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Abstract

An intervention on a variable removes the in-
fluences that usually have a causal effect on
that variable. Gates [1] are a general-purpose
graphical modelling notation for represent-
ing such context-specific independencies in
the structure of a graphical model. We ex-
tend d-separation to cover gated graphical
models and show that it subsumes do cal-
culus [2] when gates are used to represent
interventions. We also show how standard
message passing inference algorithms, such
as belief propagation, can be applied to the
gated graph. This demonstrates that causal
reasoning can be performed by probabilistic
inference alone.

1 Introduction

Gates were recently introduced by Minka and Winn
[1, 3] as a notation for representing context-specific
independence in factor graphs [4] that also allow infer-
ence to be performed by message-passing on the gated
graph. Gates can be used for such tasks as represent-
ing mixtures and Bayesian model comparison, as well
as structure learning tasks, such as detecting if a par-
ticular edge is present or not. In this paper, we show
that gates can also be used to do causal reasoning,
when we have a data set in which interventions have
been performed on particular variables in the graph.

Causality is an important topic in machine learning,
because detecting causal relationships between vari-
ables allows the consequences of interventions on those
variables to be predicted. This is essential in domains
such as healthcare or climate modelling, where the
cost of an inappropriate intervention can be very high.
Understanding the causal relationships between vari-
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ables also provides more insight into the mechanisms
involved in the system being modelled, which is crucial
for scientific applications where the goal is to deduce
these mechanisms from observed data.

To model interventions requires the ability to repre-
sent context-specific independence: in the context of
an intervention on a variable, any influences that nor-
mally have a causal effect on that variable are removed.
Bayesian networks and factor graphs lack the ability
to represent such context-specific independence and so
are unable to represent interventions in sufficient detail
to reason about conditional independence properties.
Pearl’s innovative do calculus [2, 5] was proposed as
an additional mechanism outside of probabilistic in-
ference which allows for reasoning about interventions
and hence causality. However, we argue that a mod-
elling notation that allows for context-specific inde-
pendence renders such additional mechanisms unnec-
essary. With such a notation, interventions can be rep-
resented sufficiently well within the graphical model to
reason about causality using only the tools of proba-
bilistic inference.

Dawid proposed the use of decision nodes in a graph-
ical model to represent interventions, forming an in-
fluence diagram [6]. However, decision nodes hide the
context-specific independence properties so that they
are not represented in the graph, but are “introduced
as an implicit, externally specified, constraints” (quo-
tation from [6]). Also, because the context-specific in-
dependence is not explicit in the graphical data struc-
ture, it cannot be exploited by an inference algorithm.

In this work, we show how to use gates to capture
the context-specific independence of interventions. We
demonstrate that the context-specific independence
properties of gated graphs give rise to the same rules as
do calculus. We hence provide a mechanism for reason-
ing about interventions and causality using only prob-
abilistic inference in a graphical model of both the un-
derlying data set and the data about interventions that
were performed. We also show that inference about
interventions can be performed by applying message
passing algorithms, such as belief propagation, on the
gated graph.
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Figure 1: (a) Using a pair of gates to represent an intervention The doZ variable switches between
the natural state, where Z is influenced through f by parent variable Y, and the intervention state, where Z
is influenced solely by the intervention factor I. (b) Directed factor graph for a smoking/lung cancer
model This models the relationship between smoking X and lung cancer Y via the quantity of tar in the lungs
Z under the influence of genetic factors U. (c¢) Gated graph for the smoking/lung cancer model with
interventions The graph of (b) modified to use the gate structure of (a) to represent interventions on X and Z.

2 Modelling Interventions using Gates

From [1], a gate is a container which encloses part of
a factor graph and switches it on or off depending on
the state of a selector variable. The gate is on when
the selector has a particular value called the key and
off for all other values. A gate allows context-specific
independencies to be made explicit in the graphical
model: the dependencies represented by any factors
inside the gate are present only in the context of the
selector variable having the key value.

Mathematically, a gate represents raising the con-
tained factors to the power zero if the gate is off, or
one if it is on: ([]; £i(2))°*Y) where c is the selec-
tor variable and f; are the factors contained within the
gate.

