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E.g., ImageNet provides 
hundreds to thousands of 
images for each category, aka 
synset, in the WordNet. 

[Russakovsky, Deng, et al., 2014]
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Dramatic progress in recent years 
thanks to deep CNN [LeCun, Bottou, 
Bengio, Haffner, 1998, Krizhevsky, Sutskever, 
Hinton, 2012]. 

First time surpassed human-level 
performance (top5 err < 5%) on 
ImageNet classification in 2015 
[He, Zhang, Ren, Sun, 2015]
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e.g., MS COCO provides 5 descriptions for each image 
that has a rich content. 

[Lin, et al., 2014]
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ask the machine to describe the image in human language

and see whether it reads like generated by a human
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MS COCO Challenge: generate descriptive captions for images

The state-of-the-art at the MS 
COCO Captioning Challenge 2015

%  of  captions  that 

pass the Turing Test

Human 67.5% --

MSR                       [Fang+ 15] 32.2% 1st(tie)

Google               [Vinyals+ 15] 31.7% 1st(tie)

MSR Captivator    [Devlin+ 15] 30.1% 3rd(tie)

Montreal/Toronto      [Xu+ 15] 27.2% 3rd(tie)

Berkeley LRCN [Donahue+ 15] 26.8% 5th

Measure the quality of 
the captions by human 
judge. (auto-metrics have 
big issues, see literature) 

Great progress, but still 
a big gap vs. Human.
(huge room for improvement) 
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http://csunplugged.org/turing-test
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𝑓 𝒄𝒂𝒕 =

The index of “cat” in 

the vocabulary

a.k.a the 1-hot

word vector

word 

embedding 

vector
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Cisco

issued

earnings

guidance

Boston

Cisco issued earnings _?_

Embedding is here!
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Plotting 3K words in 2D
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Sent2Vec

a woman holding a camera in a crowd

H1

H2

H3

W1

W2

W3

W4

Input 1

H3

Raw text, e.g., a 

sequence of words

each non-linear layer gradually 

extracts deeper invariance

Abstract representation

in the semantic space
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a woman holding a camera in a crowd

H1

H2

H3

W1

W2

W3

W4

Input 1

H3

he semantic meaning of texts –
to be learned – is latent 
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Deep Structured Semantic Model/Deep Semantic Similarity Model
Sentence to vector!

Built upon sub-word units for scalability and generalizability 
e.g., letter-trigrams, phones, roots/morphs, instead of words

Trained by optimizing an similarity-driven objective
Using a structure similar to auto-encoder / Siamese net, projecting semantically similar 
sentences to vectors close to each other

Semi-supervised/weak supervised learning
semantically-similar text pairs, e.g., user behavior log data, contextual text

Deep Structured Semantic Model (DSSM)

[Huang, He, Gao, Deng, Acero, Heck, “Learning deep structured semantic models for 
web search using clickthrough data,” CIKM, October, 2013]
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

Initialization:

Neural networks are initialized with random weights

DSSM: a similarity-driven Sent2Vec model

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4

Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

DSSM: a similarity-driven Sent2Vec model

Compute 

gradients
 𝜕

𝒆𝒙𝒑(𝒄𝒐𝒔 𝒗𝒔 , 𝒗𝒕+ )

 𝒕′={𝒕+,𝒕−} 𝒆𝒙𝒑(𝒄𝒐𝒔 𝒗𝒔 , 𝒗𝒕′ )
𝜕W

cos(𝑣𝑠, 𝑣𝑡+) cos(𝑣𝑠, 𝑣𝑡−)

Compute Cosine similarity between semantic vectors 

Training:

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4
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s: “racing  car”Input word/phrase

dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 

embedding matrix

Letter-trigram encoding

matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”

dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”

dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔

DSSM: a similarity-driven Sent2Vec model
Runtime:

𝒗𝒕𝟏 𝒗𝒕𝟐

similar apart

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4
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Tasks Source Target

Web search search query web documents

Ad selection search query ad keywords

Contextual entity ranking mention (highlighted) entities

Online recommendation doc in reading interesting things / other docs

Machine translation phrases in language S phrases in language T

Knowledge-base construction entity entity 

Question answering pattern | mention relation | entity

Personalized recommendation user app, movie, etc.

