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Why should vision people ever care about
language?

1. How to teach machines to understand images?

2. How to test it a machine understands an image or not?
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How to teach machines to understand images?

For image classification, we can label each image by a
category and train the machine to predict

F.g., ImageNet provides
hundreds to thousands of
images for each category, aka o _
synset, in the WordNet. .
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How to test it a machine understand a image?

For image classification, just check the prediction error rate

IMJAGE 2011 - 2014

Dramatic Progress in rece nt years Progress of object recognition (1Lk ImageNet)

thanks to deep CNN [LeCun, Bottou, P
Bengio, Haffner, 1998, Krizhevsky, Sutskever, s
Hinton, 2012]. 5
.S 6 deep model
Cirst time surpassed human-level g o
performance (top5 err < 5%) on B oo o deep model
. (o . . n . d year
mageNet classification in 2015 g 24 year

[He, Zhang, Ren, Sun, 2015]
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But for complex scenes with a rich context, not possible to
define all fine-grained subtle differences by categorization.

The best supervision is a full description in natural language

e.qg., MS COCQO provides 5 descriptions for each image
that has a rich content.

Mlcrosoft COCO

Common Objects in Cont

Fach description is:
e a coherent story.
 focused on salient info.

e with clear semantic
meaning.

 reflecting certain
COMMOonN sense.

Could be a big variety.

« awoman is playing a frisbee with a dog.

« awoman is playing frisbee with her large dog.

« agirl holding a frisbee with a dog coming at her.

« a woman kneeling down holding a frisbee in front
of a white dog.

« ayoung lady is playing frisbee with her dog.

[Lin, et al., 2014]
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How we test it a machine understands a complex scene?

-- let's do a Turing Test!
ask the machine to describe the image in human language
and see whether it reads like generated by a human

=

a woman holding a camera in a
crowd.

LEm -
camera C

&
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How much can machines understand complex scenes?

MS COCO Challenge: generate descriptive captions for images

The state-of-the-art at the MS

COCO Captioning Challenge 2015 e
Measure the quality of % of captions that
the captions by human pass the Turing Test
judge. (auto-metrics have Human
big issues, see literature) MSR [Fang+ Ist(tie)
Google inyals+ 15] Ist(tie)

Great progress, but still
a big gap vs. Human.

(huge room for improvement)

SR Captivator  [Devlin+ 15] 30.1% 3rd(tie)
Montreal/Toronto  [Xu+ 15] 21.2% 3rd(tie)
Berkeley LRCN [Donahue+ 15] 26.8% Sth
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Understanding language is necessary for building
strong vision intelligence

Moreover, knowledge bases, from WordNet to
Freebase, are extremely helptul, too.
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Natural Language Understanding

« Build an intelligent system that can interact with human
using natural language

» Talk’s outline

» Learning semantic representation of text
» Knowledge base and question answering
» Multimodal (image-text) semantic models
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Background

« Word embedding (Word2Vec) [Bengio 03, Mikolov+ 10, 13]
» representing word meaning in a continuous space

f(cat) = a.k.a the 1-hot word
word vector embedding

vector
>

The index of “cat” in
the vocabulary

Dim=100~1000

Dim=|V|=100K~100M
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Background

 Neural net based language modeling [Bengio+ 03, Schwenk+ 06,
Mikolov+ 10]

» predict the next word given the context, e.g., Cisco issued earnings _?

. . Distribution Guidance
. T o> _ Embedding is here! Over Vi) :
Cisco | wput probability estimation layer Next Word Boston
wi—nt1 | rojection e o . o
| P: lja;%r ¥ P(w;=1[hj;) v
I ! 4= guidance
I L PP P (w;=ilh;) Hidden fw__ NPO
. | o ' Layer
issued — | :
wj_n+2| ® shared . ; | - - | Embeddingis here!
I_ projections :
| ; 2 U
earnings | L A cved
- ' issue
vil] (e L F | ,v- DBoston word
. = w(t) .
| | P(w;j=Nlhj) Input ° @| earnings
"""""""""""" : Cisco
| N N |_|
______________ t-1 t t+1

Feedforward NN Recurrent NN
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Learning semantic representation for a sentence
e.g., from a raw sentence to an abstract semantic vector (Sent2Vec)

Abstract representation w

in the semantic space
P W, t

/

Raw text, eg, 2

sequence of words

N Xiaodong He

Ws
each non-linear layer gradually
extracts deeper invariance

w, 4

w, 4

a woman holding a camera in a crowd
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The supervision problem:

F However

« the semantic meaning of texts —

%lﬁ to be learned — is latent
‘ * no clear target for the model to
can 0

w; 4

w, 4

Fortunately
W, 4 * we usually know if two texts are
“similar” or not.

 That's the signal for semantic

a woman holding a camera in a crowd : :
representation learning.

T T
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Deep Structured Semantic Model (DSSM)

Deep Structured Semantic Model/Deep Semantic Similarity Model
Sentence to vector!