Frequently, gates are used in blocks with one gate for
each possible value of a selector variable, so that one
gate is on and all other gates are off for any value of
the selector. For example, figure 1a shows a block of
two gates switched by a binary selector variable doZ.
When doZ is false (F), the top gate is on and the bot-
tom gate is off, so that the variable Y is a parent of
Z via a factor f. When doZ is true (T), the bottom
gate is on and the top gate is off, so that Z has no
parents and is connected to a prior factor I. In this
paper, we mark factors as directed by adding an ar-
row pointing to the child of the factor — a less cluttered
notation than [7] where arrows are also added to the
other edges pointing towards the factor. The arrow

indicates that the factor sums to 1 across all values
of the child variable, for any configuration of the par-
ent variables — in other words it takes the form of a
conditional probability distribution.

We can use the gated factor graph of figure la as a
model of a variable which may or may not be set by
an intervention. The variable doZ controls whether
there is an intervention or not. If doZ is true then
Z is set according to the nature of the intervention,
defined by I(Z). For example, I(Z) may be a 1 at a
particular value of Z and zero otherwise, which would
represent an intervention that constrains Z to have
that value. Alternatively, I(Z) could be a distribution,
which would represent a randomized intervention. An
example of this would be if Z is binary and I(Z) is as
a uniform Bernoulli distribution, which would repre-
sent setting Z according to a coin flip. If doZ is false,
then no intervention occurs and Z is influenced by its
parent Y, as normal. It is also possible for I to have
other forms (for example, to have parent variables) al-
lowing various forms of imperfect intervention to be
represented. This will be discussed in section 6.

It is possible to take a factor graph representing a
particular system and modify it by introducing the
structure of figure 1a wherever interventions are to be
performed in that system. Alternatively, one could
consider constructing a graph of both the system and
the interventions, without going via the interim model.
For example, figure 1b shows the graph of the smok-
ing/lung cancer model from [5] and figure 1c shows a



John Winn

modified version of the graph where gates have been
added to allow interventions on smoking X or amount
of tar Z. We can consider the latter graph to be
modelling the original data {X,Y, Z, U} as well as the
additional data that intervention actions were taken,
recorded as {doX,doZ}. We would argue that there is
nothing to distinguish the modelling of interventions
from modelling of any other aspect of the system and
no particular reason to consider doZ as a variable dif-
ferent from any other. The gate structure of figure 1la
just encodes the fact that when we observe that an
intervention action was taken, we know a priori that it
has a direct and overriding influence on the quantity
represented by Z.

The idea of representing an intervention as a variable
within the graph was first suggested by Spirtes et al.
[8] and further explored by Pearl [5, 9] who represented
interventions as variables in an augmented Bayesian
network. In this augmented network, a binary inter-
vention variable is added as an additional parent to
each variable that can be the target of an interven-
tion, with each conditional probability function being
modified appropriately. Similarly, Dawid used decision
nodes in influence diagrams [6] to represent variables
which have interventions. Because neither Bayesian
networks nor influence diagrams show context-specific
independencies, these representations hide the inde-
pendence structure of the conditional probability func-
tion associated with the intervention. In contrast,
gated factor graphs expose this structure and so al-
low us to do reasoning about context-specific indepen-
dence, as shall be shown in section 3. The use of gates
to make this conditional independence structure ap-
parent, without recourse to any causality-specific no-
tation, is the main contribution of this paper.

3 Conditional Independence in Gated
Graphs

In order to reason about causal relationships between
variables, we need to be able to test for conditional
independence between variables in our gated graphs.
To do this, we will define an extended form of d-
separation [10] which can be applied to directed factor
graphs that include gates. We will first recall the rules
for d-separation in directed factor graphs previously
defined by Frey in [7]. We will then extend this defini-
tion to cover gated graphs. We consider the restricted
case where there are only factors inside of a gate, but
no variables (whereas [1] does allow variables to be
inside gates). This restriction simplifies the following
definition and is sufficient for reasoning about inter-
ventions (since the gated graph of figure la does not
have any variables inside a gate).

d-separation in directed factor graphs

Let a directed factor graph be a factor graph where all
factors are directed, as defined in section 2, so that
each factor is connected to a single child variable and
zero or more parent variables. We also constrain each
variable node to be the child of at most one factor,
similar to Bayesian networks.

