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Sharing Data Across Mobile Devices 

• Sharing data in the cloud makes apps more 
social, fun, and convenient. 

• Examples: Games, Settings, Chat, Favorites, 
Ratings, Comments, Grocery List… 

• But implementation is challenging. 



Sharing Data Across Mobile Devices 

• Standard Solution: 
Clients call web 
service to query and 
update shared data 

• Problem: 
if connection is slow 
or absent, program is 
unresponsive 

Cloud Storage & Cloud Servers 
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Sharing Data w/ Offline Support 

• Local Replica 
always available 

• But: 
Complexity? 
Consistency? 
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Abstract the Cloud! 

• We propose: 
A language 
memory model 
for eventual 
consistency. 
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Abstract the Cloud! 

• We propose: 
A language 
memory model 
for eventual 
consistency. 

Strong models, i.e. 
 

- Sequential consistency 
- Serializable Transactions 

 
can’t handle 

disconnected clients. 
(CAP theorem) 

 
Neither do existing weak 
models (TSO, Power, Java…) 



How do we define this memory model? 

• Informal operational model 

 

 

• Formal operational model 

• 2 Example Implementations 
(single server, server pool) 

• Formal axiomatic model 

We will give you a quick intro on the next couple slides 

Beyond the scope of this talk, see papers [ESOP2012, ECOOP2012] 



Powered By Concurrent Revisions 
[OOPSLA’10] [WoDet’11] [ESOP’11] [OOSPLA’11] 
[ESOP’12] [ECOOP’12] 

- reminiscent of source control systems 
- but: about application state, not source code 

 

1. Models state as a revision diagram 

 Fork: creates revision (snapshot) 

 Queries/Updates target specific revision 

 Join: apply updates to joining revision 

2. Raises data abstraction level 

 Record operations, not just states 

 

 

 



Semantics of Concurrent Revisions 

• State determined 
by sequence of 
updates along 
path from root 

• Inserts updates at 
tip of arrow. 

•  
 

 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.get → 1 
B.get → 2 

var A : integer 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Inserts updates at 
tip of arrow. 

•  
 

 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.get → 1 
B.get → 2 

No updates along 
path 
-> sees initial 
state 



Semantics 

• State determined 
by sequence of 
updates along 
path from root 

• Inserts updates at 
tip of arrow. 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.get → 1 
B.get → 2 

A.set(2) 
B.set(2) 
 

A.set(1) 



• State determined 
by sequence of 
updates along 
path from root 

• Updates are 
replayed at tip of 
arrow. 

Semantics 

A.get → 0 
A.set(1) 

A.set(2) 
B.set(2) 

A.set(2) 
B.set(2) 
 

A.set(1) 

Traditional transactions 
(serializable, snapshot isolation) 
would detect a conflict here and 

fail. 
We just keep going. 



Revision Diagrams 

• Less general than DAGs, more general than SP-graphs 

• See [ESOP11], [ESOP10] for formal definitions 

These are revision diagrams These are not 
revision diagrams 



Cloud State = Revision Diagram 

device 1 device 2 cloud 
 

• Client code: 

 reads/modifies data 

 yields 

• Runtime: 

 Applies operations to 
local revision 

 Asynchronous 
sends/receive at yield 
points 



device 1 device 2 cloud 
 

Yield marks transaction boundaries 

• At yield 
Runtime has 
permission to send 
or receive updates 

• In between yields 
Runtime is not 
allowed to send or 
receive updates 

yield
… 
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… 
.. 
yield 
… 
yield 

yield
… 
yield 
… 
yield 
.. 
yield 
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    … 

    … 

    … 

    … 

    … 

    … 



var x : CInt; 
var y : CInt; 

yield; 
x.set(1); 
y.set(1); 
yield; 

yield; 
int a = x.get(); 
int b = y.get(); 
yield; 

always a == b  

Litmus Test for Atomicity 

• This litmus test always passes. 

Declare cloud 
variables (2 cloud 

integers). 

transaction 
boundaries given by 

yield statements. 

Read and write cloud 
variables using get() and 

set(). 