Built upon sub-word units for scalability and generalizability
e.q., letter-trigrams, phones, roots/morphs, instead of words

Trained by optimizing an similarity-driven objective
Using a structure similar to auto-encoder / Siamese net, projecting semantically similar
senténces to vectors close to each other

Semi-supervised/weak supervised learning
semantically-similar text pairs, e.qg., user behavior log data, contextual text

[Huang, He, Gao, Deng, Acero, Heck, “Learning deep structured semantic models for
web search using clickthrough data,” CIKM, October, 2013]
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DSSM: a similarity-driven Sent2Vec model

Initialization:

Neural networks are initialized with random weights

Semantic vector

Letter-trigram d=500 d=500
embedding matrix — W, t W, , t
Letter-trigram encoding dim = 50K dim = 50K
matrix (fixed) — W, t W, , t
Bag-of-words vector dim = 100M dim = 100M

Input word/phrase s: "racing car” t*: “formula one”

Deep Semantic Learning: Teach machines to understand Al CVPR 2015
text, image, and knowledge graph —

N Xiaodong He




DSSM: a similarity-driven Sent2Vec model

Training:
Compute Cosine similarity between semantic vectors =~
Compute exp(cos(Vs,Ve+))

. oW
gradients  X,_g+ - exp(cos(vs, vt/))/

Semantic vector s Us —%

BN -

Letter-trigram
embedding matrix

Letter-trigram encoding
matrix (fixed)

Bag-of-words vector dim = 100M

Input word/phrase s: "racing car” t*: “formula one”

T
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DSSM: a similarity-driven Sent2Vec model

Runtime:
@ similar @ apart
vS - vtl xj

%
W 4 t Wia
%
1% t W,

Semantic vector S

5,3 )3
Letter-trigram @ d=500 d=500
embedding matrix — W, t W, ,
Letter-trigram encoding dim = 50K dim = 50K
matrix (fixed) — W, t W,, 1

Bag-of-words vector dim = 100M dim = 100M

Input word/phrase s: "racing car” t*: "formula one”
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Sent2Vec is crucial in many NLP tasks

Web search search query web documents

Ad selection search query ad keywords

Contextual entity ranking mention (highlighted) entities

Online recommendation doc in reading interesting things / other docs
Machine translation phrases in language S phrases in language T
Knowledge-base construction entity entity

Question answering pattern | mention relation | entity
Personalized recommendation  user app, movie, etc.

Image search query image

Image captioning image text caption
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DSSM: built on top of sub-word units

Decompose any word into sub-word units (SWU), e.qg., letter-trigram

embedding vector W-UxV embedding vector
ﬂ SWU embedding
word embedding C:ﬁ matrix: 500 X 50K
<:ﬁ matrix: 500 x 100M WU oot
<:ﬁ matrixe e
Bag-of-words vector Bag-of-words vectck

Could go up to extremely large
Preferable for large scale NL tasks

Arbitrary size of vocabulary (scalability)
Misspellings, word fragments, new words, etc. (generalizability)

[Huang, He, Gao, Deng, Acero, Heck, CIKM2013]
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Deep Semantic Learning: Teach machines to understand i % P evPR 2015

N Xiaodong He

text, image, and knowledge graph



Sub-word unit encoding

_0_
- : The index of word cat
- E.g, letter-trigram based 1| <~ in the vocabulary
Word Hashing of "cat” x (cat) = |0
. -> #cat# 5
o Tri-letters: #-c-a, c-a-t, a-t-#.
nl
« Compact representation ﬂ

- [Voc| (500K) - |Letter-trigram| (30K)

| 1 Indices of #c-a, c-a-t, a-t-# in the
Generahze O unseen V\/OI’dS f(cat) = |4 letter-tri-gram list, respectively.

I
e

Robust to misspelling,

inflection, etc. Vocabulary | Unique letter-tg| Number of
size observed in voc Collisions

What if different words hgye the same 40K 10306 2 (0.005%)

word hashing vector (collision)? 500K 30621 22 (0.004%)
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Other options of sub-word units (SWU):

« Letters, context-dependent phones
 context-dependent morphs, positioned-roots/morphs

le.g., Zhang and LeCun, Text Understanding from Scratch, 2015]
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Training objectives

Objective: cosine similarity based loss
Using web search as an example:

« aquery q and a list of docs D = {d*,d7, ...dg}
- d* positive doc; d7,...dg are negative docs to g ( e.g., sampled from not clicked docs)

« Objective: the posterior probability of the clicked doc given the query

exp (y cos(ve(q), ve(d™)))

P(d*|q) =
( |q) ZdED exp ()/ COS(U(.)(CI); Ug(d)))

e'g'/ v(—)(Q) — U(Ws,4 X U(WS,B X U(Ws,z X ltg(CI)))

vg(d) = oWy X o(Wy3 X a(Wy, X ltg(d)))
where 6 = {Wy,._4, W, 54}, a() is a tanh function.