Given three disjoint variable sets X, Y and Z in a
directed factor graph, we can say that X and Y are
conditionally independent given Z if the nodes in Z
d-separate (block) all paths from nodes in X to nodes
in Y. A path in a factor graph is any connected se-
quence of variable-to-factor or factor-to variable edges.
Note that it differs slightly from a path in a Bayesian
network, in that a path can pass from one parent vari-
able to another through the intervening factor, with-
out passing through the child variable node (such as in
figure 1c where a path can pass from U to Z without
passing through Y). From [7], a path is d-separated by
the nodes in 7 if:

1. the path contains a variable node that is in Z or

2. the path passes through a directed factor f from
one parent variable to another, and neither the
child variable of f nor any of its descendants are
in Z.

The first of these criteria is exactly the conditional
independence condition for undirected factor graphs.
The second specifies any additional independencies
that can be deduced from knowing that the factors
are directed.

d-separation in gated graphs

A gated directed factor graph is a directed factor graph
that also includes gates. When using gates, we allow a
variable to be the child of multiple factors in different
gates, provided that only one of these factors is on for
any specific configuration of the gate selector variables.

For d-separation in gated graphs, we extend the def-
inition of a path. We now also allow a path to pass
from the selector variable of a gate to any factor in
that gate (or vice-versa) and consider the selector vari-
able to be a parent of any such factor. This extension
arises because we can transform the gated graph into
an ungated graph by adding the selector variable as an
additional parent to each contained factor, and extend
the factor function appropriately. For example, if the
original factor function was f(X |Y) and the selector
variable C, the extended factor function would be:

fXIY,C) = f(X|Y),if C=key

= 1, otherwise.
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The advantage of using the gated graph over the un-
gated one, is that we can detect additional indepen-
dencies. In a gated graph, a path is d-separated if:

1,2. either of the above two d-separation criteria apply
or

3. the path passes through two or more disjoint gates
(that is, gates with the same selector variable
but different key values) whose selector variable
isin Z.

The new third criterion gives us the additional in-
dependencies. When it applies, the path will pass
through at least one gate that is off for any config-
uration of Z and so renders the path d-separated. For
example, if a variable has different parents through two
disjoint gates, then the path from one parent through
the child variable to the other parent is blocked when
the selector is in Z.

In gated graphs, we also need to update slightly the
definition of a descendant in light of this third crite-
rion. The usual definition is that W is a descendant
node of X if there is a directed path from X to W.
For gated graphs, we add the additional restriction
that this path must not pass through disjoint gates.

context-specific d-separation in gated graphs

A further advantage of using gated graphs is that we
can also detect context-specific independence. In other
words, we can detect that X and Y are independent
for specific configurations of the observed variables Z,
even if they are not independent for all configurations
of Z. We can test for context-specific independence by
modifying criterion 3 of our definition of d-separation.
Suppose the variables Z take on a configuration z, we
say that a path is d-separated in the context Z=z if:

1,2. either of the first two above d-separation criteria
apply or

3. the path passes through a gate which is turned
off. A gate is turned off if its selector variable is
in Z and its key is not equal to the value of the
selector variable in z.

In other words, we first remove from the graph any fac-
tors contained in gates that are turned off and then ap-
ply the usual d-separation criteria for ungated graphs.
Again, we need to update our definition of a descen-
dant node in light of this new criterion. We add the
restriction that the path from a node to any descen-
dant must not pass through any gates which are off.
So, for example, observed nodes which lie on a path
through an off gate do not count as descendants when
assessing criterion 2.

4 Equivalence to do calculus

We will now show that context-specific d-separation in
gated graphs of perfect interventions gives rise to the
same rules as do calculus. We consider each rule in
turn by (i) redefining the equality statement by rewrit-
ing Pearl’s notation (where a variable with an interven-
tion is marked with a hat, such as &) in terms of sepa-
rate intervention variables (such as doX) (ii) deriving
the condition for equality in terms of d-separation in
the gated graph (iii) showing the equivalence of this
condition with Pearl’s original condition in the un-
gated graph. Throughout, we follow Pearl and assume
that the intervention factor function (I from section 2)
is a point mass at a particular value.

Rule 1: Insertion/deletion of observations

P(y|Z,z,w) = Ply|&,w) if YLZ)|X,W
in a graph where the parent edges of X have
been removed.

