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Abstract
We show that a non-isotropic near point light source

rigidly attached to a camera can be calibrated using multi-
ple images of a weakly textured planar scene. We prove that
if the radiant intensity distribution (RID) of a light source
is radially symmetric with respect to its dominant direction,
then the shading observed on a Lambertian scene plane is
bilaterally symmetric with respect to a 2D line on the plane.
The symmetry axis detected in an image provides a linear
constraint for estimating the dominant light axis. The light
position and RID parameters can then be estimated using
a linear method. Specular highlights if available can also
be used for light position estimation. We also extend our
method to handle non-Lambertian reflectances which we
model using a biquadratic BRDF. We have evaluated our
method on synthetic data quantitavely. Our experiments on
real scenes show that our method works well in practice and
enables light calibration without the need of a specialized
hardware.

1. Introduction

Calibration of light sources is often an important first

step in various photometric methods in computer vi-

sion. For example, shape-from-shading [11], photometric

stereo [24] and reflectometry [16] methods often require

accurate knowledge of light sources for recovering surface

normal maps and reflectances. While estimating an incident

light direction from a distant source [27, 23, 1] is well stud-

ied and the problem of near light position estimation has

also been analyzed [2, 12, 28], the topic of modeling a near

point light source with a non-isotropic radiance distribution

has received less attention in our field. Accurate calibration

of a non-isotropic near light is important for disambiguating

causes behind light attenuation in a scene and can reduce

∗Part of this work was done while the first author was visiting Microsoft

Research Redmond as a research intern. This work was also supported

in part by the National Research Foundation grant funded by the Korea

government (MSIP) (No. 2010-0028680). Yu-Wing Tai was supported by

the MSIP, Korea, under the IT/SW Creative research program supervised

by the NIPA (NIPA-2013-H0503-13-1011)

unmodeled errors that may be present when simpler light

models are used.

Near point light source calibration is usually performed

in controlled scenes using specialized equipments. In par-

ticular, accurate recovery of luminous or radiant intensity

distribution of non-isotropic lights requires special-purpose

equipments such as an Imaging Sphere [17] or a goniopho-

tometer [20]. However, such hardware based approaches

are generally expensive in both cost and time.

In this paper, we explore an image-based approach for

calibrating a near point light source that is rigidly attached

to a conventional camera, that does not require special cal-

ibration objects or a special acquisition phase. We address

both geometric and photometric calibration issues. The ge-

ometric aspects include estimating the position and orienta-

tion of the light whereas photometric calibration involves

estimating the radiant intensity distribution (RID) of the

light, which we assume is radially symmetric with respect

to its dominant direction, i.e., axis of the light source.

We show that under this assumption, the shading pro-

duced by a non-isotropic point light on a Lambertian plane

is bilaterally symmetric whereas the shading produced by

an isotropic point light is radially symmetric. Given a cali-

brated camera and a known plane, detecting the axis of bi-

lateral symmetry or the center of radial symmetry in an im-

age provides linear constraints for estimating the light axis

and position, respectively. We model the RID using a low-

order polynomial and show that if the light position and axis

are known, the unknown RID coefficients can be efficiently

estimated. Also, non-Lambertian surfaces of a single mate-

rial can be handled by our method using a more a flexible

reflectance model, and we show such an example using a

biquadratic BRDF model [19].

Based on these observations, we propose a practical

technique to calibrate a light-camera rig using a plane that

recovers all unknown parameters of the light model by ana-

lyzing the shading and specular reflections observed in im-

ages captured from multiple viewpoints. When combined

with structure-from-motion [9] for calibrating the camera

and estimating the plane, our method can perform a full self-

calibration of the light-camera rig in an unknown scene.
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2. Related Work
Various aspects of light calibration have been studied in

the computer vision literature. Debevec [7] used a mirror

sphere to capture an environment map for photo-realistic

rendering and relighting where all incoming distant illumi-

nation was modeled. For a single distant light source as in

photometric stereo [24], the problem reduces to that of esti-

mating the light direction. This is possible in a lab setup [5],

using reflective objects [25, 8] or by self-calibration [4].

Recently, Abrams et al. [1] treat the sun as a distant light

source and extend photometric stereo to outdoor cameras.

Unlike distant lights, near light sources cause the inci-

dent light directions to vary within a scene. Although some

methods model area light sources [27], it is common to as-

sume that the light source is a point thereby reducing the

problem to that of estimating the 3D point position. Objects

of known geometry e.g. spheres are used to further sim-

plify the problem [15, 21, 26]. Spherical probes have also

been used for multiple, mixed (directional and near) light

sources [28]. Ackermann et al. [2] proposes a new tech-

nique for accurately modeling reflections on a sphere. Other

methods also use either reflective spheres [12, 23, 18] or

specially designed planar light probes [3] or analyze shad-

ing of known geometric objects [22]. The case of a near

point light rigidly attached to a camera has been analyzed

for near light photometric stereo [10] and the light fall-off

effect due to distance from the light is modeled. Light fall-

off can provide cues for depth estimation [13]. However,

such methods will suffer in accuracy with non-isotropic

lights unless their intensity distribution is also modeled.

Certain aspects of non-isotropic near lights have been

studied for light source design and optimization [20, 14].

