
Easy and hard functions for the Boolean hidden
shift problem
Andrew M. Childs1, Robin Kothari2, Maris Ozols3(1,4), and Martin
Roetteler4

1 Department of Combinatorics & Optimization and
Institute for Quantum Computing, University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
amchilds@uwaterloo.ca

2 David R. Cheriton School of Computer Science and
Institute for Quantum Computing, University of Waterloo
200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
rkothari@uwaterloo.ca

3 IBM TJ Watson Research Center
1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
marozols@yahoo.com

4 NEC Laboratories America
4 Independence Way, Suite 200, Princeton, NJ 08540, USA
mroetteler@nec-labs.com

Abstract
We study the quantum query complexity of the Boolean hidden shift problem. Given oracle
access to f(x + s) for a known Boolean function f , the task is to determine the n-bit string s.
The quantum query complexity of this problem depends strongly on f . We demonstrate that the
easiest instances of this problem correspond to bent functions, in the sense that an exact one-
query algorithm exists if and only if the function is bent. We partially characterize the hardest
instances, which include delta functions. Moreover, we show that the problem is easy for random
functions, since two queries suffice. Our algorithm for random functions is based on performing
the pretty good measurement on several copies of a certain state; its analysis relies on the Fourier
transform. We also use this approach to improve the quantum rejection sampling approach to
the Boolean hidden shift problem.

1 Introduction

Many computational problems for which quantum algorithms can achieve superpolynomial
speedup over the best known classical algorithms are related to the hidden subgroup problem
(see for example [1]).

I Problem 1 (Hidden subgroup problem). For any finite group G, say that a function
f : G → X hides a subgroup H of G if it is constant on cosets of H in G and distinct on
different cosets. Given oracle access to such an f , find a generating set for H.

Two early examples of algorithms for hidden subgroup problems are the Deutsch–Jozsa
algorithm [2] and Simon’s algorithm [3]. Inspired by the latter, Shor discovered efficient
quantum algorithms for factoring integers and computing discrete logarithms [4]. Kitaev
subsequently introduced the Abelian stabilizer problem and derived an efficient quantum
algorithm for it that includes Shor’s factoring and discrete logarithm algorithms as special
cases [5]. Eventually it was observed that all of the above algorithms solve special instances
of the hidden subgroup problem [6, 7, 8].

ar
X

iv
:1

30
4.

46
42

v1
 [

qu
an

t-
ph

]
 1

6
A

pr
 2

01
3

2 Easy and hard functions for the Boolean hidden shift problem

This early success created significant interest in studying various instances of the hidden
subgroup problem and led to discovery of many other quantum algorithms. For example,
period finding over the reals was used by Hallgren to construct an efficient quantum algorithm
for solving Pell’s equation [9]. Moreover, the hidden subgroup problem over symmetric and
dihedral groups are related to the graph isomorphism problem [10, 11, 12, 13] and certain
lattice problems [14], respectively. The possibility of efficient quantum algorithms for these
problems remains a major open question. Kuperberg has provided a subexponential-time
quantum algorithm for the dihedral subgroup problem [15, 16, 17], which has been used to
construct elliptic curve isogenies in quantum subexponential time [18].

The hidden shift problem (also known as the hidden translation problem) is a natural
variant of the hidden subgroup problem.

I Problem 2 (Hidden shift problem). Let G be a finite group. Given oracle access to functions
f0, f1 : G→ X with the promise that f0(x) = f1(x · s) for some s ∈ G, determine s.

If G is Abelian and f0 is injective, this problem is equivalent to the hidden subgroup
problem in the semidirect product group Go Z2, where the group operation is defined by
(x1, b1) · (x2, b2) :=

(
x1 · x(−1)b1

2 , b1 + b2
)
and the hiding function f : Go Z2 → X is defined

as f [(x, b)] := fb(x). One can check that f is constant on cosets of H := 〈(s, 1)〉 and that
injectivity of f0 implies that f is distinct on different cosets. Thus, f hides the subgroup H
in Go Z2.

Notice that if G = Zd then G o Z2 is the dihedral group. Ettinger and Høyer [19]
showed that the dihedral hidden subgroup problem reduces to the special case of a subgroup
〈(s, 1)〉. Thus the hidden shift problem in Zd (with f0 injective) is equivalent to the dihedral
hidden subgroup problem, motivating further study of the hidden shift problem for various
groups [20, 21, 22, 23, 24, 25].

While the case where f0 is injective is simply related to the hidden subgroup problem,
one can also consider the hidden shift problem without this promise. For example, van Dam,
Hallgren, and Ip [20] gave an efficient quantum algorithm to solve the shifted Legendre symbol
problem, a non-injective hidden shift problem. Their result breaks a proposed pseudorandom
function [26], showing the potential for cryptographic applications of hidden shift problems.
Work on hidden shift problems can also inspire new algorithmic techniques, such as quantum
rejection sampling [27]. Moreover, negative results could have applications to designing
classical cryptosystems that are secure against quantum attacks [14].

For the rest of the paper we restrict our attention to the Boolean hidden shift problem,
in which the hiding function has the form f0 : Zn2 → Z2 for some integer n ≥ 1. For this
problem (with n > 1), f0 is necessarily non-injective. This problem has previously been
studied in [28, 29, 30, 27, 31].

Notice that to determine the hidden shift of an injective function f0, it suffices to find x0
and x1 such that f0(x0) = f1(x1). However, this does not hold in the non-injective case, so
it is nontrivial to verify a candidate hidden shift (see [27, Appendix B]). In fact, sometimes
the hidden shift cannot be uniquely determined in principle (see Sect. D.1). On the other
hand, by considering functions with codomain Z2, we have more structure than in the hidden
subgroup problem or the injective hidden shift problem, where the codomain is arbitrary.
We exploit this structure by encoding the values of the function as phases and using the
Fourier transform.

More precisely, the main problem studied in this paper, sometimes denoted BHSPf , is
as follows.

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 3

I Problem 3 (Boolean hidden shift problem). Given a complete description of a function
f : Zn2 → Z2 and access to an oracle for the shifted function fs(x) := f(x+ s), determine the
hidden shift s ∈ Zn2 .

Note that in degenerate cases, when the oracle does not contain enough information to
completely recover the hidden shift, no algorithm can succeed with certainty.

Let us highlight the main differences between the above problem and other types of
hidden shift problem. In the Boolean hidden shift problem,

the function f is not injective, and
we are given a complete description of the unshifted function f instead of having only
oracle access to f .

Moreover, we are interested only in the query complexity of the problem and do not consider
its time complexity. This means that we can pre-process the description of f (which may be
exponentially large) at no cost before we start querying the oracle.

This problem has been considered previously, e.g., by [27]. Note that some prior work
does not give complete description of f but only oracle access to it [28, 29, 30, 31] (and in
some cases [29] also gives oracle access also to f̃ , the dual bent function of f).

To address this problem on a quantum computer, we use an oracle that computes the
shifted function in the phase. Such an oracle can be implemented using only one query to an
oracle that computes the function in a register.

I Definition 1. The quantum phase oracle is Ofs
: |x〉 7→ (−1)f(x+s)|x〉.

More generally, one can use a controlled phase oracle Ōfs
: |b, x〉 7→ (−1)bf(x+s)|b, x〉 for

b ∈ {0, 1}, which is equivalent to an oracle that computes the function in the first register up
to a Hadamard transform. Some of our algorithms do not make use of this freedom, although
our lower bounds always take it into account.

Ultimately, we would like to characterize the classical and quantum query complexities
of the hidden shift problem for any Boolean function (or more generally, for any function
f : Znd → Zd). While we do not resolve this question completely, we make progress by
providing a new quantum query algorithm (see Sect. 4) and improving an existing one (see
Sect. 5). However, it remains an open problem to better understand both the classical and
quantum query complexities of the BHSP for general functions.

While general functions are difficult to handle, the quantum query complexity of the
hidden shift problem is known for two extreme classes of Boolean functions:

If f is a bent function, i.e., it has a “flat” Fourier spectrum (see Sect. 3.1), then one
quantum query suffices to solve the problem exactly [29].
If f is a delta function, i.e., f(x) := δx,x0 for some x0 ∈ Zn2 , then the hidden shift problem
for f is equivalent to unstructured search—finding x0 + s among the 2n elements of
Zn2—so the quantum query complexity is Θ(

√
2n) [32, 33].

Intuitively, other Boolean functions should lie somewhere between these two extreme cases.
In this paper, we give formal evidence for this: we show that the problem can be solved
exactly with one query only if f is bent, and we show that it can be solved for any function
with O(

√
2n) queries, with a lower bound of Ω(

√
2n) only if the truth table of f has

Hamming weight Θ(1) or Θ(2n). This is similar to the weighing matrix problem considered
by van Dam [34], which also interpolates between two extreme cases: the Bernstein-Vazirani
problem [35] and Grover search [32].

Aside from delta and bent functions, the Boolean hidden shift problem has previously
been considered for several other families of functions. Boolean functions that are quadratic
forms or are close to being quadratic are studied in [28]. Random Boolean functions have

4 Easy and hard functions for the Boolean hidden shift problem

been considered in [30, 31]. Finally, [27] uses quantum rejection sampling to solve the BHSP
for any function, although its performance in general is not well understood.

Apart from algorithms designed specifically for the BHSP, there are generic classical and
quantum algorithms for the BHSP derived from learning theory. In particular, the BHSP
can be viewed as an instantiation of the problem of exact learning through membership
queries. The resulting algorithms are optimal for classical and quantum query complexity up
to polynomial factors in n. More precisely, for any learning problem, Servedio and Gortler
define a combinatorial parameter γ [36]. For the problem BHSPf , we denote the parameter
as γf . From their results it follows that the classical query complexity of BHSPf is lower
bounded by Ω(n) and Ω(1/γf) and upper bounded by O(n/γf). For quantum algorithms,
they show a lower bound of Ω(1/√γf). Atıcı and Servedio [37] later showed an upper bound
of O(n logn/√γf) queries.

The rest of this paper is organized as follows. In Sect. 2 we briefly review some basic
Fourier analysis to establish notation. Next, in Sect. 3 we explore the extreme cases of the
BHSP. In Sect. 4 we introduce a new approach to the BHSP based on the pretty good
measurement. We analyze its performance for delta, bent, and random Boolean functions in
Sect. 4.3. In Sect. 5 we propose an alternative method for boosting the success probability of
the quantum rejection sampling algorithm from [27]. Finally, Sect. 6 presents conclusions
and open questions.

This paper has several appendices. In Appendix A we show that the easy instances of
the BHSP correspond to bent functions. In Appendix B, we show that with one quantum
query we can succeed on a constant fraction of all functions, whereas in Appendix C we
prove that two quantum queries suffice to solve the BHSP for random functions. Finally, in
Appendix D we analyze the structure of zero Fourier coefficients of Boolean functions.

2 Fourier analysis

Our main tool is Fourier analysis of Boolean functions [38]. Here we state the basic definitions
and properties of the Fourier transform and convolution. Readers who are familiar with the
topic might skip this section, except for Definition 6.

I Definition 2. The Hadamard gate is H := 1√
2

(1 1
1 −1

)
.

I Definition 3. The Fourier transform of a function F : Zn2 → R is a function F̂ : Zn2 → R
defined as F̂ (w) := 〈w|H⊗n|F 〉 where |F 〉 :=

∑
x∈Zn

2
F (x)|x〉. Here F̂ (w) is called the

Fourier coefficient of F at w ∈ Zn2 . Explicitly, F̂ (w) = 1√
2n

∑
x∈Zn

2
(−1)w·xF (x) where

x · y :=
∑n
i=1 xiyi. The set {F̂ (w) : w ∈ Zn2} is called the Fourier spectrum of F .