In a gated graph model, we want to determine when
P(y|doX=T,Z=2,W=uw) is equal to P(y|doX =
T,W=uw) for any z. This will be true if Y is condi-
tionally independent of Z in the context where W=w
and doX =T. Because doX is observed to be true,
all factors connecting X to any parent of X will be
inside a gate which is turned off. This situation is
illustrated in figure 2a where the top gate is turned
off (shown in gray), so paths from X to its parents
are blocked according to criterion 3 of context-specific
d-separation. Hence, the condition is equivalent to
evaluating the standard d-separation criteria in an un-
gated graph with parent edges of X removed. So Rule
1 arises from d-separation in the gated graph and can
be rewritten as follows:

P(y|doX =T,z,w) = P(y|doX =T,w) if
(YL Z)|doX=T,W in the gated graph.

Rule 2: Action/observation interchange

Plyli,2,w) = P(y|#,z,w)if (Y LZ)| X, W
in a graph where the parent edges of X have
been removed and the child edges of Z have
been removed.

In a gated graph model, we want to determine when
P(y|doX =T,7Z = z,doZ = T,W = w) is equal to
P(y|doX=T,Z=z,doZ=F, W=w) where we have in-
cluded the redundant Z=z in the first expression to aid
the proof. This equality will hold if Y is conditionally
independent of doZ in the context where Z=z, W=w
and doX=T. Because doX is observed to be true, the
above argument for removing parent edges of X applies
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(d)

Figure 2: Illustration of the rules of do calculus using gated graphs (a) Rule 1: the edges from X to
its parents are turned off when doX=T, due to being in a switched off gate (shown shaded gray). (b) Rule 2:
paths from doZ to the children of Z are blocked by the observation at Z (c,d) Rule 3: Y is independent of doZ
but not of Z in (c¢) whereas in (d) Y is not independent of either Z or doZ. See text for a complete explanation.

again here. Because Z is observed, it blocks any paths
from doZ to the children of Z (figure 2b), according
to criterion 1 of d-separation. However, also because
Z is observed, it unblocks the paths from doZ to the
parents of Z according to criterion 2 of d-separation.
Hence, this is equivalent to standard d-separation be-
tween Y and Z in the ungated graph with the child
edges from Z removed, but the parent edges of Z left
in place. Thus Rule 2 also arises from d-separation in
the gated graph and can be rewritten as:

P(y|doX = T,z,doZ,w) = P(y|doX =
T,z,w) it (YldoZ)|doX =T,Z,W in the
gated graph.

Rule 3: Insertion/deletion of actions

P(y|z,z2,w) = P(y|z,w) if (YLZ)|X,W
in a graph where the parent edges of X have
been removed and the parent edges have been
removed for those nodes in Z which are not
ancestors of any node in W, in the graph with
the parent edges of X removed.

In a gated graph model, we want to determine when
P(y|doX=T,doZ=T,W=w) is equal to P(y|doX=
T,doZ=F,W=w). This equality will hold if YV is

conditionally independent of doZ in the context where
W=w and doX=T. This differs from Rule 2 because
now Z is unobserved.

To map this condition back into the ungated graph, we
must now consider in what circumstances Y might be
conditionally independent of doZ but not of Z. Con-
sider figure 2c, which shows a graph Y where is not
independent of Z but is independent of doZ, because
of criterion 2 of d-separation. Conversely, in the graph
of figure 2d, Y is not independent of either Z or doZ.
In general, Y will be independent of doZ but not of Z
where there is a path from Y to Z that passes through
the gate controlled by doZ and no descendant of Z
is observed. Hence, if we remove the parent edges of
Z only where no descendant of Z is observed, then
standard d-separation between Y and Z will be equiv-
alent to d-separation between Y and doZ in the gated
graph. So Rule 3 also arises from d-separation in the
gated graph and can be written as:

P(y|doX=T,doZ,w) = P(y|doX=T,w) if
(YAdoZ)|doX=T,W in the gated graph.

As shown, the three rules of do calculus can be rewrit-
ten as tests of context-specific independence in the
particular gated graph where the gate structure of fig-
ure la is used to represent an intervention.
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Figure 3: Belief propagation for causal inference (a) Intervention on X — when there is an intervention
on X but not on Z, doX is true and doZ is false. Hence, gates shown shaded gray are switched off and the
belief propagation messages are as shown in blue. (b) Intervention on Z similar diagram as (a) for when the

intervention is on Z and not X.