. ] >|~ y1 - 4
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Convolutional DSSM

Model local context at the convolutional layer
Semantic layer: y (] Model global context at the pooling layer

Affine projection matrix: W,

Max pooling layer: v

Max pooling operation

0000 [ﬂ

Convolutional layer: h;

Convolution matrix: W,

Word hashing layer: f; | 30k || 30k || 30k | ... | 30k || 30k
Word hashing matrix: W T T T T /‘\
Word sequence: x; <s> Wy W wr <s>

Figure 1: Illustration of the C-DSSM. A convolutional layer
with the window size of three is illustrated.

[Shen, He, Gao, Deng, Mesnil, WWWZ2014 & CIKM2014]

1FT T

Deep Semantic !_earning: Teach machines to understand Zr 5 P evPR20I5
text, image, and knowledge graph 24

N Xiaodong He

Dee VlS],On Deep Learning in Computer Vision 2015



— What does the model learn at the

a

h; [T300 T[[T500 7 -
S
/ /\

™

convolutional layer? s e -
Capture the local context dependent wetd sense o
e Learn one embedding vector for each-ocal context- \ auto  body repair ... /

dependent word

auto body repair

semantic space

car body shoplcar body kits

auto body part

he = We X [fe—1, fo [l

The similarity between different “body” within contexts

similarit

Deep Semantic Learning: Teach machines to understand

0.698 | similarity
0.578 i
wave hady language, 0555 -
forcefield body armouy 0.301
calculate body fat 0.220 o
forcefield body armour 0.165 ?W_ .
similarity
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CDSSM: What happens at the max-
pooling layer?

« Aggregate local topics to form the global intent

» |dentify salient words/phrase at the max-
pooling layer where i=1,...,300

|| 300 [[[[[300 | ... [[[300 [

N

v(i) = tgllﬁfT{ht(i)}

Words that win the most active neurons at the max-
pooling layers:

[ [ autd[bodﬁ{ repaid costL caIcuIatogL software ]

Those are salient words containing clear intents/topics

BTW, with the new attention model, these info could modeled in a more principled
way [Bahdanau, Cho, Bengio, 2014; Xu et al, 2015]
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Mine semantically-similar text pairs from Search
Logs

how to deal with Sl‘Uffy nose? Best Home Remedies for Cold and Flu

wWina Heat External Pathogens
By: Catherine Browne, L.Ac., MH, Dipl. Ac.

stuffy nose treatment
In Chinese medicine, colds and flu's are delineated

into several different energetic classifications.

1 Here we will outline the different types of cold
co ld h ome rem edles and flu viru;es that you will likely encounter, and

15N

Gao, He, Nie, CIKM2010
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DSSM for Information Retrieval

Training Dataset
30 Million (Query, Document) Click Pairs

lesting Dataset
12,071 English queries
around 65 web document associated to each query in average

Human gives each <query, doc> pair the label, with range 0 to 4
0: Bad 1: Fair 2: Good 3: Perfect 4: Excellent

Fvaluation Metric: (higher the better)

NDCG 30% Query
25% W Doc Title
o 20% —
- GPU (NVidia GPU K40) 15% +H—— —
10% 4 — — —
0% -

A
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Main Experiment Results

CDSSM: Shen et al. 2014
NDCG@1 Results

35 :
Convolutional Deep

34.5 Semantic Model

34
33.5

Deep Semantic Model
33

32.5 Click-Through based
, Translation Models
32 Topic Models
31.5
31 : :
Lexical Matching Models
e |
30 N E—

BM25 ULM PLSA BLTM WTM DSSM CDSSM
B NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8
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An example

sarcoidosis is a disease, a symptom is excessive amount of calcium in one's urine and blood. So medicines
that increase the absorbing of calcium should be avoid. While Vitamin d is closely associated to calcium
absorbing.

We observed that “sarcoidosis” in the document title and “absorbs” “excessive” and “vitamin (d)" in the query

have high activations at neurons 90, 66, 79, indicating that the model knows that “sarcoidosis” share similar
semantic meaning with “absorbs” “excessive” “vitamin (d)”, collectively.

[ what happens if our body absorbs excesswe]amount [vltamln][d ]

™

(0o [ . ] (6 [ o J b Most active neurons at
> — ) the max-pooling layers of
> S — > the query and document
3 E3 3 BB E3ER nets, respectively

[ [calcium]supplements and[vitamiri d discussion stop[sarcoidosisJ ]
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Recurrent DSSM

* Encode the word one by one in the recurrent hidden layer
* The hidden layer at the last word codes the semantics of the full sentence
« Moaodel is trained by a cosine similarity driven objective

Embedding vector [\

Wiec / i / '\\
y(1) > y(2) —> - ' : : :
000000 000000

1,(1) 1:(2) 1, (m)

Twh Twh wh
x(1) X(2) X(m)
w1 w2 W

11T
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Using LSTM cells

LSTM (long short term memory) uses special
cells in RNN (Hochreiter and Schmidhuber, 1997)