To define the Fourier transform of a Boolean function f : Zn2 → Z2, we identify f with a
real-valued function F : Zn2 → R in a canonical way: F (x) := (−1)f(x)/

√
2n. Note that F is

normalized:
∑
x∈Zn

2
|F (x)|2 = 1. Now we can abuse Definition 3 as follows:

I Definition 4. The Fourier transform of f : Zn2 → Z2 is F̂ (w) = 1
2n

∑
x∈Zn

2
(−1)w·x+f(x).

To avoid confusion, we use lower case letters for Z2-valued functions and capital letters for
R-valued functions.

I Definition 5. The convolution of functions F,G : Zn2 → R is a function (F ∗G) : Zn2 → R
defined as (F ∗ G)(x) :=

∑
y∈Zn

2
F (y)G(x − y). The t-fold convolution of F : Zn2 → R is a

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 5

function F ∗t : Zn2 → R defined as

F ∗t(w) := (F ∗ · · · ∗ F︸ ︷︷ ︸
t

)(w) =
∑

y1,...,yt−1∈Zn
2

F (y1) · · ·F (yt−1)F
(
w − (y1 + · · ·+ yt−1)

)
. (1)

I Fact. Let F,G,H : Zn2 → R denote arbitrary functions. The Fourier transform and
convolution have the following basic properties:
1. The Fourier transform is linear: F̂ +G = F̂ + Ĝ.
2. The Fourier transform is self-inverse: ˆ̂

F = F .
3. Since H⊗n is unitary, the Plancherel identity

∑
w∈Zn

2
|F̂ (w)|2 =

∑
x∈Zn

2
|F (x)|2 holds.

4. Convolution is commutative (F ∗G = G ∗F) and associative ((F ∗G) ∗H = F ∗ (G ∗H)).
5. The Fourier transform and convolution are related through the following identities:

(F̂ ∗ Ĝ)/
√

2n = F̂G and (F̂ ∗G)/
√

2n = F̂ Ĝ, where FG : Zn2 → C is the entry-wise
product of functions F and G: (FG)(x) := F (x)G(x).

6. By induction, the t-fold convolution satisfies the identity
[
F̂ /
√

2n
]∗t = F̂ t/

√
2n.

The following t-fold generalization of the Fourier spectrum plays a key role:

I Definition 6. For t ≥ 1, the t-fold Fourier coefficient of f : Zn2 → Z2 at w ∈ Zn2 is
F t(w) :=

√[
F̂ 2
]∗t(w). In particular, for t = 1 we have F1(w) = |F̂ (w)|.

We can express F t(w) in many equivalent ways using the identities listed above:

[
F t(w)

]2 =
[
F̂ 2]∗t(w) =

[
1√
2n
(
F̂ ∗ F

)]∗t
(w) = 1√

2n
̂(F ∗ F)t (w). (2)

3 Characterization of extreme cases

In this section we explore the set of functions for which the quantum query complexity of the
BHSP is extreme. Recall that the BHSP can be solved with one query for bent functions
and with Θ(

√
2n) queries for delta functions. Here we prove that BHSPf can be solved

exactly with one query only if f is bent, and with O(
√

2n) queries (with bounded error) for
any f .

3.1 Easy functions are bent
In general, the quantum query complexity of the BHSP for an arbitrary function is unknown.
However, the problem becomes particularly easy for bent functions, where a single query
suffices to solve the problem exactly [29]. In fact, bent functions are the only functions with
this property, as we show here.

Bent functions can be characterized in many equivalent ways [39, 40]. The standard
definition is that bent functions have a “flat” Fourier spectrum:

I Definition 7. A Boolean function f : Zn2 → Z2 is bent if all its Fourier coefficients F̂ (w)
(see Definition 4) have the same absolute value: |F̂ (w)| = 1/

√
2n for all w ∈ Zn2 .

While many examples of bent functions have been constructed (e.g., see [41, 42, 43]),
no complete classification is known. As an example, the inner product of two n-bit strings
(modulo two) is a bent function [40, 41]: IPn(x1, . . . , xn, y1, . . . , yn) :=

∑n
i=1 xiyi.

We make a few simple observations about bent functions. Recall from Sect. 2 that the
Fourier spectrum of f is normalized as

∑
w∈Zn

2
|F̂ (w)|2 = 1, so the spectrum is “flat” only

when |F̂ (w)| = 1/
√

2n for all w ∈ Zn2 . Recall from Definition 4 that F̂ (w) is always an integer

6 Easy and hard functions for the Boolean hidden shift problem

multiple of 1/2n. Thus an n-variable function can only be bent if n is even [42, 41]. Moreover,
from |F̂ (0)| = 1/

√
2n we get that |

∑
w∈Zn

2
(−1)f(x)| =

√
2n, so a bent function f is close

to being balanced: |f | = (2n ±
√

2n)/2 where |f | := |{x ∈ Zn2 : f(x) = 1}| is the Hamming
weight of f .

Our main result regarding bent functions is as follows.

I Theorem 8. Let f : Zn2 → Z2 be a Boolean function with n ≥ 2. A quantum algorithm can
solve BHSPf exactly with a single query to Ofs if and only if f is bent.

The proof is based on a characterization of an exact one-query quantum algorithm using
a system of linear equations. This system can be analyzed in terms of the autocorrelation of
f , which in turn characterizes whether f is bent. The proof appears in Appendix A.

3.2 Hard functions
In this section we study hard instances of the BHSP. First, we observe that the quantum
query complexity of solving BHSPf for any function f is O(

√
2n).

I Theorem 9. For any f : Zn2 → Z2, the bounded-error quantum query complexity of BHSPf

is O(
√

2n).

If we view f as a 2n-bit string indexed by x ∈ Zn2 , this is a special case of the oracle
identification problem considered by Ambainis et al. [44, Theorem 3], who show the following.

I Theorem 10 (Oracle Identification Problem). Given oracle access to an unknown N-bit
string with the promise that it is one of N known strings, the bounded-error quantum query
complexity of identifying the unknown string is O(

√
N).

In the BHSP, we have N := 2n. By Theorem 9, the hardest functions are those with
query complexity Ω(

√
N). We know that delta functions have this query complexity, but

are there any other functions that are as hard? The delta functions have |f | = 1 (recall
that |f | denotes the Hamming weight of f). Next we show that as |f | increases, the query
complexity strictly decreases at first, until |f | = Θ(

√
N). For example, functions with |f | = 2

have strictly smaller query complexity than the delta functions. However, as we approach
|f | = Ω(N), our upper bound is Θ(

√
N) again. Without loss of generality, we assume that

|f | ≤ N/2; otherwise we can simply negate the function to obtain a function with |f | ≤ N/2
that has exactly the same query complexity. Formally, we show the following refinement of
Theorem 9.

I Theorem 11. For any f : Zn2 → Z2 with 1 ≤ |f | ≤ N/2, the bounded-error quantum query
complexity of BHSPf is at most π

4
√
N/|f |+O(

√
|f |).

Proof. The algorithm has two parts. First we look for a “1” in the bit string contained in
the oracle, i.e., an x such that f(x) = 1. This can be done by a variant of Grover’s algorithm
that finds a “1” in a string of length N using at most π

4
√
N/|f | queries [45]. Now we have

an x such that fs(x) = 1 for some unknown s. Note that there can be at most |f | shifts s
with this property, because each corresponds to a distinct solution to f(x+ s) = 1 and there
are only |f | solutions to this equation.

We are now left with |f | candidates for the black-box function. Viewing this as an
oracle identification problem, we have oracle access to an N -bit string that could be one
of |f | possible candidates. Although the string has length N , there are only |f | potential
candidates, so intuitively it seems like we should be able restrict the strings to length |f | and
apply Theorem 10 to obtain the desired result.

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 7

Formally, it can be shown that given k ≥ 2 distinct Boolean strings of length N , there
is a subset of indices, S, of size at most k − 1, such that all the strings are distinct when
restricted to S. We show this by induction. The base case is easy: we can choose any index
that differentiates the two distinct strings. Now say we have m distinct strings y1, y2, . . . , ym
and a subset of indices S of size at most m− 1, such that the m strings are distinct on S.
We want to add another string ym+1 and increase the size of S by at most 1. If ym+1 differs
with y1, y2, . . . , ym on S, then we do not need to add any more indices to S and we are done.
If ym+1 agrees with one of y1, y2, . . . , ym on all of S, first note that it can only agree with
one such string; to differentiate between these two, we add any index at which they differ to
S, which must exist since they are distinct. J

This shows that a function can be hard—i.e., can have query complexity Θ(
√
N)—only if

|f | is O(1) or Θ(N).
Note that there do exist hard functions with |f | = Θ(N). For example, consider the

following function: f(x) = 1 if the first bit of x is 1 or if x is the all-zero string. This
essentially embeds a delta function on the last n− 1 bits, and thus requires Θ(

√
N) queries.

This function has |f | = N/2 + 1. However, there are also easy functions with |f | = Θ(N),
namely the bent functions. Thus the Hamming weight does not completely characterize the
hardness of the BHSP at high Hamming weight. However, it precisely characterizes the
quantum query complexity at low Hamming weight:

I Theorem 12. For any f : Zn2 → Z2 with no undetectable shifts, the bounded-error quantum
query complexity of BHSPf is Ω(

√
N/|f |).

This follows from a simple application of the quantum adversary argument, with the
adversary matrix taken to be the all ones matrix with zeroes on the diagonal. It also follows
from Theorem 4 of [44].

4 The PGM approach

We now present an approach to the Boolean hidden shift problem based on the pretty good
measurement (PGM) [46]. In particular, this approach shows that the Boolean hidden shift
problem for random functions has small query complexity (see Sect. 4.3.3).

The main idea of the PGM approach is as follows. We apply the oracle on the uniform
superposition and prepare t independent copies of the resulting state (see Sect. 4.1). Then
we use knowledge of the function f to perform the PGM in order to extract the hidden
shift s (see Sect. 4.2). A similar strategy was used to efficiently solve the hidden subgroup
problem for certain semidirect product groups, including the Heisenberg group [47], and was
subsequently applied to a hidden polynomial problem [48].

4.1 Performing t queries in parallel

In this section we describe a quantum circuit that prepares a state with w · s encoded in the
phase, where s is the hidden shift and w is the label of the corresponding standard basis
vector. We use this circuit t times in parallel, followed by a sequence of CNOTs, to prepare
a certain state |Φt(s)〉. In the next section we perform a PGM on these states for different
values of s.

8 Easy and hard functions for the Boolean hidden shift problem

t

1st stage 2nd stage

|0〉⊗n

|0〉⊗n

|0〉⊗n

|0〉⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

H⊗n H⊗n

...
...

...

Ofs

Ofs

Ofs

Ofs

.

.

.

.

. . .
. . .

Figure 1 Quantum algorithm for preparing the t-fold Fourier sate |Φt(s)〉 in Eq. (8). The state
on any register at the end of the first stage is given in Eq. (4).