Image search query image

Image captioning image text caption

…
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dim = 100M

dim=500

dim = 50K

Bag-of-words vector

embedding vector

word embedding 

matrix: 500 × 100𝑀

dim = 100M

dim=500

Bag-of-words vector

embedding vector

SWU embedding 

matrix: 500 × 50𝐾

SWU encoding

matrix

𝑊

𝑈

𝑉

Could go up to extremely large

𝑊 → 𝑈 × 𝑉

Preferable for large scale NL tasks

 Arbitrary size of vocabulary (scalability)

 Misspellings, word fragments, new words, etc. (generalizability) 

He, Gao, Deng, Acero, Heck
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• -> #cat# 

• Tri-letters: #-c-a, c-a-t, a-t-#.

• |Voc| (500K)  |Letter-trigram| (30K)

Vocabulary 
size

Unique letter-tg
observed in voc

Number of 
Collisions

40K 10306 2   (0.005%)
500K 30621 22 (0.004%)

What if different words have the same 

word hashing vector (collision)?
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𝑃 𝑑+ 𝑞 =
exp 𝛾 𝑐𝑜𝑠 𝑣𝛉(𝑞), 𝑣𝛉(𝑑

+)

 𝑑∈𝑫 exp 𝛾 𝑐𝑜𝑠 𝑣𝛉(𝑞), 𝑣𝛉(𝑑)
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Model local context at the convolutional layer

Model global context at the pooling layer
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– What does the model learn at the 

convolutional layer?

Capture the local context dependent word sense

• Learn one embedding vector for each local context-

dependent word

car body shop cosine 

similarity

car body kits 0.698

auto body repair 0.578

auto body parts 0.555

wave body language 0.301

calculate body fat 0.220

forcefield body armour 0.165

The similarity between different “body” within contexts

high 

similarity

low

similarity

wave body language

car body kits

auto body part

auto body repair

car body shop

forcefield body armour

calculate body fat

semantic space

auto    body  repair …

ℎ𝑡 = 𝑊𝑐 × [𝑓𝑡−1, 𝑓𝑡, 𝑓𝑡+1]
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global intent
𝑣 𝑖 = max

𝑡=1,…,𝑇
ℎ𝑡(𝑖)

auto body repair cost calculator software

Words that win the most active neurons at the max-

pooling layers:

Those are salient words containing clear intents/topics

𝑖 = 1,… , 300

ℎ1

𝑣

ℎ2 ℎ𝑇
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how to deal with stuffy nose?

stuffy nose treatment

cold home remedies

QUERY (Q) Clicked Doc Title (T)

how to deal with stuffy nose best home remedies for cold and flu

stuffy nose treatment best home remedies for cold and flu

cold home remedies best home remedies for cold and flu

… … … …

go israel forums goisrael community

skate at wholesale at pr wholesale skates southeastern skate supply

breastfeeding nursing blister baby clogged milk ducts babycenter

thank you teacher song lyrics for teaching educational children s music

immigration canada lacolle cbsa office detailed information [Gao, He, Nie, CIKM2010] 
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• Training Dataset
• 30 Million (Query, Document) Click Pairs

• Testing Dataset
• 12,071 English queries 

• around 65 web document associated to each query in average

• Human gives each <query, doc> pair the label, with range 0 to 4

• 0: Bad 1: Fair 2: Good 3: Perfect 4: Excellent

• Evaluation Metric: (higher the better)
• NDCG

• GPU (NVidia GPU K40)
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BM25 ULM PLSA BLTM WTM DSSM CDSSM

NDCG@1 30.5 30.4 30.5 31.6 31.5 32.7 34.8

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

35

NDCG@1 Results

Lexical Matching Models

Topic Models

Click-Through based 
Translation Models

Deep Semantic Model

Convolutional Deep 
Semantic Model
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88 1690 35

calcium supplements and vitamin d discussion stop sarcoidosis

102 9466 79

what happens if our body absorbs excessive amount vitamin d

88 1690 35102 9466 79
Most active neurons at 

the max-pooling layers of 

the query and document 

nets, respectively

sarcoidosis is a disease, a symptom is excessive amount of calcium in one's urine and blood. So medicines 

that increase the absorbing of calcium should be avoid. While Vitamin d is closely associated to calcium 

absorbing. 

We observed that “sarcoidosis” in the document title and “absorbs” “excessive” and “vitamin (d)” in the query 

have high activations at neurons 90, 66, 79, indicating that the model knows that “sarcoidosis“ share similar 

semantic meaning with “absorbs” “excessive” “vitamin (d)”, collectively.
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• Encode the word one by one in the recurrent hidden layer

• The hidden layer at the last word codes the semantics of the full sentence

• Model is trained by a cosine similarity driven objective
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Hochreiter and Schmidhuber, 1997
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[Sutskever, Vinyals, Le, 2014. Sequence to Sequence Learning with Neural Networks]

vs.

