fit poorly on a screen with the
opposite aspect ratio. Second, users can take advantage of the
two-dimensional layout to express design intent, e.g. either plac-
ing methods idiosyncratically based on code content (e.g. all visi-
tor methods side by side) or systematically (e.g. à la Class Blue-
prints [8]).

1 research.microsoft.com/projects/msagl

2

2.3 Layers of Visualizations
In addition to the project’s documents, Code Canvas also shows
visualizations of information about the project. Code Canvas or-
ganizes the visualizations into layers, as are commonly found in
tools for graphic designers, like Adobe Photoshop. The graphics
drawn in a given layer all appear in the same plane, ordered along
the Z axis. Code Canvas currently has the following layers, listed
in Z order from back to front: directory structure; file structure
(i.e. boundaries around code fragments); class diagrams; code test
coverage; document editors; definition labels; code annotations
(sticky notes); execution traces; search results; and reference
edges (type/subtype and caller/callee relationships). Layers above
the editor layer act as code overlays, while those below act as
underlays.
The set of layers is extensible: new visualizations can be added,
each in its own layer. The user can independently show or hide
each layer, depending on the information needs of her task. The
ability to show multiple layers at the same time makes it easier to
synthesize information across multiple analyses. For example,
Figure 1 shows both the current call stack in the debugger (the
curved arrows) and search results (yellow boxes, showing term
“new”), making it easy to find those methods on the call stack that
perform allocations.

2.4 Multiple canvases
Code Canvas can create multiple canvases simultaneously, each
one its own view onto the same underlying space. Code Canvas
automatically creates the first canvas, called the “home” canvas.
Additional canvases can be dragged onto other monitors (e.g. for
comparative tasks) or can be docked with other canvases in a
tabbed browser (clicking tabs switches between canvases). Each
canvas has its own viewport, its own level of zoom, its own set of
active layers, and its own filtered set of items shown (described
below).

With multiple canvases, the user can perform detailed work simul-
taneously in two distant parts of the canvas, without the need to
pan and zoom repeatedly back and forth. To do this, the user
opens a second canvas and navigates to the distant location in the
new canvas. The user can either place the two canvas on different
monitors or dock them together and use the tabs to flip between
them.

Another reason for multiple canvases is to support multitasking.
When a user has a new task, she can create a new canvas for it,
preventing the new task’s navigations and visualizations from
polluting the previous task state. (This is similar to how users of a
tabbed web browser typically create new tabs for new informa-
tion-seeking tasks.) To support interrupted and deferred tasks,
Code Canvas persists a canvas’ content in a relational database.
Hence a user can return to a task’s context, even if the task has not
been active for weeks.

In addition to creating new canvases that are copies of the home
canvas, Code Canvas also supports filtered canvases, which show
a subset of the project’s documents. The user can create a filtered
canvas by multi-selecting items on the current canvas, then
launching a new canvas, which will then contain only the selected
items. Code Canvas uses the graph layout engine to gravitate the
filtered items toward one another, compacting the area they cover
while preserving their relative spatial positioning. The user can
also create a filtered canvas based on a layer. When a new canvas
is launched from a layer, it contains only those items that are in-

volved in that layer. As an example, Figure 2 shows a canvas that
was launched from the execution trace (call stack) layer in Figure
1. The filtered canvas contains only those fragments whose me-
thods are part of the call stack. As another example, a user could
launch a canvas from the search results layer to see only those
fragments that contain the search term. Like any new canvas, a
filtered canvas shows all the layers that were turned on in the
canvas from which it was launched. Hence, Figure 2 shows search
results as well as the stack trace.

3. RELATED WORK
The Code Canvas project lies in the intersection of three research
areas: software visualization, visual programming languages, and
zoomable user interfaces. Each of these has a substantial history,
which can only be briefly mentioned here. Code Canvas is mostly
closely related to software structure visualizations intended to
support program comprehension, like Shrimp/Creole [11]. Several
of these previous visualizations have been based on thumbnail
versions of the source code files, starting with Seesoft [9], and
more recently Code Thumbnails [6] and Enhance [12]. These
previous visualizations were intended as supplements to the de-
velopment environment, either implemented as standalone tools or
embedded as windows in the IDE. Unlike these previous tools,
Code Canvas is designed to replace the IDE’s user interface, ra-
ther than supplement it.
Visual programming languages (VPLs) provide both a program-
ming notation and a two-dimensional spatial representation of
programs. The programming notation might be object-based, as in
Self [14] and Boxer [7], or functional, as in Prograph [4]. Like a
VPL, Code Canvas also provides a two-dimensional spatial repre-
sentation of programs and therefore uses similar representation
conventions (e.g. containment for inclusion relationships, edges
for pairwise relationships) and similar interaction techniques (di-
rect manipulation, with a layout engine maintaining relationships).
However, Code Canvas is not a programming notation and inten-
tionally reuses the existing languages, compilers and debuggers
implemented in the IDE.

Code Canvas is, to our knowledge, the first Zoomable User Inter-
face (ZUI) designed as the front-end to an IDE. The first ZUI,
Pad++ [1], allowed both infinite pan and infinite zoom. More
recent examples of ZUIs, like Google Earth and Photosynth, re-
strict the levels of zoom to prevent disorientation, as does Code
Canvas. Many ZUIs use space-distorting techniques, like fisheye
views [10], to show details within context. The current design of

Figure 2. A filtered canvas showing only those fragments involved in
the debugger call stack.