4.1.1 Circuit
The circuit for preparing |Φt(s)〉 appears in Fig. 1. It consists of two stages. The first stage
prepares t identical copies of the same state by using one oracle call between two quantum
Fourier transforms on each register independently. Recall from Definition 1 that the oracle
acts on n qubits and encodes the function in the phase: Ofs

: |x〉 7→ (−1)f(x+s)|x〉. The
second stage entangles the states by applying a sequence of transversal controlled-NOT gates
acting as |x〉|y〉 7→ |x〉|y + x〉 for x, y ∈ Zn2 .

Note that all unitary post-processing after the oracle queries can be omitted since it does
not affect the distinguishability of the states. We include it only to simplify the analysis.

4.1.2 Analysis
During the first stage of the circuit, the first register evolves under H⊗nOfs

H⊗n (see Fig. 1):

|0〉⊗n 7→ 1√
2n

∑
x∈Zn

2

|x〉 7→ 1√
2n

∑
x∈Zn

2

(−1)f(x+s)|x〉 7→ 1
2n

∑
x,y∈Zn

2

(−1)f(x+s)+x·y|y〉. (3)

We can rewrite the resulting state as follows:

∑
y∈Zn

2

(−1)s·y
(

1
2n

∑
x∈Zn

2

(−1)f(x)+x·y

)
|y〉 =

∑
y∈Zn

2

(−1)s·yF̂ (y)|y〉. (4)

The overall state after the first stage is just the t-fold tensor product of the above state:

∑
y1,...,yt∈Zn

2

(−1)s·(y1+···+yt)
t⊗
i=1

F̂ (yi)|yi〉. (5)

In the second stage of the algorithm, the controlled-NOT gates transform this state into

∑
y1,...,yt∈Zn

2

(−1)s·(y1+···+yt)

[
t−1⊗
i=1

F̂ (yi)|yi〉
]
F̂ (yt)|y1 + · · ·+ yt〉 (6)

=
∑

y1,...,yt∈Zn
2

(−1)s·yt

[
t−1⊗
i=1

F̂ (yi)|yi〉
]
F̂
(
yt − (y1 + · · ·+ yt−1)

)
|yt〉. (7)

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 9

We can rewrite this state as

|Φt(s)〉 :=
∑
w∈Zn

2

(−1)s·w|F tw〉|w〉, (8)

where the non-normalized state |F tw〉 on (t− 1)n qubits is given by

|F tw〉 :=
∑

y1,...,yt−1∈Zn
2

F̂ (y1) · · · F̂ (yt−1)F̂
(
w − (y1 + · · ·+ yt−1)

)
|y1〉 · · · |yt−1〉. (9)

Its norm is just the t-fold Fourier coefficient: ‖|F tw〉‖ = F t(w) (see Definition 6).

4.2 The pretty good measurement
Let {ρ(t)

s : s ∈ Zn2} be a set of mixed states where ρ(t)
s is given with probability ps. The pretty

good measurement (PGM) [46] for discriminating these states is a POVM with operators
{Es : s ∈ Zn2} ∪ {E∗} where

Es := E−1/2 psρ
(t)
s E−1/2, E :=

∑
s∈Zn

2

psρ
(t)
s , E∗ := I −

∑
s∈Zn

2

Es. (10)

In our case, ρ(t)
s := |Φt(s)〉〈Φt(s)| and ps := 1/2n where |Φt(s)〉 is defined in Eq. (8).

To find the operators Es, we compute

E =
∑
s∈Zn

2

1
2n

∑
w,w′∈Zn

2

(−1)(w+w′)·s|F tw〉〈F tw′ | ⊗ |w〉〈w′| (11)

=
∑
w∈Zn

2

‖|F tw〉‖
2 · |F

t
w〉〈F tw|
‖|F tw〉‖

2 ⊗ |w〉〈w|. (12)

From now on we use the convention that terms with ‖|F tw〉‖ = 0 are omitted from all sums.
As E is a sum of mutually orthogonal rank-1 operators with eigenvalues ‖|F tw〉‖

2, we find

E−1/2 =
∑
w∈Zn

2

1
‖|F tw〉‖

· |F
t
w〉〈F tw|
‖|F tw〉‖

2 ⊗ |w〉〈w|. (13)

Note that Es = |Es〉〈Es| where |Es〉 := E−1/2√ps|Φt(s)〉. We can express |Es〉 as follows:

|Es〉 =
(∑
w∈Zn

2

|F tw〉〈F tw|
‖|F tw〉‖

3 ⊗ |w〉〈w|

)
1√
2n

(∑
w∈Zn

2

(−1)w·s|F tw〉|w〉
)

(14)

= 1√
2n

∑
w∈Zn

2

(−1)w·s |F
t
w〉

‖|F tw〉‖
⊗ |w〉. (15)

Notice that the vectors |Es〉 are orthonormal, so the PGM is just an orthogonal measurement
in this basis (with another outcome corresponding to the orthogonal complement). Therefore
the measurement is unambiguous: if it outputs a value of s (rather than the inconclusive
outcome ∗) then it is definitely correct. The corresponding zero-error algorithm can be
summarized as follows:

PGM(f, t)
1. Prepare |Φt(s)〉 using the circuit shown in Fig. 1.
2. Recover s by performing an orthogonal measurement

with projectors {|Es〉〈Es| : s ∈ Zn2} ∪ {E∗}.

10 Easy and hard functions for the Boolean hidden shift problem

I Lemma 13. The t-query algorithm PGM(f, t) solves BHSPf with success probability

pf (t) :=
(

1√
2n

∑
w∈Zn

2

F t(w)
)2

, (16)

where F t(w) = ‖|F tw〉‖ denotes the t-fold Fourier spectrum of f : Zn2 → Z2 (see Definition 6).

Proof. Recall that the PGM for discriminating the states |Φt(s)〉 =
∑
w∈Zn

2
(−1)s·w|F tw〉|w〉

from Eq. (8) is an orthogonal measurement on |Es〉 (defined in Eq. (15)) and the orthogonal
complement. Thus, given the state |Φt(s)〉, the success probability to recover the hidden
shift s correctly is

∣∣〈Es|Φt(s)〉
∣∣2. This is equal to the expression in Eq. (16). Moreover, it

does not depend on s, so pf (t) is the success probability even if s is chosen adversarially as
in the definition of BHSPf (Problem 3). Note that the convention of omitting terms with
‖|F tw〉‖ = 0 is consistent since such terms do not appear in Eq. (16). J

We can use Eq. (2) to write the success probability as

pf (t) = 1
2n

(∑
w∈Zn

2

√
1√
2n

̂(F ∗ F)t (w)
)2

. (17)

Recall from Sect. 2 that F1(w) = |F̂ (w)|, so for t = 1 we have

pf (1) = 1
2n

(∑
w∈Zn

2

|F̂ (w)|
)2

. (18)

4.3 Performance analysis
In this section we analyze the performance of the PGM algorithm described above on several
different classes of Boolean functions. For delta functions our algorithm performs worse than
Grover’s algorithm. On the other hand, for bent and random functions it needs only one
and two queries, respectively.

4.3.1 Delta functions
Let us check how our algorithm performs when f is a delta function, i.e., f(x) = δx,x0 for
some x0 ∈ Zn2 . A simple calculation using the Fourier spectrum of a delta function shows
that the success probability of PGM(f, t) is

pf (t) = 1
22n

(2n − 1)

√
1−

(
2n − 4

2n

)t
+

√
1 + (2n − 1)

(
2n − 4

2n

)t2

. (19)

Unfortunately, if we choose t =
√

2n, then the success probability goes to 0 as n→∞. In
fact, the same happens even if t = cn for any c < 2. Only if we take t = 2n does the success
probability approach a positive constant 1− 1/e4 ≈ 0.98 as n→∞. This means that the
PGM algorithm does not give us the quadratic speedup of Grover’s algorithm. (Indeed, this
follows from the more general fact that quantum speedup for unstructured search cannot be
parallelized [49].) Thus the PGM algorithm is not optimal in general.

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 11

4.3.2 Bent functions
Let f be a Bent function. Recall from Sect. 3.1 that its Fourier spectrum is “flat”, i.e.,
|F̂ (w)| = 1/

√
2n for all w ∈ Zn2 . In this case, Eq. (18) gives pf (1) = 1, so we can find the

hidden shift with certainty by measuring |Φ1(s)〉 with the pretty good measurement (recall
that preparing |Φ1(s)〉 requires only one query to Ofs), reproducing a result of Rötteler.

I Theorem 14 ([29]). If f is a bent function then a quantum algorithm can solve BHSPf

exactly using a single query to Ofs
.

4.3.3 Random functions
For random Boolean functions, our algorithm performs almost as well as for bent functions.
For random f , we are only able to show that the expected success probability of the one-query
algorithm PGM(f, 1) is at least 2/π+o(1) for large n (see Theorem 19 in Appendix B), so the
algorithm only succeeds with constant probability, which cannot easily be boosted. However,
the expected success probability of the two-query algorithm PGM(f, 2) is exponentially
close to 1.

I Theorem 15. Let f be an n-argument Boolean function chosen uniformly at random and
suppose that a hidden shift for f is chosen adversarially. Then PGM(f, 2) solves BHSPf

with expected success probability p̄ ≥ 1− 3
64 · 2

−n.

The proof uses the second moment method to lower bound the expected success probability.
We compute the variance of the 2-fold Fourier spectrum by relating it to the combinatorics
of pairings. The proof appears in Appendix C.

Theorem 15 implies that our algorithm can determine the hidden shift with near certainty
as n→∞. This is surprising since some functions, such as delta functions (see Sect. 3.2),
require Ω(

√
2n) queries. Furthermore, a randomly chosen function could have an undetectable

shift (see Sect. D.1), in which case it is not possible in principle to completely determine an
adversarially chosen shift with success probability more than 1/2.

At first glance, Theorem 15 may appear to be a strengthening of the main result of
[30], which shows that O(n) queries suffice to solve a version of the Boolean hidden shift
problem for a random function. However, while our approach uses dramatically fewer queries,
the results are not directly comparable: Ref. [30] considers a weaker model in which the
unshifted function is given by an oracle rather than being known explicitly. In particular,
while the result of [30] gives an average-case exponential separation between classical and
quantum query complexity, such a result is not possible in the model where the function is
known explicitly. In this model, there cannot be a super-polynomial speedup for quantum
computation. This follows from general results from learning theory discussed at the end of
Sect. 1. In particular, it follows that if the quantum query complexity of the problem for
a function f is Q, then the deterministic classical query complexity of the problem for the
same function is at most O(nQ2) [36].

5 Quantum rejection sampling with parallel queries

In this section we explain a hybrid approach that combines the Quantum Rejection Sampling
(QRS) algorithm for the BHSP [27] with the PGM approach. The resulting algorithm does
not require an extra amplification step for boosting the success probability, unlike the original
QRS algorithm.

12 Easy and hard functions for the Boolean hidden shift problem

5.1 Original quantum rejection sampling approach
I Theorem 16 ([27]). For a given Boolean function f : Zn2 → Z2, define unit vectors
π,σ ∈ R2n as πw := |F̂ (w)| and σw := 1/

√
2n for w ∈ Zn2 . Moreover, let

pmin := (σT · π)2 = 1
2n

(∑
w∈Zn

2

|F̂ (w)|
)2
, pmax :=

∑
k : πk>0

σ2
k = 1

2n |{w
: F̂ (w) 6= 0}|. (20)

For any desired success probability p ∈ [pmin, pmax], the quantum rejection sampling algorithm
solves BHSPf with O(1/‖εpπ→σ‖) queries, where the “water-filling” vector εpπ→σ ∈ R2n is
defined in [27].