Embedding vector

w w w
ye—-1)
o] O] [.Ijh(m) \
A A~ A W,
Lo x» ] [ x | [ xm) |

x(OC— y(t—1)
Wh

1 (t) I: L(HCc———
W?‘ecl
c W3 bg W1

I(t)

Input Gate cr( )

ACI

L(0)
x(t/ o
)+ bs) .

c(t 1) Output Gate a(/
Wpa Wpl 4
o(t)
. Cell ‘l."l ) f\ % —»D
L o O 20
r2 2 -1
---------- f©)
o(.)) Forget Gate

4
w
b, z Wiecz
— 0
Wy

-1
x@) yt—1)

Figure 2. The basic LSTM architecture used for sentence embed-

Vo(t) = g(Wuli(t) + Wieaay (t — 1) + by)
i(t) = o(W3li(t) + Wieesy (t — 1) + Wyge(t — 1
f(t) = c(Wali(t) + Wieeay(t — 1) + Wae(t — 1) + bg)
c(t) = f(t)oc(t —1) +i(t) o yy(t)
o(t) = o(Wili(t) + Wieary(t — 1) + Wyic(t) + by)
y(t) = o(t) o h(c(t)) (2)
where o denotes Hadamard (element-wise) product. ding

[Palangi, Deng, Shen, Gao, He, Chen, Song, Ward, Deep Sentence Embedding Using the LSTM network:

Analysis and Application to IR, 2015]

N Xiaodong He
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Results

Model

NDCG@1

NDCG@3

NDCG@ 10

BM25

30.5%

32.8%

38.8%

PLSA (T=500)

30.8%

33.7%

40.2%

DSSM (nhid = 288/96), 2 Layers

31.0%

34.4%

41.7%

CLSM (nhid = 288/96), 2 Layers

31.8%

35.1%

42.6%

RNN (nhid = 288), 1 Layer

31.7%

35.0%

42.3%

LSTM-RNN (ncell =96), 1 Layer

33.1%

36.5%

43.6 %

LSTM learns much faster
than reqgular RNN

LSTM effectively represents
the semantic information of
a sentence using a vector

= Xiaodong He
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Related work

Embedding vector @ Embedding vector [Pa|aﬂgi et al, 2015]
Wiee Woe Woee * 1 W Wi Wi
y(D) y(2) S—T) y@) y()
\\% w W w W w
[LO ] [L@ ] [Lem] L (m) (L& ] (LD ]
N N N 'y N N
Wh Wh Wh Wh wh wh
L x» | [ x@ | x(m) | xm) ] L o x | [ x |
Source sentence Target sentence

Minimize sentence-level semantic matching loss

VS.

<EQS=>

T
T

z

Embedding vector T
"

-
”~

Y

4

v

Y

k.
»~

i
T T T T

Y

< —> —>» N

Y
A B C <EOS> X

Source sentence Target sentence
Minimize word-level cross-entropy loss

[Sutskever, Vinyals, Le, 2014. Sequence to Sequence Learning with Neural Networks]
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Some other related work

Deep CNN for text input [Kalchbrenner, Grefenstette, Blunsom, A Convolutional
I\/Iainly classification tasks in the paper Neural Network for Modelling Sentences, ACL2014]

Paragraph Vector Quoc Le, Tomas Mikolov, Distributed Representations
Learn a vector for a paragraph of Sentences and Documents, in ICML 2014
Recursive NN (ReNN) [Socher, Lin, Ng, Manning, "Parsing natural scenes and

Tree structure, e.g., for parsing natural language with recursive neural networks”, 2011]

Tensor product representation (TPR) [Smolensky and Legendre: The Harmonic Mind, From
Tree representation Neural Computation to Optimality-Theoretic Grammar,

MIT Press, 2006]

Tree-structured LSTM Network [Tai, Socher, Manning. 2015. Improved Semantic
Tree structure LSTM Representations From Tree-Structured LSTM Networks.]

Deep Semantic Learning: Teach machines to understand

L] Xiaodong He text, image, and knowledge graph



From Natural Language to Knowledge Base

» Captures world knowledge by storing properties of millions of
entities, as well as relations among them

Lovem
m

apm.u.w_%
— — I

Political—m Ain ~— Freebase

‘Barack Obama DBpedia

chiIV | wof < YAGO

- spouse-of - NELL

OpenlE/ReVerb
chilc% : Ai—of

o Al
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Neural Knowledge Base Embedding
R ] Vectors for entities,
p°““ca'*m B . matrices for relations
. 4 — (AT
| s e =(@" Myb)
[ Mor A e ol Natasha Obama f Bordes+ 2012, Collobert &
Weston 2008, Socher+ 2013,
G (y y ) Yang+ 2015
r\eg'’e
i 0000 ) -/ )R
/4
00000000 I r
€, r e,
Barack Obama  Born-in Hawaili

A neural network framework for multi-relational learning
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Mining Horn-clause Rules

» Can relation embedding capture relation composition?
BornInCity(a, b) A CityInCountry(b,c) = Nationality(a,c)

