
Cloud Types for Eventual Consistency
ECOOP 2012

Sebastian Burckhardt

Manuel Fähndrich

Daan Leijen

Benjamin P. Wood

Microsoft Research,
Redmond

University of
Washington

Sharing Data Across Mobile Devices

• Sharing data in the cloud makes apps more
social, fun, and convenient.

• Examples: Games, Settings, Chat, Favorites,
Ratings, Comments, Grocery List…

• But implementation is challenging.

Sharing Data Across Mobile Devices

• Standard Solution:
Clients call web
service to query and
update shared data

• Problem:
if connection is slow
or absent, program is
unresponsive

Cloud Storage & Cloud Servers

Mobile App Mobile App

Updates
Queries

Updates
Queries

Sharing Data w/ Offline Support

• Local Replica
always available

• But:
Complexity?
Consistency?

Cloud Storage & Cloud Servers

Mobile App

sync
when

connected

Mobile App

Updates
Queries

sync
when

connected

Updates
Queries

Mobile App Mobile App

Updates
Queries

Updates
Queries

Abstract the Cloud!

• We propose:
A language
memory model
for eventual
consistency.

sync
when

connected

sync
when

connected

Cloud state

Abstract the Cloud!

• We propose:
A language
memory model
for eventual
consistency.

Strong models, i.e.

- Sequential consistency
- Serializable Transactions

can’t handle

disconnected clients.
(CAP theorem)

Neither do existing weak
models (TSO, Power, Java…)

How do we define this memory model?

• Informal operational model

• Formal operational model

• 2 Example Implementations
(single server, server pool)

• Formal axiomatic model

We will give you a quick intro on the next couple slides

Beyond the scope of this talk, see papers [ESOP2012, ECOOP2012]

Powered By Concurrent Revisions
[OOPSLA’10] [WoDet’11] [ESOP’11] [OOSPLA’11]
[ESOP’12] [ECOOP’12]

- reminiscent of source control systems
- but: about application state, not source code

1. Models state as a revision diagram

 Fork: creates revision (snapshot)

 Queries/Updates target specific revision

 Join: apply updates to joining revision

2. Raises data abstraction level

 Record operations, not just states

Semantics of Concurrent Revisions

• State determined
by sequence of
updates along
path from root

• Inserts updates at
tip of arrow.

•

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.get → 1
B.get → 2

var A : integer

Semantics

• State determined
by sequence of
updates along
path from root

• Inserts updates at
tip of arrow.

•

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.get → 1
B.get → 2

No updates along
path
-> sees initial
state

Semantics

• State determined
by sequence of
updates along
path from root

• Inserts updates at
tip of arrow.

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.get → 1
B.get → 2

A.set(2)
B.set(2)

A.set(1)

• State determined
by sequence of
updates along
path from root

• Updates are
replayed at tip of
arrow.

Semantics

A.get → 0
A.set(1)

A.set(2)
B.set(2)

A.set(2)
B.set(2)

A.set(1)

Traditional transactions
(serializable, snapshot isolation)
would detect a conflict here and

fail.
We just keep going.

Revision Diagrams

• Less general than DAGs, more general than SP-graphs

• See [ESOP11], [ESOP10] for formal definitions

These are revision diagrams These are not
revision diagrams

Cloud State = Revision Diagram

device 1 device 2 cloud

• Client code:

 reads/modifies data

 yields

• Runtime:

 Applies operations to
local revision

 Asynchronous
sends/receive at yield
points

device 1 device 2 cloud

Yield marks transaction boundaries

• At yield
Runtime has
permission to send
or receive updates

• In between yields
Runtime is not
allowed to send or
receive updates

yield
…
yield
…
..
yield
…
yield

yield
…
yield
…
yield
..
yield

 …

 …

 …

 …

 …

 …

 …

var x : CInt;
var y : CInt;

yield;
x.set(1);
y.set(1);
yield;

yield;
int a = x.get();
int b = y.get();
yield;

always a == b

Litmus Test for Atomicity

• This litmus test always passes.

Declare cloud
variables (2 cloud

integers).

transaction
boundaries given by

yield statements.

Read and write cloud
variables using get() and

set().

Give code snippets
that execute on
different clients.

Assertion about
possible final states.

Another simple Litmus Test

• This litmus test fails!
Final value x == 1 possible.

• Because devices operate
on local snapshots which
may be stale.

var x : CInt;

yield;
x.set(x.get() + 1));
yield;

yield;
x.set(x.get() + 1));
yield;

always x == 2

device 1 device 2 cloud

x.get -> 0

A.get → 0
A.set(1)

A.get → 0
A.set(1)

A.set(1)

A.set(1)

Another simple Litmus Test

• This litmus test fails!
Final value x == 1 possible.

• Because devices operate
on local snapshots which
may be stale.

var x : CInt;

yield;
x.set(x.get() + 1));
yield;

yield;
x.set(x.get() + 1));
yield;

always x == 2

device 1 device 2 cloud

x.get -> 0

A.get → 0
A.set(1)

A.get → 0
A.set(1)

How can we write sensible programs
under these conditions?

Idea: Raise Abstraction Level of Data

Use Cloud Types to capture more

semantic information about updates.

It works if we add instead of set

• Final value is determined
by serialization of updates
in main revision.

• Effect of adds is
cumulative!