In particular, if pmax = 1 then the QRS algorithm can achieve any success probability
arbitrarily close to 1 with O

(
1/(
√

2nF̂min)
)
queries, where F̂min := minw|F̂ (w)|. However, if

F̂ (w) = 0 for some w, then from Eq. (20) we see that pmax < 1. In this case one needs an
additional amplification step to boost the success probability (a method based on SWAP
test was proposed in [27]). We show that this step can be avoided by using t parallel queries
in the original QRS algorithm for some t ≤ n.

5.2 Non-degenerate functions with almost vanishing spectrum
Before explaining our hybrid approach, let us verify that there exist non-trivial functions
with a large fraction of their Fourier spectrum equal to zero, so the issue discussed above
applies.

It is easy to construct degenerate functions with the desired property. For example, if a
function is shift-invariant, i.e., f(x + s) = f(x) for some s ∈ Zn2 , then at least half of the
Fourier spectrum of f is guaranteed to be zero. The same also happens if f(x+ s) = f(x) + 1
(see Lemma 24 in Sect. D.1). However, such examples are not interesting, since a shift-
invariant n-argument Boolean function is equivalent to an (n−1)-argument Boolean function
(see Sect. D.1 for more details).

Instead, we consider Boolean functions defined using decision trees. A decision tree is a
binary tree whose vertices are labeled by arguments of f and whose leaves contain the values
of f . An example of such tree and the rules for evaluating the corresponding function are
given in Fig. 2.

Without loss of generality, we can consider only decision trees where on each path from
the root to a leaf no argument appears more than once (otherwise some parts of the tree
would not be reachable). The length of a longest path from the root to a leaf is the height of
the tree. If a Boolean function is defined by a decision tree of height h, then all its Fourier
coefficients with Hamming weight larger than h are zero (see Lemma 25 in Sect. D.2). This
observation can be used to construct non-degenerate Boolean functions with almost vanishing
Fourier spectrum.

I Example. The 10-argument Boolean function f10 whose decision tree is shown in Fig. 2
has no shift invariance, yet 928 (out of 210 = 1024) of its Fourier coefficients are zero.

5.3 The t-fold Fourier spectrum as t increases
Let us now show how to deal with the zero Fourier coefficients. The main idea stems from
the following observation: if St := {w ∈ Zn2 : F t(w) 6= 0} then St+1 = St + S1 (see Prop. 26
in Sect. D.3). If S1 spans Zn2 , we can apply this recursively and eliminate all zeroes from
the t-fold Fourier spectrum F t. In particular, it suffices to take t ≤ n (see Lemma 27 in

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 13

x2

x1

x5

x4

x10

0 1

1

1

x7

x5

x3

0 1

0

x6

0 x9

0 1

x7

x8

x10

x9

1 0

1

x4

x9

1 0

1

x1

1 x5

x3

1 0

x10

0 1

Figure 2 Decision tree for a 10-argument Boolean function f10. To compute the value of the
function for given input x1, . . . , x10 ∈ Zn

2 , proceed down the tree starting from the root; move left
if the corresponding argument is equal to 0 or right if it is equal to 1. Once a leaf is reached, its
label is the value of the function for the given input. For example, f10(x1, . . . , x10) evaluates to zero
when x2 = x1 = x5 = x4 = x10 = 0, since the leftmost leaf has label zero. This tree has height five.

Sect. D.3). For example, for f10 the fraction of non-zero values of F t for t = 1, 2, 3, 4 is 0.09,
0.61, 0.94, 1, respectively. In particular, F4 is non-zero everywhere.

5.4 Quantum rejection sampling with t-fold queries
We can use quantum rejection sampling with t queries in parallel to solve the BHSP. Suppose
we transform the t-fold Fourier state |Φt(s)〉 from Eq. (8) into the PGM basis vector |Es〉
defined in Eq. (15) using QRS. This corresponds to setting πw = F t(w) and σw = 1/

√
2n.

Since the circuit from Fig. 1 can be used to prepare |Φt(s)〉 with t queries, Theorem 16
still holds if |F̂ (w)| is replaced by F t(w) and the query complexity is multiplied by t. This
observation together with Lemma 27 implies that as long as f is not shift invariant, we
can recover the hidden shift s with success probability arbitrarily close to 1 using quantum
rejection sampling with some t ≤ n.

I Theorem 17. Let f : Zn2 → Z2 be a Boolean function and let p be sufficiently large.
Then BHSPf can be solved with success probability p using O(t/‖εpπ→σ‖) queries for some
t ∈ {1, . . . , n} where πw := F t(w), σw := 1/

√
2n, and the “water-filling” vector εpπ→σ ∈ R2n

is defined in [27].

6 Conclusions

A comparison of quantum query complexity bounds for solving the BHSP for different
classes of functions is given in Table 1. If the QRS algorithm works for random functions
with O(1) queries, then it is optimal up to constant factors in all three cases listed in the
table. However, from Sect. 5.1 we know that the basic QRS algorithm without amplification
performs poorly when f has many zero Fourier coefficients (which is the case, e.g., for the
decision trees considered in Sect. D.2). This suggests that the basic (unamplified) QRS
algorithm is likely not optimal in general.

The “Simon”-type approach due to [30] always has an overhead of a factor O(n), reflecting
the fact that at least n linearly independent equations are needed to solve a linear system
in n variables. (Note that this approach works in the weaker model where the unshifted
function is given by an oracle, so it still provides an upper bound when the function is known
explicitly.) The learning theory approach [37] also has logarithmic overhead. Finally, the
PGM approach performs very well in the easy cases, the bent and random functions, but

14 Easy and hard functions for the Boolean hidden shift problem

Approach Functions Comments
delta bent random

PGM O(2n) 1 2 zero error
QRS [27] O(

√
2n) 1 ?

“Simon” [30] O(n
√

2n) O(n) O(n) zero error, black-box f okay
Learning theory [37] O(n log n

√
2n) O(n log n) O(n log n) optimal up to log factors ∀ f

Lower bounds: Ω(
√

2n) 1 1

Table 1 Summary of quantum query complexity upper and lower bounds for BHSP. We do not
know the query complexity of the QRS algorithm for random functions.

fails to provide any speedup for delta functions. As mentioned in Sect. 4.3.1, this can be
attributed to the fact that Grover’s algorithm is intrinsically sequential.

In summary, none of the algorithms listed in Table 1 is optimal. However, by combining
these algorithms and possibly adding some new ideas, one might obtain an algorithm that
is optimal for all Boolean functions. In particular, the QRS approach with t-fold queries
appears promising.

We conclude by mentioning some open questions regarding the Boolean hidden shift
problem:
1. Find a query-optimal quantum algorithm for general functions (recall that the learning

theory algorithm is only optimal up to logarithmic factors [36, 37]).
2. Identify natural classes of Boolean functions lying between the two extreme cases of bent

and delta functions (say, the decision trees considered in Sect. D.2) and characterize the
quantum query complexity of the BHSP for these functions.

3. Determine the number of queries required by the QRS algorithm for random functions.
4. What is the query complexity of verifying a given shift? (A quantum procedure with

one-sided error, based on the swap test, was given in [27].)
5. What is the quantum query complexity of extracting one bit of information about the

hidden shift?
6. What is the classical query complexity of the Boolean hidden shift problem?
7. Can we say anything non-trivial about the time complexity of the Boolean hidden shift

problem, either classically or quantumly?
8. Can the BHSP for random functions be solved with a single query? Our approach

based on the PGM only gives a lower bound on the expected success probability that
approaches 2/π for large n (see Theorem 19), whereas we require a success probability
that approaches 1 as n→∞. It might be fruitful to consider querying the oracle with
non-uniform amplitudes.

Finally, it might be interesting to consider the generalization of the Boolean hidden shift
problem to the case of functions f : Znd → Zd.

Acknowledgements We thank Jérémie Roland for useful discussions and Dmitry Gavinsky
for suggesting to use decision trees to construct non-degenerate functions with many zero
Fourier coefficients. Part of this work was done while AC and MO were visiting NEC Labs,
and during the Quantum Cryptanalysis seminar (No. 11381) at Schloss Dagstuhl. This work
was supported in part by NSERC, the Ontario Ministry of Research and Innovation, and the
US ARO/DTO. MO acknowledges additional support from the DARPA QUEST program
under contract number HR0011-09-C-0047.

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 15

A Converse for bent functions

The goal of this appendix is to prove Theorem 8. First we need an alternative characterization
of bent functions.

I Proposition 18. A Boolean function f is bent if and only if (F ∗ F)(x) = δx,0.

Proof. If (F ∗ F)(x) = δx,0, then using identities from Sect. 2, we find

F̂ 2(w) = 1√
2n

(F̂ ∗ F)(w) = 1
2n

∑
x∈Zn

2

(−1)w·x(F ∗ F)(x) = 1
2n (21)

so f is bent. Conversely, if f is bent then

(F ∗ F)(w) =
√

2n ̂̂F 2(w) =
∑
x∈Zn

2

(−1)w·xF̂ 2(x) =
∑
x∈Zn

2

(−1)w·x 1
2n = δw,0 (22)

and the result follows. J

I Theorem 8. Let f : Zn2 → Z2 be a Boolean function with n ≥ 2. A quantum algorithm can
solve BHSPf exactly with a single query to Ofs

if and only if f is bent.

Proof. The most general one-query algorithm for solving BHSPf using a controlled phase
oracle (or equivalently, an oracle that computes the function in a register) performs a query
on some superposition of all binary strings x ∈ Zn2 and an extra symbol “∅” that allows for
the possibility of not querying the oracle. Without loss of generality, the initial state is

α∅|∅〉+
∑
x∈Zn

2

αx|x〉 (23)

for some amplitudes α∅ ∈ C and αx ∈ C for x ∈ Zn2 such that |α∅|2 +
∑
x∈Zn

2
|αx|2 = 1. The

oracle acts trivially on |∅〉, so the state after the query is

|φs〉 := α∅|∅〉+
∑
x∈Zn

2

αx(−1)f(x+s)|x〉 (24)

where s ∈ Zn2 is the hidden shift. For an exact algorithm, we must have

∀ s 6= s′ : 0 = 〈φs|φs′〉 = |α∅|2 +
∑
x∈Zn

2

|αx|2(−1)f(x+s)+f(x+s′). (25)

We can describe Eq. (25) as a linear system of equations. Define p∅ := |α∅|2 and let
p be a sub-normalized probability distribution on Zn2 defined by px := |αx|2. Let M be a
rectangular matrix with rows labeled by elements of A := {(s, s′) ∈ Zn2 × Zn2 : s 6= s′} and
columns labeled by x ∈ Zn2 , with entries

Mss′,x := (−1)f(x+s)+f(x+s′). (26)

Then Eq. (25) is equivalent to

Mp = −p∅u (27)

where u is the all-ones vector indexed by elements of A. In other words, there exists an exact
one-query quantum algorithm for solving BHSPf if and only if Eq. (27) holds for some p∅
and p that together form a probability distribution on {∅} ∪ Zn2 .

16 Easy and hard functions for the Boolean hidden shift problem

If f is bent, there is an exact one-query quantum algorithm corresponding to p∅ = 0 and
p = µ, the uniform distribution (i.e., µx := 1/2n for all x ∈ Zn2). Notice that the entries of
the vector Mµ are

(Mµ)ss′ = 1
2n

∑
x∈Zn

2

Mss′,x (28)

= 1
2n

∑
x∈Zn

2

(−1)f(x+s)+f(x+s′) (29)

= 1
2n

∑
x∈Zn

2

(−1)f(x)+f(x+s+s′) (30)

= (F ∗ F)(s+ s′). (31)

Prop. 18 implies that (F ∗ F)(x) = δx,0, so (Mp)ss′ = 0 for all s 6= s′. Since p∅ = 0, Eq. (27)
holds and the algorithm is exact.