« Embedding-based Horn-clause rule extraction

» For each relation r, find a chain of relations r; -:- 13, such that:
dist(M,,M{ o M, 0--0o M ) <6

- 11(e1, €3) Ary(eg, e3) - Amy(en, entq) = 7(ey, en41)

 Advantages vs. Inductive Logic Programming
» Search the relation space instead of instance space

‘ i 10
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Aggregated Precision of Top Length-2 Rules

100F T 7
« AMIE [Galarraga+,
90| | WWW-2013] is an
association rule-
< 80 : mining approach for
< large-scale KBs.
2 70t . 1+ Data: FB15k-401
£ baseline Evecution time:
2 ol new xecution |m.e.
_E e AMIE: 9 min.
8 5ol [wm AMIE e EmbedRule: 2 min.
«—+« EmbedRule (DistAdd)
e—e EmbedRule (Bilinear)

40 +~—4 EmbedRule (DistMult)

+—+ EmbedRule (DistMult-tanh-EV-init)

10° 10! 102 103 10*

#Predictions

Yang, Yih, He, Gao, Deng,
ICLR2015
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Figure 6: Relation embeddings of DistMult
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Semantic Parsing and Question Answering w/ KB

?
[ Who is Justin Bieber's sister? o
Jazmyn Bieber }

semantic parsing

N—

KnogZ]Leedge Ax. sister_of(justin_bieber, x)

A \ ‘ matching

sibling_of(justin_bieber, x) A gender(x, female)

Nl
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Key Challenge — Language Mismatch

» Lots of ways to ask the same question
o “What was the date that Minnesota became a state?”
« “Minnesota became a state on?”
o “When was the state Minnesota created?”
« “Minnesota's date it entered the union?”
o “When was Minnesota established as a state?”
o “What day did Minnesota officially become a state?”

« Need to map them to the predicate defined in KB
- location.dated location.date founded

1M T
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Matching Question and Relation

« Similar text can map to very different relations
« Q=Who is the father of King George VI?
« R=people.person.parents

{- Q=Who is the father of the Periodic Table?
« R=law.invention.inventor

1 F" T
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Staged Query Graph Generation

. Query graph [Yih, Chang, He, Gao, ACL2015]

» Resembles subgraphs of the knowledge base
» Can be directly mapped to a logical form in A-calculus

« Semantic parsing: a search problem that grows the graph
through actions

« Who first voiced Meg on Family Guy?
« Ax.3y.cast(FamilyGuy, y) A actor(y, x) A character(y, MegGriffin)

1M T
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Staged Graph Generation

“Who first voiced Meg on Family Guy?”

1. Topic Entity Linking [Yang&Chang ACL-15]

Query graph that represents the question:

* ldentify possible entities in the question (e.g., Meg, Family Guy)
* Only search relations around these entities in the KB

« Narrow down the search space significantly

] 211l 4

T T1
CVPR 2015
Dee ViSion Deep Learning in Computer Vision 2015
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Staged Graph Generation

2. Core Inferential Chain (DSSM)

Given an Mention/Entity match:
X=Family Guy &

Next, need to match P < R
“Who first voiced Meg on X?” & 7R

DSSM measures the semantic matching
between Pattern and Relation:

who first voiced Meg on X
And F/®\F

“cast-actor”

"writer-start”

el
i
e ——
I

Who first voiced Meg on X
11 n
genre

Matching (multl—hop) reIatlons: concatenate multiple relations to a
long relation on-the-fly, the DSSM takes care the issues of aggregating

semantics from individual relations.

Deep Semantic Learning: Teach machines to understand
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Graph Generation Stages (contq)

£
o
-
=

K

: . /19 The Freebase
Who first voiced Meg on Family Guy? ’ l

character

3. Augment constraints

Meg Griffin

cast series appear in
Ga mily Gu}cast actor pPear-
character

appear_in

Deep Semantic Learning: Teach machines to understand
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WEBQUESTIONS Benchmark gerant+ EMNLP-2013]

« What character aid Natalie Portman play in Star Wars? = Padme Amidala

- What kind of money to take to Bahamas? = Bahamian dollar

« What currency do you use in Costa Rica? = Costa Rican colon

« What did Obama study in school? = political science

« What do Michelle Obama do for a living? = writer, lawyer

- What killed Sammy Davis Jr? = throat cancer [Examples from Berant]

» 5,810 questions crawled from Google Suggest APl and answered using
Amazon MTurk

« 3,778 training, 2,032 testing
A question may have multiple answers — using Avg. F1 (~accuracy)

Other work: Subgraph Embedding Bordes+ EMNLP-20141

Nl

Deep Semantic Learning: Teach machines to understand AP | CVPR 2015

N Xiaodong He

teXt’ Im a g e’ a n d kn OWl ed g e g ra p h 48 Dee VISIOD Deep Learning in Computer Vision 2015


http://nlp.stanford.edu/joberant/homepage_files/talks/facebook_jun14.pdf

Avg. F1 (Accuracy) on WEBQUESTIONS Test Set

) (Benchmark leaderboard on Codalab)
50
40
30
20
10
0

Avg. F1
B Bordes-14a M Yao-14 M Berant-13 W Bao-14 M Bordes-14b M Berant-14 M Yang-14 BWang-14 B Yih-15