5 Inference about Interventions

The primary purpose of do calculus has been to allow
inference calculations that involve interventions (like &
or %) to be transformed into calculations involving or-
dinary observations (like z or z). To show that gated
graphs can be used in place of do calculus, we must
show that we can perform inference in these graphs to
compute marginal probabilities of interest. Happily,
Minka and Winn [1] showed that several common in-
ference algorithms can be straightforwardly extended
to apply to gated graphs, including expectation propa-
gation [11], variational message passing [12] and Gibbs
sampling. Furthermore, these algorithms do not re-
quire the two-stage approach of do calculus, since there
is no need to first transform the problem to remove in-
terventions.

Example 1: Inference in the Smoking and
Lung Cancer Model

In [2], Pearl demonstrated how to apply do calculus to
the model of figure 1b to infer various marginal prob-
abilities, conditioned on interventions. Pearl consid-
ered three tasks for this model: (1) compute P(z]|Z),
(2) compute P(y| %) and (3) compute P(y|&).

We will now show how to compute these marginals
directly by applying belief propagation to the gated
graph. We use the expectation propagation algorithm
defined in [1] simplified to the case where all variables
are discrete (so expectation propagation becomes be-
lief propagation), there are no nested gates, and all
gate selector variables are observed. In this case all

messages are exactly as for belief propagation, except
that we set to uniform all messages on edges passing
out of an off gate (shaded grey in figure 3).

So, the message from a factor f to a variable x; is:

my¢_z, = 1 if passing out of an off gate
= H mgq, s f(x) otherwise.
J#i

The message from a variable to a factor never passes
out of a gate (since variables do not lie inside gates)

and so takes the standard form m, .y = [, mg—z,.

Figure 3a and b show the relevant belief propagation
messages passed when conditioning on {doX=T, doZ=
F} and {doZ=T,doX=F7} respectively. In each case
the graph has no loops, due to one gate in the main
loop being switched off, and so belief propagation is
exact. The marginal for a variable can then be com-
puted as the product of all messages incoming to the
variable’s node:

1. P(z|&) from figure 3a: P(z|doX=T,doZ=F) =
1x1x P(z|z)=P(z]|x)

2. P(y|2) from figure 3b: P(y|doZ=T,doX=F) =
>0 Py lu,z)P(u)

3. P(y|z) from figure 3a: P(y|doX=T,doZ=F) =
2. Plzl2) 32, Pyl u, 2)P(u)

These may be seen to be identical to the re-
sults from [2], noting that > P(y|u,z)P(u) =
> Plylz, 2)P().
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Figure 4: (a) A model for inferring whether A causes B or vice-versa Pairs of gates are used both to
model an intervention and to determine the direction of the edge. (b) Posterior probability that A causes
B Plot of the posterior probability that A causes B in the model of (a) given data with interventions sampled
from a true model where A does cause B. The probability of the true model increases with the size of the data

set and decreases as the noise increases.

Example 2: Inferring the Causal Direction of
an Edge

A common application of causal reasoning is to infer
the direction of an edge in a graph, in other words, to
infer whether A causes B or B causes A. Figure 4a
shows a gated graph which allows the direction of the
edge between A and B to be inferred, through inter-
ventions on B. This example also demonstrates that
gates can be used for other purposes in addition to
modelling interventions — here we use one pair of gates
to model the intervention on B and a second pair of
gates to determine the direction of the arrow between
A and B. When we have an intervention on B, the
factor between A and B is only switched off in the
case where A causes B. Hence, the factor for the case
where B causes A is not switched by doB. In both
cases, the priors on the parent variable are assumed
to be uniform and so the factors for these priors have
been omitted from graph. If they were non-uniform
they would have to be added to the model and in-
cluded inside the appropriate gates.

The plate of size N means that model represents N
measurements of A and B where the intervention on B
may or may not have occurred in each case, as recorded
by doB. Because the variable AcausesB is outside of
the plate, it encodes the assumption that A causes B
(or vice-versa) for all measurements. Note that this
model considers only whether A causes B or that B
causes A — it does not consider, for example, a third
variable C causing both A and B.