3

Code Canvas avoids these techniques to promote spatial stability
to avoid interfering with the formation and recall of spatial memo-
ry. Code Canvas is the latest in a series of designs of code repre-
sentations to exploit spatial memory, including Software Terrain
Maps [5] and Code Thumbnails [6].

Code Canvas’ design has many similarities to Code Bubbles, in
these same proceedings [2]. The main difference is that Code
Bubbles provides a spatial layout of the user’s working context,
which unfolds as the user explores, while Code Canvas provides a
spatially stable overview of the entire project. Code Canvas’ fil-
tered canvases are an alternative approach to supporting working
contexts.

4. OPEN RESEARCH QUESTIONS
Our next step will be to test the Code Canvas prototype with pro-
fessional developers in the usability lab. There are several re-
search questions we intend to evaluate: · Can two-dimensional layout capture design intent? The ability

to spatially arrange code fragments is a new type of secondary
notation, akin to the use of whitespace and comments in exist-
ing textual notations (that is, the layout has meaning to pro-
grammers, but not to the compiler). What intentions will devel-
opers want to express with this secondary notation, and will
others be able to read that intent? · How well does a spatial layout avoid disorientation and sup-
port multitasking? Previous research showed that programmers
quickly form a spatial memory of code files laid out on a two-
dimensional surface [6]. In theory, this spatial memory should
help prevent disorientation and allow better recall of interrupted
or deferred tasks, but this has not yet been shown empirically. · To what extent should Code Canvas be a collaborative space
versus a personal space? Development is a collaborative effort,
and shared diagrams are often a vehicle for spreading know-
ledge among team members. On the other hand, many individ-
ual development tasks would be better supported by a persona-
lized view. In short, some aspects of Code Canvas should be
common across team members, while other aspects should be
individual – an area for future design exploration. Furthermore,
a programmer’s team mates create code churn that causes spa-
tial instability. Another open design issue is to incorporate oth-
ers’ work into one’s own Code Canvas with the least distur-
bance to spatial memory.

5. SUMMARY
Code Canvas demonstrates a new approach in the design of user
interfaces for development environments. Rather than balkanizing
information in disjoint display areas, Code Canvas provides a
single, zoomable surface on which a programmer’s work can be
conducted and information needs can be met through visualiza-
tions. This design is intended to reduce disorientation, support an
increasing number of analyses, and allow the programmer to ben-
efit from modern displays and graphics processing.

6. REFERENCES
[1] B. Bederson and J.D. Hollan. Pad++: A zooming graphical

interface for exploring alternate interface physics. In Proc.
ACM Symp. on User Interface Software and Technology,
1994.

[2] A. Bragdon, S.P. Reiss, R. Zeleznik, S. Karumuri, W.
Cheung, J. Kaplan, C. Coleman, F. Adeputra, and J.J. LaVi-
ola Jr. Code Bubbles: Rethinking the user interface paradigm
of integrated development environments. In Proc. Interna-
tional Conference on Software Engineering, 2010.

[3] M. Cherubini, G. Venolia, and R. DeLine. Building an eco-
logically-valid, large-scale diagram to help developers stay
oriented in their code. In Proc. IEEE Symp. on Visual Lan-
guages and Human-Centric Computing, 2007.

[4] P.T. Cox, F.R. Giles, and T. Pietrzykowski. Prograph: A step
towards liberating programming from textual conditioning.
In Proc. IEEE Workshop on Visual Languages, 1989.

[5] R. DeLine. Staying oriented with Software Terrain Maps. In
Proc. of the Workshop on Visual Languages and Computa-
tion, 2005.

[6] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Druck-
er, and G. Robertson. 2006. Code Thumbnails: Using Spatial
Memory to Navigate Source Code. In Proc. IEEE Conf. on
Visual Languages and Human-Centric Computing, 2006.

[7] A.A. diSessa and H. Abelson. Boxer: A reconstructible com-
putational medium. Comm. of the ACM 29(9): 859–868,
Sept. 1986.

[8] S Ducasse, M Lanza. The class blueprint: Visually support-
ing the understanding of classes. IEEE Trans. on Software
Engineering 31(1):1–16, 2005.

[9] S.C. Eick, J.L. Steffen, E.E. Sumner Jr. Seesoft: A tool for
visualizing link-oriented software statistics. IEEE Trans. on
Software Engineering, Nov. 1992.

[10] G.W. Furnas. Generalized fisheye views. ACM SIGCHI Bul-
letin 17(4): 16–23, Apr. 1986.

[11] R. Lintern, J. Michaud, M.A. Storey, and X. Wu. Plugging-in
visualization: Experiences integrating a visualization tool
with Eclipse. In Proc. ACM Symp. on Software Visualization.
2003.

[12] H. Shah, C. Görg, M.J. Harrold. Visualization of exception
handling constructs to support program understanding. In
Proc. ACM Symp. on Software Visualization, 2008.

[13] J. Sillito, G.C. Murphy, and K. De Volder. Questions pro-
grammers ask during software evolution tasks. In Proc. ACM
SIGSOFT Intl. Symp. On Foundations of Software Eng.
2006.

[14] R.B. Smith, J. Maloney, D. Ungar. The Self-4.0 user inter-
face: Manifesting a system-wide vision of concreteness un-
iformity, and flexibility. ACM SIGPLAN Notices 30(10):
47–60, Oct. 1995

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