Yih, Chang, He, and Gao, Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base, ACL, July 2015
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https://www.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a/

Deep Multimodal Similarity Model (DMSM)

Multimodal DSSM for image-text joint learning

@lstance(s 1)
 Recall DSSM for text inputs: s, t ;

« Now: replace text s by image s

 Pick complete captions affinitize to L L
complete images ’ ’
] ]
parrot
$ 1 1
- X softmax layer ] I
© Fulycomnected Y 1
e raweme " )
—r—
onvolution/pooling Image features s Text: a parrot riding a tricycle

Q = image, D = caption, R = relevance

vo  yp
lyellllyoll

Relevance: R(Q, D) = cosine(yq,yp) =

Caption P(DIQ) — exp(vR(Q, D))
Raw Image pixels probability: Yprepexp(vYR(Q, D))
Candidate captions /' \ Smoothing factor

Objective: LA =—log [[ P(D'IQ)

(Q.D1)

Deep Semantic Learning: Teach machines to
text, image, and knowledge grap

N Xiaodong He
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The convolutional network at the image side

o

0000 0000
/

Feed the pre-trained image feature vector
into the image side of the DMSM

Dense feature vector
for input image

13 13

27 3| e 13
Q B

192 192 128

1000

2048 T

Trained to predict
object in image

128

Raw pixels from
input box

Pretrained from ImageNet [Krizhevsky et al., 2012]

1M T
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The convolutional network at the caption side
Models fine-grained structural language information in the caption

Semantic layer: y 500

Semantic projection matrix: W;

Max pooling layer: v | 500 ||

Max pooling operation max max max
000000 000000

Convolutional layer: h, [ 500 [][]] 500 [| ... [[]500 []

Convolution matrix: W.

Word hashing layer: f, | 15K || 15k || 15k | .. | 15Kk || 15K |
Word hashing matrix: W; T
Word sequence: x; <s> Wy W, wr <s>

a parrot ... tricycle

Using convolutional neural network for the text caption side

1A T
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The task: Image -> Language

« Why important?

For building intelligent machines that understand the semantics in
complex scenes

« Why difficult?

Need to capture the salient, coherent semantic information embedded in
a picture.

Deep Semantic Learning: Teach machines to understand
text, image, and knowledge graph
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The M S R SyStel | | [Fang, Gupta, landola, Srivastava, Deng, Dollar, Gao, He, Mitchell, Platt, Zitnick,

Zweig, "From Captions to Visual Concepts and Back,” CVPR, June 2015]

Understand the image stage
Oy Stage: ;ml."

mage word detection -3 y

Deep-learned features, applied to likely items in the
image, trained to produce words in captions

Language generation

Maxent language model, trained on caption,
conditional on words detected from the image

Global semantic re-ranking

woman, crowd, cat,
camera, holding, purple

A purple camera with a woman. \

Hypothetical captions re-ranked by deep-learned

. L. : ; 2 generate \, A woman holding a camera in a crowd.
multi-modal similarity model looking at the entire SGitances »
image A woman holding a cat. )
3. re-rank “\.  #1 Awoman holding a
sentences ] camera in a crowd. )

Deep Semantic Learning: Teach machines to understand
text, image, and knowledge graph
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Train to predict words in captions

kitchen
wooden
cabinets
sink

Which words should be detected? Let a neural network figure it out

The prob that the j-th box of the i-th [ NN kitchen
image corresponds to word w is —— % elephant
I
W 1 1 —-m_ Woonen
pl'j — T I -t‘[_ lltl- p|ay|ng
1+ exp (_(Vwé(bij) + uw)) I shoes

Vocabulary = the 1000 most common words in the training captions (92% of data)

Deep Semantic Learning: Teach machines to understand Al
text, image, and knowledge graph

] Xiaodong He



Map features to likely image words

 Train with Multiple Instance Learning (MIL)
« Use noisy-OR version (Zhang et al., 2005)

« For each word w, MIL uses positive and negative bags of bounding boxes
« For each image ¢
- We have the "bag of boxes”, b;
* b; is positive if win ('s description
* b; is negative if w not in ('s description
« Probability that image { manifests word w, p;":

w _ w
pi =1-— II (1—10@';')
Each bounding box in image=7 ! Calculated from CNN (last slide)



Language models with a blackboaro

A LM generates 500 caption candidates given detected words

push

Previous words

|

s |
o -
W

A kitchen with wooden cabinets
kitchen and a sink

sink cabinets remove

wooden

Image

Deep Semantic Learning: Teach machines to understand
text, image, and knowledge graph
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Rerank hypotheses globally using DMSM

Top 500 hypotheses from the language model

A man sitting on a bench

A man sitting on a table

A white bench sitting on top of a table Return best
A man sitting at a table with plates of food hypothesis