To make this example concrete, we will assume that

all variables are binary and that the factor functions
are I(X) =05 and f(X|Y)=1—-qif X=Y or g
otherwise. This definition of f means that the child
variable X takes the value of the parent variable Y
and flips it with probability ¢. So setting ¢=0 would
make the variables equal whereas ¢=0.5 would make
them independent. This definition of I means that,
when intervening, we set the value of B according to
a coin flip.

Suppose the true model is that A causes B through
factor f with noise q. We generated data sets of
{A,, B,,doB,}Y_, from this true model both with
and without interventions — that is, with doB,, either
all true or all false. We also varied the data set size
N and the amount of noise q. Given these data sets,
we applied expectation propagation to infer the pos-
terior distribution over AcausesB. In each case, we
assumed that the true value of ¢ was known. Where
we applied the model to data without interventions,
P(AcausesB) was always exactly 0.5, indicating that
we cannot infer the causal direction of the edge with-
out performing an intervention. Figure 4b shows the
results when we applied the model to data with inter-
ventions, for varying values of N and ¢'. To account
for variability in the sampled data sets, the posterior
probability of AcausesB was averaged over 1,000 runs.
The results show that gated graphs have allowed us to
infer a precise probability of the true model (A causes
B) and determine how it increases as the number of
data points increases or as the noise decreases.

The source code for this experiment is available for
download from http://bit.ly/causality_with_gates.
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Figure 5: Imperfect interventions (a) ‘Fat hand’ intervention where an intervention on a variable Z; has
the unintended effect of intervening on Zs. (b) Mechanism change where an intervention softens or changes
how a variable is affected by its parents, rather than removing the effect entirely. (c) Partial compliance
where an intervention is not always successful (the latent variable doZ’ represents success).

6 Discussion

Gated graphs are advantageous because of their:

Generality — the criteria for d-separation in gated
graphs and the extended inference algorithms apply
to all gated graphs, not just those intended for rea-
soning about interventions and causality. For exam-
ple, we can use the same d-separation criteria to as-
sess context-specific independence in a mixture model.
They would show, for example, that the parameters of
one mixture component are conditionally independent
of the parameters of another component given the data
and the indicator variables for all data points, but not
given the data alone. In short, there is no need to
learn a new notation or use a separate algorithm for
causal reasoning problems — probabilistic inference in
gated graphs is sufficient.

Flexibility — the gated structure of figure 1 models a
perfect intervention which affects only the variable Z,
completely overrides any influence of the normal influ-
ences Y and where the intervention function I and the
choice of intervention doZ do not depend on any other
variables. For real interventions, one or more of these
may not hold, as discussed in [13]. When using gates,
such imperfect interventions can be modeled using the
appropriately modified gate structure (figure 5).

For example, introducing a receptor blocker in a cell
may directly affect other receptors than the intended
target. This ‘fat hand’ intervention can be modelled by
having the intervention be a selector variable for mul-
tiple gates, one for each affected receptor (figure 5a).
One can also have the intervention function change
rather than eliminate the dependency on the normal
parent variables (figure 5b), which has been called
“mechanism change” [14]. Another type of imper-

fect intervention, discussed in [15], is that of imperfect
compliance. For example, in a medical trial, partici-
pants instructed not to smoke on a particular day may
do so anyway due to factors such as stress. We can
model this by having a latent selector variable repre-
senting whether the person actually followed instruc-
tions with the intervention as a parent of this variable
(figure 5c¢).

Imperfect interventions can also be more complex than
any of these examples. When analyzing large scale
‘natural experiments’, such as all health records for
patients in a particular region, interventions will have
been performed for particular reasons decided by the
doctors involved based on the information available to
them at the time. Such a decision process could be ex-
tremely complex. We could potentially model this de-
cision process as a separate sub-model connected to the
selector variable for the gate, where the sub-model has
complex dependencies on other variables which may
have influenced the decision. As in figure 5¢, we can
also reason about whether an intervention took place,
for example, if data about treatments is missing from
the health records.

These two reasons suggest that gated graphs may
be broadly applicable to inferring causal structure in
many practical applications. Assessing which gated
structures are most appropriate for representing the
various forms of imperfect intervention is a promising
direction for future research.
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