To prove the converse, assume there is an exact one-query quantum algorithm that solves
BHSPf . Then Eq. (27) holds for some p∅ and p that form a probability distribution on
{∅} ∪ Zn2 .

First, we claim that without loss of generality, the probabilities px can be set equal for
all x ∈ Zn2 . More precisely, we set p̄ := (1 − p∅)µ and show that Eq. (27) still holds if we
replace p by p̄. Note that 1− p∅ =

∑
y∈Zn

2
px+y for any x ∈ Zn2 , so

(Mp̄)ss′ = 1
2n

∑
x∈Zn

2

Mss′,x (1− p∅) (32)

= 1
2n

∑
x∈Zn

2

(−1)f(x+s)+f(x+s′)
∑
y∈Zn

2

px+y (33)

= 1
2n
∑
y∈Zn

2

∑
x∈Zn

2

(−1)f(x+y+s)+f(x+y+s′)px (34)

= 1
2n
∑
y∈Zn

2

∑
x∈Zn

2

M(y+s,y+s′),x px (35)

= 1
2n
∑
y∈Zn

2

(Mp)(y+s,y+s′) (36)

= −p∅ (37)

where the last equality follows since p is a solution of Eq. (27). We conclude that p̄ is also a
solution of Eq. (27), i.e.,

(1− p∅)Mµ = −p∅u. (38)

Recall from Eqs. (28) to (31) that (Mµ)ss′ = (F ∗F)(s+s′), which together with Eq. (38)
implies that (1− p∅)(F ∗ F)(s+ s′) = −p∅ for all s 6= s′. Clearly, there is no solution with
p∅ = 1. Thus we have

(F ∗ F)(w) = − p∅
1− p∅

≤ 0 (39)

for any w 6= 0. Observe that (F ∗ F)(w) =
∑
x∈Zn

2

1
2n (−1)f(x)+f(x+w) is an integer multiple

of 1/2n and (F ∗ F)(0) = 1 for any f . Thus, we can rewrite Eq. (39) as

(F ∗ F)(w) =
{

1 if w = 0,
−k/2n otherwise

(40)

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 17

for some integer k ≥ 0. Therefore∑
w∈Zn

2

(F ∗ F)(w) = 1− 2n − 1
2n k. (41)

On the other hand,∑
w∈Zn

2

(F ∗ F)(w) =
∑
w∈Zn

2

∑
x∈Zn

2

1
2n (−1)f(x)+f(x+w) (42)

=
[

1√
2n

∑
x∈Zn

2

(−1)f(x)
]2

(43)

= 1
2n

[∑
x∈Zn

2

(
1− 2f(x)

)]2
(44)

= 1
2n
(
2n − 2|f |

)2
. (45)

Putting this together with Eq. (41) gives(
2n − 2|f |

)2 = 2n − (2n − 1)k. (46)

This equation has no solutions for k ≥ 2 since the right-hand side is negative (for n ≥ 2).
Similarly, there are no solutions for k = 1 since the left-hand side is even and the right-hand
side is odd. Therefore k = 0 (and hence p∅ = 0), which implies that f is bent by Eq. (40)
and Prop. 18. J

Note that there is a solution to Eq. (46) with k = 2 and n = 1, provided |f | = 1. This
trivial case involves the one-argument Boolean functions f(x) = x and f(x) = NOT(x). For
these functions which we can choose p∅ = 1/2 and p0 = p1 = 1/4 to determine the hidden
shift exactly with one query. A deterministic classical algorithm can also solve BHSPf with
one query for these functions.

B Success probability of one-query PGM for random functions

In this appendix, we show that for one query, the expected success probability of PGM(f, 1)
approaches a constant less than 1 for large n. This suggests that one query might not be
enough to solve the problem with success probability arbitrarily close to 1. However, we do
not know if the PGM algorithm has optimal success probability in the one-query case.

I Theorem 19. Let f be an n-argument Boolean function chosen uniformly at random and
suppose that a hidden shift for f is chosen adversarially. Then PGM(f, 1) solves BHSPf

with one query to Ofs
and expected success probability p̄ ≥ 1/2 over the choice of f . Indeed,

p̄ ≥ 2/π − o(1) as n→∞.

Proof. Recall from Eq. (16) in Lemma 13 that PGM(f, t) recovers the hidden shift of f
correctly after t queries with success probability pf (t). If the function f is chosen uniformly
at random, then the expected success probability after t queries is

p̄(t) := 1
22n

∑
f

pf (t) = 1
22n

∑
f

1
2n

(∑
w∈Zn

2

F t(w)
)2

. (47)

18 Easy and hard functions for the Boolean hidden shift problem

We can obtain a lower bound on p̄(t) using the Cauchy-Schwarz inequality:

p̄(t) ≥ 1
2n

1
(22n)2

(∑
f

∑
w∈Zn

2

F t(w)
)2

= 2n
(

1
2n

∑
w∈Zn

2

1
22n

∑
f

F t(w)
)2

=: p̃(t). (48)

Taking t = 1, this gives

p̄ ≥ 1
2n

1
(22n)2

(∑
f

∑
w∈Zn

2

|F̂ (w)|
)2

(49)

= 1
2n

(
1

22n

∑
w∈Zn

2

∑
f

∣∣∣∣ 1
2n

∑
x∈Zn

2

(−1)w·x+f(x)
∣∣∣∣
)2

. (50)

For each w we can define f ′(x) := w · x + f(x) and change the order of summation by
summing over f ′ instead of f . The value of this sum does not depend on w, so we get

p̄ ≥ 1
2n

 1
22n

∑
f

∣∣∣∣∣∑
x∈Zn

2

(−1)f(x)

∣∣∣∣∣
2

= L(2n)2

2n (51)

where

L(N) := 1
2N

∑
z∈{1,−1}N

∣∣∣∣∣
N∑
i=1

zi

∣∣∣∣∣ (52)

is the expected distance traveled by N steps of a random walk on a line (where each step is
of size one and is to the left or the right with equal probability). It remains to lower bound
L(N).

Let N = 2m for some integer m ≥ 1. Using standard identities for sums of binomial
coefficients, we compute

L(2m) = 1
22m · 2

m∑
k=0

(2m− 2k)
(

2m
k

)
(53)

= 1
22m · 2m

(
2m
m

)
. (54)

Since the central binomial coefficient satisfies [50, p. 48](
2m
m

)
≥ 4m√

4m
, (55)

we find

L(2m) ≥
√
m. (56)

For N = 2n this gives L(2n) ≥
√

2n/2. We plug this in Eq. (51) and get p̄ ≥ 1/2.
In fact, according to Stirling’s formula

(2m
m

)
∼ 4m/

√
πm as m → ∞. This means that

L(N) ∼
√

2N/π as N →∞ and our lower bound on p̄ approaches 2/π as n→∞. J

C Two queries suffice for random functions

In this appendix we prove the following:

I Theorem 15. Let f be an n-argument Boolean function chosen uniformly at random and
suppose that a hidden shift for f is chosen adversarially. Then PGM(f, 2) solves BHSPf

with expected success probability p̄ ≥ 1− 3
64 · 2

−n.

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 19

C.1 Strategy
Our goal is lower bound p̃(t), as defined in Eq. (48). Let us define a random variable X over
Boolean functions f : Zn2 → Z2 and binary strings w ∈ Zn2 , whose value is

X :=
[
F t(w)

]2 =
[
F̂ 2]∗t(w), (57)

where f and w are chosen uniformly at random. Notice from Eq. (48) that

p̃(t) = 2n
(
E[
√
X]
)2
. (58)

Clearly, for any x ≥ 0 we have

E[
√
X] ≥

√
x Pr(X ≥ x). (59)

Our strategy is to use a one-sided version of Chebyshev’s inequality, known as Cantelli’s
inequality, to lower-bound Pr(X ≥ x), and then choose a value of x that maximizes our lower
bound on p̃(t).

I Fact (Cantelli’s inequality). Let µ := E[X] and σ2 := E[X2]−µ2 be the mean and variance
of X, respectively. Then Pr(X − µ ≥ kσ) ≥ 1

1+k2 .

Alternatively, if we substitute X by −X and reverse the inequality then

Pr(X ≥ µ− kσ) ≥ k2

1 + k2 . (60)

If we substitute x := µ− kσ in Eq. (59), then according to the above inequality,

E[
√
X] ≥

√
µ− kσ k2

1 + k2 . (61)

Using Eq. (48), Eq. (58), and Eq. (61) gives

p̄(t) ≥ p̃(t) = 2n
(
E[
√
X]
)2 ≥ 2n(µ− kσ)

(
1 + 1

k2

)−2
. (62)

It remains to lower bound µ (Sect. C.2), upper bound σ (Sect. C.3), and make a reasonable
choice of the deviation parameter k (Sect. C.4).

C.2 Computing the mean
Let us compute the mean

µ = E[X] = 1
22n

∑
f

1
2n

∑
w∈Zn

2

[
F̂ 2]∗t(w) (63)

for any integer t ≥ 1. Notice that∑
w∈Zn

2

[
F̂ 2]∗t(w) =

∑
w,y1,...,yt−1∈Zn

2

F̂ (y1)2 · · · F̂ (yt−1)2F̂
(
w − (y1 + · · ·+ yt−1)

)2 (64)

=
∑

y1,...,yt∈Zn
2

F̂ (y1)2 · · · F̂ (yt−1)2F̂ (yt)2 (65)

=
(∑
y∈Zn

2

F̂ (y)2

)t
(66)

= 1 (67)

20 Easy and hard functions for the Boolean hidden shift problem

by unitarity of the Fourier transform (see Plancherel’s identity in Sect. 2). We conclude that

µ = 1
2n (68)

independent of t.

C.3 Computing the variance
Next we compute the variance

E[X2] = 1
22n

∑
f

1
2n

∑
w∈Zn

2

([
F̂ 2]∗t(w)

)2
. (69)

Note that from Eq. (2) and Plancherel identity we have

∑
w∈Zn

2

([
F̂ 2]∗t(w)

)2
=
∑
w∈Zn

2

(
1√
2n

̂(F ∗ F)t (w)
)2

= 1
2n

∑
w∈Zn

2

(F ∗ F)2t(w). (70)

We substitute this in Eq. (69) and get

E[X2] = 1
22n

∑
f

1
2n

(
1
2n

∑
w∈Zn

2

(F ∗ F)2t(w)
)

(71)

= 1
22n

∑
w∈Zn

2

1
22n

∑
f

(
1
2n

∑
x∈Zn

2

(−1)f(x)+f(w+x)

)2t

. (72)

C.3.1 Counting pairings
Let us introduce some combinatorial ideas that will help us to evaluate the sum in Eq. (72).

I Definition 20. Let S be a finite set and let l ≥ 1 be an integer. We say that a1, a2, . . . , a2l ∈
S are paired if there exists a permutation π of {1, 2, . . . , 2l} such that aπ(2i−1) = aπ(2i) for
all i ∈ {1, 2, . . . , l}. Define ∆: S2l → Z2 as

∆(a1, a2, . . . , a2l) :=
{

1 if a1, a2, . . . , a2l are paired,
0 otherwise.