Single hypothesis == Sentence-level features ——

Linear

. : Global score
Similarity regression

IO / (from DMSM neural net) ==

image

Image features from AlexNet (Krizhevsky et al., 2012) or VGG (Simonyan and Zisserman, 2014).
They are fine-tuned with in-domain image data for DMSM

Deep Semantic Learning: Teach machines to understand

N Xiaodong He
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The MS COCO Benchmark s

- - http://mscoco.org/
What is Microsoft COCO? Collaborators | ©
Tsung-Yi Lin Cornell Tech
FaAawda CORNELL
Michael Maire TTI Chicago JY | T EC H
Microsoft COCO is a new image recognition, Serge Belongie Cornell Tech < . .
segmentation, and captioning dataset. Microsoft (—alt(_(_h
COCO has several features: Lubomir Bourdev Facebook Al !
v Object segmentation Ross Girshick Microsoft Research faCEbOOk
v Recognition in Context James Hays Brown University Brown University
& Multiple objects per image Bictro Perona Caltech LT( 1[ I
4" More than 300,000 images ATVIIC
D R UC ] i University ol Calitormes, Irvine
&” More than 2 Million instances v Famanan e
30 object categories Larry Zitnick Microsoft Research Microsoft Research
& 5 captions per image Piotr Dollar Facebook Al

sodona He The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.



http://mscoco.org/home/

Results

System PPLX BLEU  METEOR ~human >human >human

I. Unconditioned 24.1 1.2% 6.8%

2. Shuffled Human - 1.7% 7.3%

3. Baseline 209  16.9% 18.9% 9.9% (£1.5%)  2.4% (£0.8%) 12.3% (+1.6%)
4. Baseline+Score 20.2  20.1% 20.5% 16.9% (£2.0%) 3.9% (=1.0%)  20.8% (+2.2%)
5. Baseline+Score+DMSM 202 21.1% 20.7% 18.7% (£2.1%)  4.6% (£1.1%)  23.3% (+2.3%)
6. Baseline+Score+DMSM+ft  19.2  23.3% 22.2% — - —

7. VGG+Score-+ft 18.1  23.6% 22.8% - - —

8. VGG+Score+DMSM+t 18.1  25.7% 23.6% 26.2% (£2.1%) 7.8% (£1.3%) 34.0% (£2.5%)
Human-written captions — 19.3% 24.1%

* we use 4 references when measuring BLEU and METEOR, while the official COCO eval server uses 5 references.

DMSM gives additional 2.1 pt BLEU over a strong system (e.qg., #8 vs. #7).
Also show significant improvement by human judge (e.g., #5 vs. #4)

1FT T
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Related work

Use CNN to generate a whole-image feature vector,
then feed it into a LSTM language model to generate the caption.

[ 105 pi(5) | [ 10z patso) | log pr(Sh)

gl ~

Vision Langage | |£OVOUR Of peOple i 1 ) )
Deep CNN  Generating shopping at an ot
NN | |outdoor market. =

S Ed dz‘%; : E E E see E

sEems — — — —

= @ There are many -y 9 9 4 b
vegetables at the wfim

fruit stand. 5= 1 i ¥

Figure 1. NIC, our model, is based end-to-end on a neural net- image SN

work consisting of a vision CNN followed by a language gener-
ating RNN. It generates complete sentences in natural language

Figure 3. LSTM model combined with a CNN image embedder
from an input image, as shown on the example above.

(as defined in [30]) and word embeddings. The unrolled connec-
tions between the LSTM memories are in blue and they corre-

spond to the recurrent connections in Figure All LSTMs share
the same parameters.

Vinyals, Toshev, Bengio, Erhan, "Show and Tell: A Neural Image Caption Generator", CVPR 2015

™ 1 2 4 U
- Xiaodong He Deep Semantic Learning: Teach machines to understand C]VPII!'ZO'I.L | =

Dee VlSIOH Deep Learning in Computer Vision 2015

text, image, and knowledge graph



Some other related work

Andrej and Fei-Fei, "“Deep Visual-Semantic Alignments for Generating Image Descriptions”. CVPR 2015

Use CNN to generate an image feature vector, then input it, at the 15t step, into a multimodal
RNN language model to generate the caption.

Kiros, Salakhutdinov, Zemel, “Unifying Visual-Semantic Embeddings with Multimodal
Neural Language Models”. TACL 2015

Use LSTM for image-language encoding and decoding

Mao, Xu, Yang, Wang, Huang, Yuille. "Deep Captioning with Multimodal Recurrent Neural
Networks (m-RNN)," ICLR 2015

Use CNN to generate a whole-image feature vector, then input it, at every step, into a
multimodal RNN language model to generate the caption.

Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio, 2015. Show, Attend and Tell:
Neural Image Caption Generation with Visual Attention.

Use CNN to generate a whole-image feature vector, then input it, at every step, into a
multimodal RNN language model to generate the caption.