Give code snippets 
that execute on 
different clients. 

Assertion about 
possible final states. 



Another simple Litmus Test 

• This litmus test fails! 
Final value x == 1 possible. 

• Because devices operate 
on local snapshots which 
may be stale. 

var x : CInt; 

yield; 
x.set(x.get() + 1)); 
yield; 

yield; 
x.set(x.get() + 1));  
yield; 

always x == 2  

device 1 device 2 cloud 
 

 
 
x.get  -> 0 
 

A.get → 0 
A.set(1) 

A.get → 0 
A.set(1) 

A.set(1) 

A.set(1) 



Another simple Litmus Test 

• This litmus test fails! 
Final value x == 1 possible. 

• Because devices operate 
on local snapshots which 
may be stale. 

var x : CInt; 

yield; 
x.set(x.get() + 1)); 
yield; 

yield; 
x.set(x.get() + 1));  
yield; 

always x == 2  

device 1 device 2 cloud 
 

 
 
x.get  -> 0 
 

A.get → 0 
A.set(1) 

A.get → 0 
A.set(1) 

How can we write sensible programs 
under these conditions? 

 
Idea: Raise Abstraction Level of Data 

 
Use Cloud Types to capture more 

semantic information about updates. 



It works if we add instead of set 

• Final value is determined 
by serialization of updates 
in main revision. 

• Effect of adds is 
cumulative! 

• Final value is always 2. 

 

var x : CInt; 

yield; 
x.add(1); 
yield; 

yield; 
x.add(1);  
yield; 

always x == 2  

device 1 device 2 cloud 
 

 
 
x.get  -> 0 
 
A.add(1) A.add(1) 

A.add(1) 

A.add(1) 



• An abstract data type with 
 

 Initial value   e.g. { 0 } 

 Query operations  e.g. { get } 

• No side effects 

 Update operations  e.g. { set(x), add(x) } 

• Total (no preconditions) 

 

• Good cloud types minimize programmer 
surprises. 

What is a cloud type? 



Our goals for finding cloud types… 

• to select only a few 

 But ensure many others can be derived 

 

• to choose types with minimal anomalies 

 Updates should make sense even if state changes 

 

Forces us to rethink basic data structuring. 

 objects&pointers fail the second criterion 

 entities&relations do better 



Our Collection of Cloud Types 

Primitive cloud types 

• Cloud Integers 
{ get }    { set(x), add(x) } 

• Cloud Strings 
{ get }    { set(s), set-if-empty(s) } 

 

Structured cloud types 

• Cloud Tables 
(cf. entities, tables with implicit primary key) 

• Cloud Arrays 
(cf. key-value stores, relations) 

 



Cloud Tables 

• Declares 
 Fixed columns 

 Regular columns 

• Initial value: empty  

• Operations:  
 new E(f1,f2) add new row (at end) 

 all E  return all rows (top to bottom) 

 delete e delete row 

 e.f1 

 e.coli.op perform operation on cell 
• If e deleted: queries return initial value, updates 

have no effect 

 

 

 

 

 

 

 

 

cloud table E 
( 
   f1: index_type1; 
   f2: index_type1; 
) 
{ 
   col1: cloud_type1; 
   col2: cloud_type2; 
} 



Cloud Arrays 

• Example: 

 

 

 

• Initial value:  
for all keys, fields have initial value 

• Operations:  

 A[i1,i2].vali.op  perform operation on value 

 entries A.vali  return entries for which vali 
    is not initial value 

 

 

 

 

 

 

 

cloud array A 
[ 
   idx1: index_type1; 
   idx2: index_type2; 
] 
{ 
   val1: cloud_type1; 
   val2: cloud_type2; 
} 



Index types 

• Used for keys in arrays 

• Used for fixed columns in tables 

 

• Can be 

 Integer 

 String 

 Table entry 

 Array entry 



Example App: Birdwatching 

• An app for a birdwatching family. 

 

• Start simple:  
let’s count the number of eagles seen. 