(73)

Notice that for l = 2 we have ∆(a, b, c, d) = δa,bδc,d + δa,cδb,d + δa,dδb,c − 2δa,b,c,d, so the
number of ways to pair four elements of S is∑

a,b,c,d∈S

∆(a, b, c, d) = 3
∑

a,b,c,d∈S

δa,bδc,d − 2
∑

a,b,c,d∈S

δa,b,c,d = 3|S|2 − 2|S|. (74)

I Proposition 21. Let S = {0, 1}n. Then for any a1, a2, . . . , a2l ∈ S,

1
22n

∑
f

(−1)f(a1)+f(a2)+···+f(a2l) = ∆(a1, a2, . . . , a2l) (75)

where the sum is over all Boolean functions f : Zn2 → Z2.

Proof. Clearly, if a1, a2, . . . , a2l are paired, then the exponent of −1 is even and the sum is
1. Otherwise, we can omit the paired arguments, and all remaining ai are distinct. Since we
are averaging over all f and the values that f takes at distinct points are independent, the
sum vanishes. J

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 21

We can use this observation to rewrite Eq. (72) as follows:

E[X2] = 1
22(t+1)n

∑
w∈Zn

2

∑
a1,...,a2t∈Zn

2

∆(a1, a1 + w, a2, a2 + w, . . . , a2l, a2l + w). (76)

C.3.2 Evaluating the variance at t = 2
In general, the variance depends on t. However, we are interested only in the t = 2 case, so
from now on we will assume that t = 2 and do not write the dependence on t explicitly. For
t = 2, Eq. (76) reads

E[X2] = 1
26n

∑
w∈Zn

2

∑
a,b,c,d∈Zn

2

∆(a, a+ w, b, b+ w, c, c+ w, d, d+ w). (77)

We consider two cases. First, when w = 0, the eight arguments of ∆ are always paired,
so the inner sum in Eq. (77) evaluates to∑

a,b,c,d∈Zn
2

∆(a, a, b, b, c, c, d, d) = 24n. (78)

Now suppose w 6= 0. Then wi = 1 for some i ∈ {1, . . . , n} and thus either ai = 0 or
ai + wi = 0 (and similarly for b, c, and d). In total there are 24 = 16 cases. Since ∆ is
invariant under permutations of arguments, we can substitute a by a+ w, which effectively
swaps the arguments a and a+ w. By performing a similar operation for b, c, and d, we can
ensure that ai = bi = ci = di = 0. Among the eight arguments of ∆ in Eq. (77), arguments
a, b, c, and d can be paired only among themselves since wi = 1. Moreover, once a and b
are paired, then so are a+ w and b+ w. Thus, we can restrict the ith bit of w to be 1 and
ignore the four extra arguments of ∆. Then the inner sum in Eq. (77) becomes

16
∑

a,b,c,d∈Zn−1
2

∆(a, b, c, d) = 16 ·
(
3 · 22n−2 − 2 · 2n−1) = 12 · 22n − 16 · 2n, (79)

where the first equality follows from Eq. (74) with S = Zn−1
2 .

By combining Eq. (78) and Eq. (79), we can rewrite Eq. (77) as

E[X2] = 1
26n

(
24n + (2n − 1) · (12 · 22n − 16 · 2n)

)
(80)

= 1
22n + 12

23n −
28
24n + 16

25n . (81)

Using the value of µ from Eq. (68), we see that for n ≥ 1 the variance is

σ2 = E[X2]− µ2 = 12
23n −

28
24n + 16

25n ≥
1

23n . (82)

C.4 Choosing the deviation
To complete the lower bound on the success probability, recall from Eq. (62) that

p̄ ≥ 2n(µ− kσ)
(

1 + 1
k2

)−2
. (83)

Substituting the bounds on µ and σ from Eq. (68) and Eq. (82), respectively, gives

p̄ ≥
(

1− k√
2n

)(
1 + 1

k2

)−2
. (84)

22 Easy and hard functions for the Boolean hidden shift problem

Notice that
(
1 + 1

k2

)−2 ≥ 1− 2
k2 for any k, so

p̄ ≥
(

1− k√
2n

)(
1− 2

k2

)
≥ 1− k√

2n
− 2
k2 . (85)

It remains to make a good choice for k. Let α =
√

2n and k = αc for some c > 0. Then

p̄ ≥ 1− αc−1 − 2α−2c. (86)

Choosing c = 1/3 (i.e., k = 2n/6) gives

p̄ ≥ 1− 3
64 · 2

−n. (87)

This concludes the proof of Theorem 15.

D Zeroes in the Fourier spectrum

D.1 Undetectable shifts and anti-shifts
In some cases the Boolean hidden shift problem cannot be solved exactly in principle. For
example, if the function f is invariant under some shift, then the hidden shift cannot be
uniquely determined, as the oracle does not contain enough information (an extreme case of
this is a constant function which is invariant under all shifts). In this section we consider
such degenerate functions and analyze their Fourier spectra.

I Definition 22. Let b ∈ Z2. We say that s is a b-shift for a function f : Zn2 → Z2 if f has
the following property: ∀x ∈ Zn2 : f(x+ s) = f(x) + b. We refer to 0-shifts as undetectable
shifts since they cannot be distinguished from the trivial shift s = 0. We also refer to 1-shifts
as anti-shifts since they negate the truth table of f .

The following result provides an alternative characterization of b-shifts. It relates the
maximal and minimal autocorrelation value of F to undetectable shifts and anti-shifts of f ,
respectively (see Definition 5 for the definition of convolution).

I Proposition 23. The string s ∈ Zn2 is a b-shift for function f : Zn2 → Z2 if and only if
(F ∗ F)(s) = (−1)b, where F (x) := (−1)f(x)/

√
2n for all x ∈ Zn2 .

Proof. Let s be a b-shift of f . Then

(F ∗ F)(s) =
∑
x∈Zn

2

F (x)F (x+ s) (88)

= 1
2n

∑
x∈Zn

2

(−1)f(x)(−1)f(x)+b (89)

= 1
2n

∑
x∈Zn

2

(−1)b (90)

= (−1)b. (91)

For the converse, note that all terms on the right-hand side of Eq. (88) have absolute value
equal to 1/2n. In total there are 2n terms, so |(F ∗ F)(s)| ≤ 1. If this bound is saturated,
then all terms in Eq. (88) must have the same phase. Thus, s is a b-shift for some b ∈ Z2. J

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 23

If s′ and s′′ are undetectable shifts of f then so is s′+s′′, since f(x+s′+s′′) = f(x+s′) =
f(x) for any x. Hence the set of all undetectable shifts forms a linear subspace of Zn2 . Also,
if a′ and a′′ are anti-shifts, then a′ + a′′ is an undetectable shift. In particular, a Boolean
function with no undetectable shifts can have at most one anti-shift.

If we want to solve the hidden shift problem for a function f that has an undetectable
shift s, we can apply an invertible linear transformation A on the input variables such that
A · 0 . . . 01 = s. Thus we simulate the oracle for the function f ′(x) := f(A · x) such that
f ′(x + 0 . . . 01) = f ′(x). Notice that f ′ is effectively an (n − 1)-argument function, since
it does not depend on the last argument. Similarly, if f has a k-dimensional subspace of
undetectable shifts, it is effectively an (n− k)-argument function. Solving the hidden shift
problem for such a function is equivalent to solving it for the reduced (n − k)-argument
function f ′ and picking arbitrary values for the remaining k arguments. In this sense, Boolean
functions with undetectable shifts are degenerate and we can consider only functions with no
undetectable shifts without loss of generality.

Similarly, if f has an anti-shift, we can use the same construction to show that it is
equivalent to a function f ′ such that f ′(x1, . . . , xn−1, xn) = f ′′(x1, . . . , xn−1)⊕ xn where f ′′
is an (n− 1)-argument function. To solve the hidden shift problem for f ′, we first solve it for
f ′′ and then learn the value of the remaining argument xn via a single query. In this sense,
Boolean functions with anti-shifts are also degenerate. Thus, without loss of generality we
can consider the hidden shift problem only for non-degenerate functions, i.e., ones that have
no b-shifts for any b ∈ Z2.

Finally, let us show that Boolean functions with b-shifts have at least half of their Fourier
coefficients equal to zero. Let S be an (n− 1)-dimensional subspace of Zn2 , and let us denote
the two cosets of S in Zn2 by Sb := S + br, where b ∈ Z2 and r ∈ Zn2 \ S is any representative
of the coset for b = 1. The following result relates the property of having a b-shift to the
property of having zero Fourier coefficients with special structure.

I Lemma 24. A function f : Zn2 → Z2 has a non-zero b-shift if and only if there is an
(n− 1)-dimensional subspace S ⊂ Zn2 such that F̂ (w) = 0 when w /∈ Sb.

Proof. Assume that s is a b-shift of f . Then

F̂ (w) = 1
2n

∑
x∈Zn

2

(−1)w·x+f(x) (92)

= 1
2n

∑
x∈Zn

2

(−1)w·(x+s)+f(x+s) (93)

= 1
2n

∑
x∈Zn

2

(−1)w·(x+s)+f(x)+b (94)

= (−1)w·s+b 1
2n

∑
x∈Zn

2

(−1)w·x+f(x) (95)

= (−1)w·s+bF̂ (w). (96)

Thus, F̂ (w) = 0 when w · s 6= b. Let S be the (n− 1)-dimensional subspace of Zn2 orthogonal
to s. Then w ∈ Sb ⇔ w · s = b and thus F̂ (w) = 0 when w /∈ Sb.

For the converse, assume that S is an (n− 1)-dimensional subspace of Zn2 and F̂ (w) = 0
when w /∈ Sb. Let s ∈ Zn2 be the unique non-zero vector orthogonal to S. Then Sb =

24 Easy and hard functions for the Boolean hidden shift problem

{w : w · s = b} and we have

F (x+ s) = ˆ̂
F (x+ s) (97)

= 1√
2n

∑
w∈Zn

2

(−1)(x+s)·wF̂ (w) (98)

= 1√
2n

∑
w∈Sb

(−1)(x+s)·wF̂ (w) (99)

= (−1)b 1√
2n

∑
w∈Sb

(−1)x·wF̂ (w) (100)

= (−1)bF (x). (101)

Hence f(x+ s) = f(x) + b and thus s is a b-shift of f . J

D.2 Decision trees
In the previous section we discussed degenerate cases of Boolean functions that have many
zero Fourier coefficients. In this section we explain how to construct non-degenerate examples.

I Lemma 25. If f is a Boolean function defined by a decision tree of height h then F̂ (w) = 0
when |w| > h.

Proof. Since the Boolean function f is given by a decision tree, let {P1, . . . , Pm} be the set
of all paths that start at the root of this tree and end at a parent of a leaf labeled by 1.
For example, P1 = {x2, x1, x5, x4, x10} and P2 = {x2, x7, x1} are two such paths for the tree
shown in Fig. 2. We can write the disjunctive normal form of f as

f(x) =
m∨
i=1

∧
j∈Pi

(
b

(i)
j ⊕ xj

)
(102)

where “∨” and “∧” represent logical OR and AND functions, respectively, and b
(i)
j ∈ Z2

is equal to 1 if and only if variable xj has to be negated on path Pi. For example, x10 is
negated on P1, and x2 and x7 are negated on P2.