Hill and Korhonen, 2014 Learning Abstract Concept Embeddings from Multi-Modal
Data: Since You Probably Can't See What | Mean

‘ i 10
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: CVPR 2015 €3
teXt’ I m a g e’ a n d k n OWl ed g e g ra p h Dee ViSion Deep Learning in Computer Vision 2015

] Xiaodong He




MS COCO Image Captioning Challenge 2015

Measure the quality of the captions by human judge.

% of % passing  Overall rank
= human Turing Test
Human 63.8% 67.5%
MSR [Fang+ 15] 26.8% 32.2% 1t (tie)
Google [Vinyals+ 15] 27.3% 31.7% 1st (tie)
MSR Captivator  [Devlin+ 15] 25.0% 30.1% 3 (tie)
Montreal/Toronto  [Xu+ 15] 26.2% 27.2% 3 (tie)
Berkeley LRCN [Donahue+ 15] 24.6% 26.8% 5th

http://mscoco.org/dataset/#leaderboard-cap
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m-DSSM gives the global semantically matching caption for a given image

]
£
e
J

Baseline: a large jetliner sitting on top of a stop sign at an intersection on a city street
w/ m-DSSM: a stop light on a city street

Baseline: a clock tower in front of a building
w/ m-DSSM: a clock tower in the middle of the street

Baseline: a red brick building

w/ m-DSSM: a living room filled with furniture and
a flat screen tv sitting on top of a brick building

/H

Baseline: a large jetliner sitting on top of a table

el W/ m-DSSM: a display in a grocery store filled with
el lots of food on a table




m-DSSM gives the global semantically matching caption for a given image

Baseline: a group of people standing in a kitchen

w/ m-DSSM: a group of people posing for a

Baseline: a young man riding a skateboard down picture

a street holding a tennis racquet on a tennis court

w/ m-DSSM: a man riding a skateboard down a
street

Baseline: a cat sitting on a table

w/ m-DSSM: a cat sitting on top of a bed

Baseline: two elephants standing next to a baby elephant walking behind a fence
w/ m-DSSM: a baby elephant standing next to a fence

)

1 F" T
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Interpretanility

i “ : “".fl “‘".l.':: \ : .
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)

Our system not only generates the caption, but can also
Interpret It.
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Interpretanility

LAy

Our system not only generates the caption, but can also
Interpret It.
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Interpretanility
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X

baseball (1.00)

a baseball
Our system not only generates the caption, but can also

Interpret It.
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text, image, and knowledge graph

B Xiaodong He



Interpretanility
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X

player (1.00)
a baseball player
Our system not only generates the caption, but can also

Interpret It.

Deep Semantic Learning: Teach machines to understand
text, image, and knowledge graph

B Xiaodong He



Interpretanility

g1 b aiATay Ny o
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X

throwing (0.86)

a baseball player throwing
Our system not only generates the caption, but can also

Interpret It.
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Interpretanility
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ball (1.00)

a baseball player throwing a ball
Our system not only generates the caption, but can also

Interpret It.
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Interpretanility

Our system not only generates the caption, but can also
Interpret It.
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Interpretanility

Our system not only generates the caption, but can also
Interpret It.
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text, image, and knowledge graph
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Interpretanility

man (0.93)

d man
Our system not only generates the caption, but can also

Interpret It.

| A |
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Interpretanility

sitting (0.83)
a man sitting
Our system not only generates the caption, but can also

Interpret It.

Deep Semantic Learning: Teach machines to understand
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Interpretanility

couch (0.66)

a man sitting in a couch
Our system not only generates the caption, but can also

Interpret It.

Deep Semantic Learning: Teach machines to understand
text, image, and knowledge graph
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Interpretanility

dog (1.00)
a man sitting in a couch with a dog

Deep Semantic Learning: Teach machines to understand A , CVPR 2015

N Xiaodong He

teXt’ I m a g e’ a n d k n OWl ed g e g ra p h 7 7 Dee ViSion Deep Learning in Computer Vision 2015



Interpretanility
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Interpretanility

T

Deep Semantic Learning: Teach machines to understand | CVPR 2015
text, image, and knowledge graph

DeenVISIOD Deep Learning in Computer Vision 2015

N Xiaodong He




Interpretanility

fire (1.00)
a fire

Deep Semantic Learning: Teach machines to understand Al d CVPR 2015
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Interpretanility

hydrant (1.00)
a fire hydrant

Deep Semantic Learning: Teach machines to understand Al d CVPR 2015
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Interpretanility

city (0.69)
a fire hydrant on a city

Deep Semantic Learning: Teach machines to understand ‘ L, CVPR 2015
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Interpretanility

street (1.00)
a fire hydrant on a city street

Deep Semantic Learning: Teach machines to understand , CVPR 2015
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summary

Exciting advances in learning semantic meaning
representations

Text, Image, and Knowledge

Sent2Vec Tool kit available: http://aka.ms/sent2vec/

Looking forward
Building an universal intelligence space
Text, Image, Knowledge, Reasoning,...

From component models to end-to-end solutions

1FT T
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