Minimize word-level cross-entropy loss

Minimize sentence-level semantic matching loss

Source sentence

Source sentence Target sentence

Target sentence
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[Kalchbrenner, Grefenstette, Blunsom, A Convolutional 

Neural Network for Modelling Sentences, ACL2014]

Quoc Le, Tomas Mikolov, Distributed Representations 

of Sentences and Documents, in  ICML 2014

[Socher, Lin, Ng, Manning, “Parsing natural scenes and 

natural language with recursive neural networks”, 2011]
Recursive NN (ReNN)

[Smolensky and Legendre: The Harmonic Mind, From

Neural Computation to Optimality-Theoretic Grammar,

MIT Press, 2006]

Tensor product representation (TPR)

Tree representation

[Tai, Socher, Manning. 2015. Improved Semantic

Representations From Tree-Structured LSTM Networks.]
Tree-structured LSTM Network

Tree structure LSTM
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• Captures world knowledge by storing properties of millions of 
entities, as well as relations among them
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Barack Obama Born-in Hawaii

Gr ye1 ,ye2( )

xe1 ÎRm xe2 ÎRm

ye1 = f (Wxe1 ) ÎRn

W W

e1 r e2

S(e1,r ,e2 ) ÎR

A neural network framework for multi-relational learning

ye2 = f (Wxe2 ) ÎRn

Vectors for entities,

matrices for relations
=(𝑎𝑇𝑀𝑟𝑏) 

Bordes+ 2012, Collobert & 

Weston 2008, Socher+ 2013, 

Yang+ 2015
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Aggregated Precision of Top Length-2 Rules

• AMIE [Galárraga+, 
WWW-2013] is an 
association rule-
mining approach for 
large-scale KBs.

• Data: FB15k-401

• Execution time:

• AMIE: 9 min.

• EmbedRule: 2 min.

Yang, Yih, He, Gao, Deng, 

ICLR2015
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Figure 6: Relation embeddings of DistMult

celebrity_friendship

celebrity_dated

person_spouse

Location_division

Capital_of

hub_county
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Knowledge 

Base
𝜆𝑥. sister_of(justin_bieber, 𝑥)

Who is Justin Bieber’s sister?

sibling_of(justin_bieber, x) ∧ gender(x, female)

semantic parsing

query
matching

Jazmyn Bieber
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• Lots of ways to ask the same question

• Need to map them to the predicate defined in KB
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• Similar text can map to very different relations
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grows

• Who first voiced Meg on Family Guy?

Family Guy cast

Meg Griffinargmin

xy

topic entity inferential chain

constraints

[Yih, Chang, He, Gao, ACL2015]
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Family Guy
s1

Meg Griffin
s2

ϕ 
s0

“Who first voiced Meg on Family Guy?”

Query graph that represents the question:

• Identify possible entities in the question (e.g., Meg, Family Guy)

• Only search relations around these entities in the KB

• Narrow down the search space significantly

“Who first voiced Meg on X?” ˄ X=Family Guy 

“Who first voiced X on Family Guy?” ˄ X = Meg
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Family Guy
s1

Family Guy cast actor xy
s3

Family Guy writer start xy
s4

Family Guy genre x
s5

2. Core Inferential Chain (DSSM)

“Who first voiced Meg on X?”  ?R

who first voiced Meg on X

And

Matching (multi-hop) relations: concatenate multiple relations to a

long relation on-the-fly, the DSSM takes care the issues of aggregating

semantics from individual relations.

X=Family Guy 

Who first voiced Meg on X
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Family Guy cast actor xy

Family Guy cast actor xy

Meg Griffin

Family Guy xy

Meg Griffinargmin

s3

s6

s7
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• What character did Natalie Portman play in Star Wars? Padme Amidala

• What kind of money to take to Bahamas? Bahamian dollar

• What currency do you use in Costa Rica? Costa Rican colon

• What did Obama study in school? political science

• What do Michelle Obama do for a living? writer, lawyer

• What killed Sammy Davis Jr? throat cancer [Examples from Berant]

Other work: Subgraph Embedding [Bordes+ EMNLP-2014 ]

http://nlp.stanford.edu/joberant/homepage_files/talks/facebook_jun14.pdf
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29.7
33

35.7
37.5

39.2 39.9 41.3
45.3

52.5

0

10

20

30

40

50

60

Avg. F1

Avg. F1 (Accuracy) on WEBQUESTIONS Test Set

Bordes-14a Yao-14 Berant-13 Bao-14 Bordes-14b Berant-14 Yang-14 Wang-14 Yih-15

Yih, Chang, He, and Gao, Semantic Parsing via Staged Query Graph Generation: 

Question Answering with Knowledge Base, ACL, July 2015

(Benchmark leaderboard on Codalab) 

https://www.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a/
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• Recall DSSM for text inputs:  s, t

s s

Image features s

H3

Input s

Text: a parrot riding a tricycle

H3

Input t1

Distance(s,t)

Raw Image pixels

Convolution/pooling

Convolution/pooling

Convolution/pooling

Convolution/pooling

Convolution/pooling

Fully connected

Fully connected

Softmax layerx
parrot
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15K 15K 15K 15K 15K

500 500 500

max max

...