To prove the desired result about the Fourier coefficients of f , we switch from Boolean
functions to (±1)-valued functions with (±1)-valued variables. In particular, we replace
f : Zn2 → Z2 by a function F̃ : {1,−1}n → {1,−1} in variables Xi ∈ {1,−1} such that

F̃
(
(−1)x

)
= (−1)f(x) (103)

for all x ∈ Zn2 .
Notice that the (±1)-valued versions of logical NOT, AND, and OR functions are given

by the following polynomials:

NOT(X) := −X, (104)

AND(X1, . . . , Xk) := 1− 2
k∏
i=1

1−Xi

2 , (105)

OR(X1, . . . , Xk) := −1− 2
k∏
i=1

1 +Xi

2 . (106)

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 25

We can use these polynomials and Eq. (102) to write F̃ as

F̃ (X) = ORm
i=1 ANDj∈Pi

(−1)b
(i)
j Xj , (107)

where ORm
i=1 Xi stands for OR(X1, . . . , Xm) and a similar convention is used for AND.

When we determine the value of f using a decision tree, each input x ∈ Zn2 leads to
a unique leaf of the tree. Thus, when f(x) = 1, there is a unique value of i in Eq. (102)
for which the corresponding term in the disjunction is satisfied. With this promise we can
simplify Eq. (106) to

OR(X1, . . . , Xk) :=
k∑
i=1

(Xi − 1) + 1. (108)

If we use this in Eq. (107), we get

F̃ (X) =
m∑
i=1

(
ANDj∈Pi(−1)b

(i)
j Xj − 1

)
+ 1, (109)

= 1− 2
m∑
i=1

∏
j∈Pi

1− (−1)b
(i)
j Xj

2 . (110)

Notice that this polynomial has degree at most maxi|Pi| ≤ h, the height of the tree. On the
other hand, the Fourier transform is self-inverse (see Sect. 2), so

(−1)f(x) =
√

2nF (x) =
√

2n ˆ̂
F (x) =

∑
w∈Zn

2

(−1)x·wF̂ (w). (111)

The (±1)-valued equivalent of this equation is

F̃ (X) =
∑
w∈Zn

2

F̂ (w)
∏

i : wi=1
Xi. (112)

By comparing this with Eq. (110) we conclude that F̂ (w) = 0 when |w| > h. J

According to this lemma, we can use the following strategy to construct Boolean functions
with a large fraction of their Fourier coefficients equal to zero. We pick a random decision
tree with many variables but small height, i.e., large n and small h (notice that n ≤ 2h − 1).
Then we are guaranteed that the fraction of non-zero Fourier coefficients does not exceed

1
2n

h∑
k=0

(
n

k

)
≤ 2H(h

n)n

2n =
(

1
2n

)1−H(h
n)

(113)

where H(p) := −p log2 p− (1− p) log2(1− p) is the binary entropy function. In particular, if
h ∼ log2 n then this fraction vanishes as n goes to infinity, i.e., F̂ is zero almost everywhere.

However, notice that when the number of zero Fourier coefficients is large, it is also
more likely to pick a degenerate Boolean function (i.e., one that has a b-shift for some
b ∈ Z2); we would like to avoid this. Recall from Lemma 24 that f has a b-shift only if all its
non-zero Fourier coefficients lie in a coset Sb of some (n− 1)-dimensional subspace S ⊂ Zn2 .
Unfortunately, we do not know the probability that a random decision tree with n variables
and height log2 n corresponds to a Boolean function with this property.

26 Easy and hard functions for the Boolean hidden shift problem

D.3 Zeroes in the t-fold Fourier spectrum
In this section we study the fraction of zeroes in the t-fold Fourier spectrum F t of f as
a function of t. The main observation is Lemma 27, which shows that unless f has an
undetectable shift, F t becomes non-zero everywhere when t is sufficiently large. This means
that even for functions with a high density of zeroes in the Fourier spectrum, one can
boost the success probability of the basic quantum rejection sampling approach discussed in
Sect. 5.1 by using the t-fold generalization from Sect. 5.4.

I Proposition 26. Let St := {w ∈ Zn2 : F t(w) 6= 0} be the set of strings for which F t is
non-zero. Then St+1 = St + S1 where A+B := {a+ b : a ∈ A, b ∈ B}.

Proof. Note that
[
F t+1]2 =

[
F t
]2∗ [F1]2 from Definition 6. Also, F t(w) ≥ 0 for any t ≥ 1

and w ∈ Zn2 . Assume that w0 ∈ St and w1 ∈ S1. Then F t(w0) > 0 and F1(w1) > 0, so[
F t+1]2(w0 + w1) =

∑
x∈Zn

2

[
F t
]2(x) ·

[
F1]2(w0 + w1 − x) (114)

≥
[
F t
]2(w0) ·

[
F1]2(w0 + w1 − w0) > 0. (115)

Thus w0 + w1 ∈ St+1 and hence St + S1 ⊆ St+1. Conversely, if w cannot be written in the
form w0 +w1 for some w0 ∈ St and w1 ∈ S1 then F t+1(w) = 0, since all terms of the sum in
Eq. (114) vanish. J

I Lemma 27. If f : Zn2 → Z2 does not have an undetectable shift, then there exists t ∈
{1, . . . , n} such that F t is non-zero everywhere.

Proof. If S1 spans the whole space Zn2 , we can inductively apply Prop. 26 to conclude that
St = Zn2 for some sufficiently large t. In particular, it suffices to take t ≤ n (say, if S1 is the
standard basis). On the other hand, if S1 spans only a proper subspace of Zn2 , then it is
contained in some (n− 1)-dimensional subspace S0. Since F1 = |F̂ | vanishes outside of S0,
we conclude by Lemma 24 that f has an undetectable shift. J

References
1 Andrew M. Childs and Wim van Dam. Quantum algorithms for algebraic problems. Rev.

Mod. Phys., 82(1):1–52, Jan 2010. arXiv:0812.0380, doi:10.1103/RevModPhys.82.1.
2 David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation.

Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
439(1907):553–558, 1992. doi:10.1098/rspa.1992.0167.

3 Daniel R. Simon. On the power of quantum computation. In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (FOCS 1994), pages 116–123, Nov 1994.
doi:10.1109/SFCS.1994.365701.

4 Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.
Earlier version in FOCS 1994, pp. 124–134. arXiv:quant-ph/9508027, doi:10.1137/
S0097539795293172.

5 Alexei Kitaev. Quantum measurements and the Abelian Stabilizer Problem. 1995. arXiv:
quant-ph/9511026.

6 Richard Jozsa. Quantum algorithms and the Fourier transform. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
454(1969):323–337, 1998. arXiv:quant-ph/9707033, doi:10.1098/rspa.1998.0163.

http://arxiv.org/abs/0812.0380
http://dx.doi.org/10.1103/RevModPhys.82.1
http://dx.doi.org/10.1098/rspa.1992.0167
http://dx.doi.org/10.1109/SFCS.1994.365701
http://arxiv.org/abs/quant-ph/9508027
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9707033
http://dx.doi.org/10.1098/rspa.1998.0163

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 27

7 Michele Mosca and Artur Ekert. The hidden subgroup problem and eigenvalue esti-
mation on a quantum computer. In Quantum Computing and Quantum Communica-
tions, volume 1509 of Lecture Notes in Computer Science, pages 174–188. Springer, 1999.
arXiv:quant-ph/9903071, doi:10.1007/3-540-49208-9_15.

8 Richard Jozsa. Quantum factoring, discrete logarithms, and the hidden subgroup problem.
Computing in Science Engineering, 3(2):34–43, Mar/Apr 2001. arXiv:quant-ph/0012084,
doi:10.1109/5992.909000.

9 Sean Hallgren. Polynomial-time quantum algorithms for Pell’s equation and the principal
ideal problem. Journal of the ACM, 54(1):4:1–4:19, Mar 2007. doi:10.1145/1206035.
1206039.

10 Dan Boneh and Richard Lipton. Quantum cryptanalysis of hidden linear functions. In
Advances in Cryptology – CRYPTO 1995, volume 963 of Lecture Notes in Computer Science,
pages 424–437. Springer, 1995. doi:10.1007/3-540-44750-4_34.

11 Robert Beals. Quantum computation of Fourier transforms over symmetric groups. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC 1997),
pages 48–53. ACM, 1997. doi:10.1145/258533.258548.

12 Peter Høyer. Efficient quantum transforms. 1997. arXiv:quant-ph/9702028.
13 Mark Ettinger and Peter Høyer. A quantum observable for the graph isomorphism problem.

1999. arXiv:quant-ph/9901029.
14 Oded Regev. Quantum computation and lattice problems. SIAM Journal on Computing,

33(3):738–760, 2004. arXiv:cs/0304005, doi:10.1137/S0097539703440678.
15 Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden sub-

group problem. SIAM Journal on Computing, 35(1):170–188, 2005. arXiv:quant-ph/
0302112, doi:10.1137/S0097539703436345.

16 Oded Regev. A subexponential time algorithm for the dihedral hidden subgroup problem
with polynomial space. 2004. arXiv:quant-ph/0406151.

17 Greg Kuperberg. Another subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. 2011. arXiv:1112.3333.

18 Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve isoge-
nies in quantum subexponential time. 2010. arXiv:1012.4019.

19 Mark Ettinger and Peter Høyer. On quantum algorithms for noncommutative hidden
subgroups. Advances in Applied Mathematics, 25(3):239–251, 2000. arXiv:quant-ph/
9807029, doi:10.1006/aama.2000.0699.

20 Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some hidden shift
problems. SIAM Journal on Computing, 36(3):763–778, 2006. arXiv:quant-ph/0211140,
doi:10.1137/S009753970343141X.

21 Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and Pranab Sen. Hidden
translation and orbit coset in quantum computing. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing (STOC 2003), pages 1–9. ACM, 2002. arXiv:
quant-ph/0211091, doi:10.1145/780542.780544.

22 Cristopher Moore, Daniel Rockmore, Alexander Russell, and Leonard J. Schulman. The
power of strong Fourier sampling: Quantum algorithms for affine groups and hidden shifts.
SIAM Journal on Computing, 37(3):938–958, Jun 2007. arXiv:quant-ph/0503095, doi:
10.1137/S0097539705447177.

23 Andrew M. Childs and Pawel Wocjan. On the quantum hardness of solving isomor-
phism problems as nonabelian hidden shift problems. Quantum Information and Computa-
tion, 7(5):504–521, Jul 2007. URL: http://www.rintonpress.com/journals/qiconline.
html#v7n56, arXiv:quant-ph/0510185.