 

 

 

 

var eagles : cloud integer; 



device 1 device 2 cloud 
 

var eagles : cloud integer; 

Eventually consistent counting 

eagles.add(1) 

 

eagles.Set(1) 

 

 

 

eagles.Get()     -> 1 

eagles.add(1) 

eagles.get() → 3 

eagles.add(1) 

eagles.get() → 2 



device 1 device 2 cloud 
 

Counting by bird 
var birds: cloud array 
           [name: string]  
           {count : cloud integer} 

birds[“jay”].count.Add(1) 
birds[“gull”].count.Add(2) 

birds[“jay”].count.Get() 
                  -> 6 

birds[“jay”].count.Add(5) 

Important: all entries 
are already there, no 
need to insert key-value 
pairs. 



Standard Map Semantics  
Would not Work! 

device 1 device 2 cloud 
 

if birds.contains (“jay”) 
   birds[jay].Add(5) 
else 
   birds.insert(“jay”, 5) 

? 

if birds.contains (“jay”) 
   birds[jay].Add(3) 
else 
   birds.insert(“jay”, 3) 



Arrays + Tables = Relational Data 

• Tables 

 Define entities 

 Row identity = Invisible primary key 

• Arrays 

 Define relations 

 

• Code can access data using queries 

 For example, LINQ queries 

 

 

 

 

 

 



Arrays + Tables = Relational Data 

• Example: shopping cart 
 
 
 

 

 

 

 

 

cloud table Customer 
{ 
   name: cloud string; 
} 
 
cloud table Product 
{ 
   description: cloud string; 
} 

cloud array ShoppingCart 
[ 
   customer: Customer; 
   product: Product; 
] 
{ 
   quantity: cloud integer; 
} 



Arrays + Tables = Relational Data 

• Example: binary relation 
 
 
 
 

 

 

 

 

 

cloud table User 
{ 
   name: cloud string; 
} 
 
cloud array friends 
( 
   user1 : User; 
   user2 : User; 
) 
{ 
   value: cloud boolean; 
} 

Standard math: { relations AxBxC  }  = { functions AxBxC -> bool } 



Arrays + Tables = Relational Data 

• Example: linked tables 

 

 

 

 

 

 

 
 Cascading delete: Order is deleted 

automatically when owning customer is 
deleted 

 

 

 

 

 

cloud table Customer 
{ 
   name: cloud string; 
} 
 
cloud table Order 
[ 
   owner: Customer 
] 
{ 
   description: cloud string; 
} 



Linked tables solve following problem: 

device 1 device 2 cloud 
 

delete customer; 
foreach o in Orders 
  if (o.owner = customer) 
    delete o; 

? 

new Order(customer); 



Recovering stronger consistency 

• While connected 
to server, we may 
want more 
certainty 

• flush primitive 
blocks until local 
state has reached 
main revision and 
result has come 
back to device 

• Sufficient to 
implement strong 
consistency 

 

flush 
(blocks) 

 

 

 

 
(continue) 



• Claim: this is not too hard. Developers can 
write correct programs using these primitives. 

 

• Future work: evidence? 



Implementation for TouchDevelop 

• Currently working on 
integration into 
TouchDevelop Phone-
Scripting IDE. 

 

• TouchDevelop: Free app for 
Windows Phone, with a  
complete IDE, scripting 
language, and bazaar. 

 

 

 

 

 



 



• Declare cloud types in graphical editor 

• Automatic yield 
 Before and after each script execution 

 Between iterations of the event loop 



Related Work 

• CRDTs (Conflict-Free Replicated Data Types) 

 [Shapiro, Preguica, Baquero, Zawirski] 

 Similar motivation and similar techniques 

 use commutative operations only 

 not clear how to do composition 

• Bayou 

 user-defined conflict resolution (merge fcts.) 

• Transactional Memory  

• Relaxed Memory Models 



Conclusion 

• eventually consistent shared state is 

difficult to implement and reason about on traditional 
platforms. 

 

• revision diagrams [ESOP11],[ESOP12] 

provide a natural and formally grounded intuition. 

 

• cloud types [ECOOP12] provide a general way 

to declare eventually consistent storage. 