...

... max

500

...

...

Word hashing layer: ft

Convolutional layer: ht

Max pooling layer: v

Semantic layer: y

     <s>             w1              w2                     wT             <s>Word sequence: xt

Word hashing matrix: Wf

Convolution matrix: Wc

Max pooling operation

Semantic projection matrix: Ws

... ...

500

a parrot … tricycle
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• Why important? 
For building intelligent machines that understand the semantics in 
complex scenes 

• Why difficult? 
Need to capture the salient, coherent semantic information embedded in 
a picture.
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Understand the image stage 
by stage: 

Image word detection

Language generation

Global semantic re-ranking

[Fang, Gupta, Iandola, Srivastava, Deng, Dollar, Gao, He, Mitchell, Platt, Zitnick, 

Zweig, “From Captions to Visual Concepts and Back,” CVPR, June 2015]
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M
IL

 
P
o

o
li
n

g

Vocabulary = the 1000 most common words in the training captions (92% of data)



• Train with Multiple Instance Learning (MIL)

• Use noisy-OR version (Zhang et al., 2005)

• For each word w, MIL uses positive and negative bags of bounding boxes

• For each image i:

• We have the “bag of boxes”, 𝑏𝑖
• 𝑏𝑖 is positive if w in i’s description

• 𝑏𝑖 is negative if w not in i’s description

• Probability that image i manifests word w, :

=
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New word

wooden
kitchen

sink cabinets
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http://mscoco.org/

http://mscoco.org/home/
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Vinyals, Toshev, Bengio, Erhan, "Show and Tell: A Neural Image Caption Generator", CVPR 2015
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Andrej and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”. CVPR 2015

Kiros, Salakhutdinov, Zemel, “Unifying Visual-Semantic Embeddings with Multimodal 

Neural Language Models”. TACL 2015

Mao, Xu, Yang, Wang, Huang, Yuille. "Deep Captioning with Multimodal Recurrent Neural 

Networks (m-RNN)," ICLR 2015

Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, Bengio, 2015. Show, Attend and Tell: 

Neural Image Caption Generation with Visual Attention.

Hill and Korhonen, 2014 Learning Abstract Concept Embeddings from Multi-Modal 

Data: Since You Probably Can't See What I Mean
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http://mscoco.org/dataset/#leaderboard-cap

Measure the quality of the captions by human judge.

% of 

≥ human

% passing 

Turing Test

Overall rank

Human 63.8% 67.5%

MSR                       [Fang+ 15] 26.8% 32.2% 1st (tie)

Google               [Vinyals+ 15] 27.3% 31.7% 1st (tie)

MSR Captivator    [Devlin+ 15] 25.0% 30.1% 3rd (tie)

Montreal/Toronto      [Xu+ 15] 26.2% 27.2% 3rd (tie)

Berkeley LRCN [Donahue+ 15] 24.6% 26.8% 5th

http://mscoco.org/dataset/#leaderboard-cap
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a clock tower in front of a building 

a clock tower in the middle of the street 

a large jetliner sitting on top of a stop sign at an intersection on a city street 

a stop light on a city street 

a red brick building 

a living room filled with furniture and 
a flat screen tv sitting on top of a brick building 

a large jetliner sitting on top of a table 

a display in a grocery store filled with 
lots of food on a table 
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a young man riding a skateboard down 
a street holding a tennis racquet on a tennis court 

a man riding a skateboard down a 
street 

a cat sitting on a table 

a cat sitting on top of a bed 

a group of people standing in a kitchen 

a group of people posing for a 
picture 

two elephants standing next to a baby elephant walking behind a fence 

a baby elephant standing next to a fence 
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Our system not only generates the caption, but can also 

interpret it.
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a baseball player throwing a ball

Our system not only generates the caption, but can also 

interpret it.
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a baseball player throwing a ball
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a fire hydrant on a city street
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Tool kit available:  http://aka.ms/sent2vec/

http://aka.ms/sent2vec/
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