24 Andrew M. Childs and Wim van Dam. Quantum algorithm for a generalized hidden
shift problem. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms

http://arxiv.org/abs/quant-ph/9903071
http://dx.doi.org/10.1007/3-540-49208-9_15
http://arxiv.org/abs/quant-ph/0012084
http://dx.doi.org/10.1109/5992.909000
http://dx.doi.org/10.1145/1206035.1206039
http://dx.doi.org/10.1145/1206035.1206039
http://dx.doi.org/10.1007/3-540-44750-4_34
http://dx.doi.org/10.1145/258533.258548
http://arxiv.org/abs/quant-ph/9702028
http://arxiv.org/abs/quant-ph/9901029
http://arxiv.org/abs/cs/0304005
http://dx.doi.org/10.1137/S0097539703440678
http://arxiv.org/abs/quant-ph/0302112
http://arxiv.org/abs/quant-ph/0302112
http://dx.doi.org/10.1137/S0097539703436345
http://arxiv.org/abs/quant-ph/0406151
http://arxiv.org/abs/1112.3333
http://arxiv.org/abs/1012.4019
http://arxiv.org/abs/quant-ph/9807029
http://arxiv.org/abs/quant-ph/9807029
http://dx.doi.org/10.1006/aama.2000.0699
http://arxiv.org/abs/quant-ph/0211140
http://dx.doi.org/10.1137/S009753970343141X
http://arxiv.org/abs/quant-ph/0211091
http://arxiv.org/abs/quant-ph/0211091
http://dx.doi.org/10.1145/780542.780544
http://arxiv.org/abs/quant-ph/0503095
http://dx.doi.org/10.1137/S0097539705447177
http://dx.doi.org/10.1137/S0097539705447177
http://www.rintonpress.com/journals/qiconline.html#v7n56
http://www.rintonpress.com/journals/qiconline.html#v7n56
http://arxiv.org/abs/quant-ph/0510185

28 Easy and hard functions for the Boolean hidden shift problem

(SODA 2007), pages 1225–1232. SIAM, 2007. URL: http://dl.acm.org/citation.cfm?
id=1283383.1283515, arXiv:quant-ph/0507190.

25 Gábor Ivanyos. On solving systems of random linear disequations. Quantum Information
and Computation, 8(6&7):579–594, 2008. URL: http://www.rintonpress.com/journals/
qiconline.html#v8n67, arXiv:0704.2988.

26 Ivan B. Damgård. On the randomness of Legendre and Jacobi sequences. In Advances
in Cryptology – CRYPTO 1988, volume 403 of Lecture Notes in Computer Science, pages
163–172. Springer, 1990. doi:10.1007/0-387-34799-2_13.

27 Maris Ozols, Martin Roetteler, and Jérémie Roland. Quantum rejection sampling. In
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference (ITCS
2012), pages 290–308. ACM, 2012. arXiv:1103.2774, doi:10.1145/2090236.2090261.

28 Martin Rötteler. Quantum algorithms to solve the hidden shift problem for quadratics and
for functions of large Gowers norm. In Proceedings of the 34st International Symposium
on Mathematical Foundations of Computer Science (MFCS 2009), volume 5734 of Lecture
Notes in Computer Science, pages 663–674. Springer, 2009. arXiv:0911.4724, doi:10.
1007/978-3-642-03816-7_56.

29 Martin Rötteler. Quantum algorithms for highly non-linear Boolean functions. In Pro-
ceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages
448–457. SIAM, 2010. URL: http://dl.acm.org/citation.cfm?id=1873601.1873638,
arXiv:0811.3208.

30 Dmitry Gavinsky, Martin Roetteler, and Jérémie Roland. Quantum algorithm for the
Boolean hidden shift problem. In Computing and Combinatorics, volume 6842 of Lecture
Notes in Computer Science, pages 158–167. Springer, 2011. arXiv:1103.3017, doi:10.
1007/978-3-642-22685-4_14.

31 Mirmojtaba Gharibi. The non-injective hidden shift problem. Master’s thesis, University of
Waterloo, Canada, 2011. URL: http://hdl.handle.net/10012/6478, arXiv:1207.4537.

32 Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the 28th Annual ACM Symposium on Theory of Computing (STOC 1996), pages 212–219.
ACM, 1996. arXiv:quant-ph/9605043, doi:10.1145/237814.237866.

33 Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and
weaknesses of quantum computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.
arXiv:quant-ph/9701001, doi:10.1137/S0097539796300933.

34 Wim van Dam. Quantum algorithms for weighing matrices and quadratic
residues. Algorithmica, 34(4):413–428, 2008. arXiv:quant-ph/0008059, doi:10.1007/
s00453-002-0975-4.

35 Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26(5):1411–1473, 1997. Earlier version in STOC 1993, pp. 11–20. doi:10.
1137/S0097539796300921.

36 Rocco A. Servedio and Steven J. Gortler. Equivalences and separations between quantum
and classical learnability. SIAM Journal on Computing, 33(5):1067–1092, 2004. doi:10.
1137/S0097539704412910.

37 Alp Atıcı and Rocco A. Servedio. Improved bounds on quantum learning algorithms.
Quantum Information Processing, 4(5):355–386, 2005. arXiv:quant-ph/0411140, doi:
10.1007/s11128-005-0001-2.

38 Ronald de Wolf. A brief introduction to Fourier analysis on the Boolean cube. Theory of
Computing Library – Graduate Surveys, 1:1–20, 2008. doi:10.4086/toc.gs.2008.001.

39 Thomas W. Cusick and Pantelimon Stănică. Cryptographic Boolean Functions and Ap-
plications. Academic Press/Elsevier, 2009. URL: http://books.google.ca/books?id=
OAkhkLSxxxMC&pg=PA73.

http://dl.acm.org/citation.cfm?id=1283383.1283515
http://dl.acm.org/citation.cfm?id=1283383.1283515
http://arxiv.org/abs/quant-ph/0507190
http://www.rintonpress.com/journals/qiconline.html#v8n67
http://www.rintonpress.com/journals/qiconline.html#v8n67
http://arxiv.org/abs/0704.2988
http://dx.doi.org/10.1007/0-387-34799-2_13
http://arxiv.org/abs/1103.2774
http://dx.doi.org/10.1145/2090236.2090261
http://arxiv.org/abs/0911.4724
http://dx.doi.org/10.1007/978-3-642-03816-7_56
http://dx.doi.org/10.1007/978-3-642-03816-7_56
http://dl.acm.org/citation.cfm?id=1873601.1873638
http://arxiv.org/abs/0811.3208
http://arxiv.org/abs/1103.3017
http://dx.doi.org/10.1007/978-3-642-22685-4_14
http://dx.doi.org/10.1007/978-3-642-22685-4_14
http://hdl.handle.net/10012/6478
http://arxiv.org/abs/1207.4537
http://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1145/237814.237866
http://arxiv.org/abs/quant-ph/9701001
http://dx.doi.org/10.1137/S0097539796300933
http://arxiv.org/abs/quant-ph/0008059
http://dx.doi.org/10.1007/s00453-002-0975-4
http://dx.doi.org/10.1007/s00453-002-0975-4
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1137/S0097539704412910
http://dx.doi.org/10.1137/S0097539704412910
http://arxiv.org/abs/quant-ph/0411140
http://dx.doi.org/10.1007/s11128-005-0001-2
http://dx.doi.org/10.1007/s11128-005-0001-2
http://dx.doi.org/10.4086/toc.gs.2008.001
http://books.google.ca/books?id=OAkhkLSxxxMC&pg=PA73
http://books.google.ca/books?id=OAkhkLSxxxMC&pg=PA73

A. M. Childs, R. Kothari, M. Ozols, and M. Roetteler 29

40 John F. Dillon. A survey of bent functions. The NSA technical journal, pages 191–215,
1972.

41 Jessie F. MacWilliams and Neil J.A. Sloane. The theory of error-correcting codes: Part 2.
North-Holland, 1977. URL: http://books.google.ca/books?id=nv6WCJgcjxcC&pg=
PA426.

42 John F. Dillon. Elementary Hadamard difference sets. In Proceedings of the 6th Southeast-
ern Conference on Combinatorics, Graph Theory, and Computing, pages 237–249. Utilitas
Mathematica Pub., 1975.

43 Hans Dobbertin. Construction of bent functions and balanced Boolean functions with high
nonlinearity. In Fast Software Encryption, volume 1008 of Lecture Notes in Computer
Science, pages 61–74. Springer, 1995. doi:10.1007/3-540-60590-8_5.

44 Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda, Raymond H. Putra,
and Shigeru Yamashita. Quantum identification of Boolean oracles. In Proceedings of
the 21st Annual Symposium on Theoretical Aspects of Computer Science (STACS 2004),
volume 2996 of Lecture Notes in Computer Science, pages 105–116. Springer, 2004. arXiv:
quant-ph/0403056, doi:10.1007/978-3-540-24749-4_10.

45 Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493–505, 1998. arXiv:quant-ph/9605034, doi:
10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

46 Paul Hausladen and William K. Wootters. A ‘pretty good’ measurement for distin-
guishing quantum states. Journal of Modern Optics, 41(12):2385–2390, 1994. doi:
10.1080/09500349414552221.

47 Dave Bacon, Andrew M. Childs, and Wim van Dam. From optimal measurement to efficient
quantum algorithms for the hidden subgroup problem over semidirect product groups. In
Proceedings of the 46th Annual Symposium on Foundations of Computer Science (FOCS
2005), pages 469–478, Oct 2005. arXiv:quant-ph/0504083, doi:10.1109/SFCS.2005.38.

48 Thomas Decker, Jan Draisma, and Pawel Wocjan. Efficient quantum algorithm for iden-
tifying hidden polynomials. Quantum Information and Computation, 9(3-4):215–254,
2009. URL: http://www.rintonpress.com/journals/qiconline.html#v9n34, arXiv:
0706.1219.

49 Christof Zalka. Grover’s quantum searching algorithm is optimal. Physical Review A,
60:2746–2751, 1999. arXiv:quant-ph/9711070, doi:10.1103/PhysRevA.60.2746.

50 Thomas Koshy. Catalan Numbers with Applications. Oxford University Press, 2008. URL:
http://books.google.ca/books?id=MqPLSivdBDAC&pg=PA48.

http://books.google.ca/books?id=nv6WCJgcjxcC&pg=PA426
http://books.google.ca/books?id=nv6WCJgcjxcC&pg=PA426
http://dx.doi.org/10.1007/3-540-60590-8_5
http://arxiv.org/abs/quant-ph/0403056
http://arxiv.org/abs/quant-ph/0403056
http://dx.doi.org/10.1007/978-3-540-24749-4_10
http://arxiv.org/abs/quant-ph/9605034
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
http://dx.doi.org/10.1080/09500349414552221
http://dx.doi.org/10.1080/09500349414552221
http://arxiv.org/abs/quant-ph/0504083
http://dx.doi.org/10.1109/SFCS.2005.38
http://www.rintonpress.com/journals/qiconline.html#v9n34
http://arxiv.org/abs/0706.1219
http://arxiv.org/abs/0706.1219
http://arxiv.org/abs/quant-ph/9711070
http://dx.doi.org/10.1103/PhysRevA.60.2746
http://books.google.ca/books?id=MqPLSivdBDAC&pg=PA48

	1 Introduction
	2 Fourier analysis
	3 Characterization of extreme cases
	3.1 Easy functions are bent
	3.2 Hard functions

	4 The PGM approach
	4.1 Performing t queries in parallel
	4.1.1 Circuit
	4.1.2 Analysis

	4.2 The pretty good measurement
	4.3 Performance analysis
	4.3.1 Delta functions
	4.3.2 Bent functions
	4.3.3 Random functions

	5 Quantum rejection sampling with parallel queries
	5.1 Original quantum rejection sampling approach
	5.2 Non-degenerate functions with almost vanishing spectrum
	5.3 The t-fold Fourier spectrum as t increases
	5.4 Quantum rejection sampling with t-fold queries

	6 Conclusions
	A Converse for bent functions
	B Success probability of one-query PGM for random functions
	C Two queries suffice for random functions
	C.1 Strategy
	C.2 Computing the mean
	C.3 Computing the variance
	C.3.1 Counting pairings
	C.3.2 Evaluating the variance at t=2

	C.4 Choosing the deviation

	D Zeroes in the Fourier spectrum
	D.1 Undetectable shifts and anti-shifts
	D.2 Decision trees
	D.3 Zeroes in the t-fold Fourier spectrum