• Final value is always 2.

var x : CInt;

yield;
x.add(1);
yield;

yield;
x.add(1);
yield;

always x == 2

device 1 device 2 cloud

x.get -> 0

A.add(1) A.add(1)

A.add(1)

A.add(1)

• An abstract data type with

 Initial value e.g. { 0 }

 Query operations e.g. { get }

• No side effects

 Update operations e.g. { set(x), add(x) }

• Total (no preconditions)

• Good cloud types minimize programmer
surprises.

What is a cloud type?

Our goals for finding cloud types…

• to select only a few

 But ensure many others can be derived

• to choose types with minimal anomalies

 Updates should make sense even if state changes

Forces us to rethink basic data structuring.

 objects&pointers fail the second criterion

 entities&relations do better

Our Collection of Cloud Types

Primitive cloud types

• Cloud Integers
{ get } { set(x), add(x) }

• Cloud Strings
{ get } { set(s), set-if-empty(s) }

Structured cloud types

• Cloud Tables
(cf. entities, tables with implicit primary key)

• Cloud Arrays
(cf. key-value stores, relations)

Cloud Tables

• Declares
 Fixed columns

 Regular columns

• Initial value: empty

• Operations:
 new E(f1,f2) add new row (at end)

 all E return all rows (top to bottom)

 delete e delete row

 e.f1

 e.coli.op perform operation on cell
• If e deleted: queries return initial value, updates

have no effect

cloud table E
(
 f1: index_type1;
 f2: index_type1;
)
{
 col1: cloud_type1;
 col2: cloud_type2;
}

Cloud Arrays

• Example:

• Initial value:
for all keys, fields have initial value

• Operations:

 A[i1,i2].vali.op perform operation on value

 entries A.vali return entries for which vali
 is not initial value

cloud array A
[
 idx1: index_type1;
 idx2: index_type2;
]
{
 val1: cloud_type1;
 val2: cloud_type2;
}

Index types

• Used for keys in arrays

• Used for fixed columns in tables

• Can be

 Integer

 String

 Table entry

 Array entry

Example App: Birdwatching

• An app for a birdwatching family.

• Start simple:
let’s count the number of eagles seen.

var eagles : cloud integer;

device 1 device 2 cloud

var eagles : cloud integer;

Eventually consistent counting

eagles.add(1)

eagles.Set(1)

eagles.Get() -> 1

eagles.add(1)

eagles.get() → 3

eagles.add(1)

eagles.get() → 2

device 1 device 2 cloud

Counting by bird
var birds: cloud array
 [name: string]
 {count : cloud integer}

birds[“jay”].count.Add(1)
birds[“gull”].count.Add(2)

birds[“jay”].count.Get()
 -> 6

birds[“jay”].count.Add(5)

Important: all entries
are already there, no
need to insert key-value
pairs.

Standard Map Semantics
Would not Work!

device 1 device 2 cloud

if birds.contains (“jay”)
 birds[jay].Add(5)
else
 birds.insert(“jay”, 5)

?

if birds.contains (“jay”)
 birds[jay].Add(3)
else
 birds.insert(“jay”, 3)

Arrays + Tables = Relational Data

• Tables

 Define entities

 Row identity = Invisible primary key

• Arrays

 Define relations

• Code can access data using queries

 For example, LINQ queries

Arrays + Tables = Relational Data

• Example: shopping cart

cloud table Customer
{
 name: cloud string;
}

cloud table Product
{
 description: cloud string;
}

cloud array ShoppingCart
[
 customer: Customer;
 product: Product;
]
{
 quantity: cloud integer;
}

Arrays + Tables = Relational Data

• Example: binary relation

cloud table User
{
 name: cloud string;
}

cloud array friends
(
 user1 : User;
 user2 : User;
)
{
 value: cloud boolean;
}

Standard math: { relations AxBxC } = { functions AxBxC -> bool }

Arrays + Tables = Relational Data

• Example: linked tables

 Cascading delete: Order is deleted

automatically when owning customer is
deleted

cloud table Customer
{
 name: cloud string;
}

cloud table Order
[
 owner: Customer
]
{
 description: cloud string;
}

Linked tables solve following problem:

device 1 device 2 cloud

delete customer;
foreach o in Orders
 if (o.owner = customer)
 delete o;

?

new Order(customer);

Recovering stronger consistency

• While connected
to server, we may
want more
certainty

• flush primitive
blocks until local
state has reached
main revision and
result has come
back to device

• Sufficient to
implement strong
consistency

flush
(blocks)

(continue)

• Claim: this is not too hard. Developers can
write correct programs using these primitives.

• Future work: evidence?

Implementation for TouchDevelop

• Currently working on
integration into
TouchDevelop Phone-
Scripting IDE.

• TouchDevelop: Free app for
Windows Phone, with a
complete IDE, scripting
language, and bazaar.

• Declare cloud types in graphical editor

• Automatic yield
 Before and after each script execution

 Between iterations of the event loop

Related Work

• CRDTs (Conflict-Free Replicated Data Types)

 [Shapiro, Preguica, Baquero, Zawirski]

 Similar motivation and similar techniques

 use commutative operations only

 not clear how to do composition

• Bayou

 user-defined conflict resolution (merge fcts.)

• Transactional Memory

• Relaxed Memory Models

Conclusion

• eventually consistent shared state is

difficult to implement and reason about on traditional
platforms.

• revision diagrams [ESOP11],[ESOP12]

provide a natural and formally grounded intuition.

• cloud types [ECOOP12] provide a general way

to declare eventually consistent storage.