The geometric light source model now requires an addi-

tional parameter - the dominant axis of the light; a direction

that provides a reference point for storing the non-uniform

radiant intensity distributon on a sphere centered at the light

position. However, most existing geometric methods that

use reflective calibration objects cannot be used for this

model. In our method, we propose a general approach for

recovering this light axis from shading cues. Our approach

does not use a specific calibration object but instead requires

multiple images of a plane. We propose a simple method

based on detecting symmetries in shading as well as spec-

ular highlights if available. Once the light source geometry

is known, we show that it is possible to estimate the radiant

intensity distribution (RID) from the same input images.

To the best of our knowledge, our work is the first to ad-

dress the estimation of geometric (position and orientation

of light source w.r.t. camera) and photometric (RID curve)

properties of a non-isotropic near point light source using

a pure image-based approach. We show that our method

holds promise for calibrating regular cameras that contain a

built-in flash.
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Figure 1. Polar graphs of E(φ) radiant intensity distribution

curves. Some common shapes – (a) circular, (b) petal, (c) bell,

(d) heart, that can be modeled using cubic polynomials.

3. Shading Model and Properties
Consider the case of a homogeneous textureless plane il-

luminated by a light source observed by a calibrated camera

as shown in Fig. 2a. Let Π = (n, b) denote the plane, where

n ∈ R
3 is its surface normal and b ∈ R is an offset, such

that any 3D point P ∈ R
3 on the plane satisfies the equation

nTP + b = 0. Let C denote the camera projection center

and I denote the observed image. We denote the light posi-

tion as L ∈ R
3, its dominant direction as v, and the angle

between the light vector l and v as φ. Vectors n, l and v are

unit vectors. This is true for other vectors used elsewhere in

the paper unless specified otherwise.

Assuming Π to be a Lambertian surface that is illumi-

nated by a nearby, isotropic point light source, the intensity

at the pixel p in the image I is given by

Ip = ρE
nTl

d2
, (1)

where ρ is the diffuse albedo, E is the light radiance emit-

ted towards the point P that is observed at pixel p and d
is the distance from the light source to P. The image I is

related to I ′, the image projected on the plane Π via the

homography induced by Π [9]. We assume that vignetting,

gamma correction and radial distortion correction have been

performed, and image intensities are in a linear space.

3.1. Isotropic and non-isotropic point lights

An isotropic point light source emits light equally in all

direction. Hence, the term E in Eq. (1) is a constant. The

shading at a scene point depends only on the incident light

direction and the squared distance to the light.

In general, point lights are often non-isotropic, i.e., they

have a dominant light direction or axis and emit different

amounts of light in different directions. Radiant intensity is

defined as the radiant power of the light source emitted in a

particular direction and it is measured in Watts per steradi-

ans. Varying radiant intensities of a light source are repre-

sented by its radiant intensity distribution (RID) and this is

often visualized as a polar graph to display the angular light
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Figure 2. (a) Geometry of a camera observing a plane illuminated by a near, directional point light source. (b,c) Supporting figures for

explaining the symmetry properties (in Sec. 3.2).

fall-off from the light’s axis. Figure 1 shows common RID

curves as described in detail in [20].

For point lights, it is common to assume that the RID

curve is radially symmetric (see [14]). As a result the term

E in Eq. (1) becomes a function of the angle φ between the

light vector l and the light’s dominant axis v, and will hence

be denoted as E(φ). The observed image intensities are

now a function of the angular variation of radiance, varying

incident light directions and the distance to the light.

3.2. Symmetry Properties

We now prove a key result concerning symmetry in the

shading observed on a plane illuminated by a point light.

Lemma 1 (Bilateral Symmetry) Let X be the point on the
plane Π closest to the light L and Y be the point where the
light axis meets Π. If the radiant intensity distribution is
radially symmetric about the light axis, then the shading
image generated on the plane will be bilaterally symmetric
with respect to the line through X and Y.

Proof of Lemma 1. Let ΠLXY denote the plane determined

by the three points L, X and Y, and let lXY denote the line

where ΠLXY intersects Π. Since X is the closest point on

Π to L, the line lLX must be perpendicular to Π. Therefore,

ΠLXY must be orthogonal to Π (Fig. 2b).

Consider any two points P1 and P2 on Π which are

equidistant from lXY and the line segment P1P2 is perpen-

dicular to lXY. Let, M be the midpoint on P1P2 (Fig. 2c).

Since ΠLXY and Π are orthogonal to each other, we have

P1P2 ⊥ LM. Then, triangles �LMP1 and �LMP2

must be congruent (using the SAS rule for congruent trian-

gles). This gives two equality constraints.

‖P1L‖ = ‖P2L‖, (2)

�LP1M = �LP2M. (3)

Similarly, triangles �YMP1 and �YMP2 are also con-

gruent (result of the SAS rule). Therefore, we have

‖P1Y‖ = ‖P2Y‖. This leads to the fact that triangles

�LYP1 and �LYP2 are also congruent (follows from the

SSS rule for congruent triangles). Therefore we have,

�P1LY = �P2LY. (4)

Now, consider the intensities at P1 and P2 according to

the shading model (Eq. (1)). Condition (2) implies that P1

and P2 are equidistant from L, so the denominators d2P1

and d2P2
are equal. Condition (3) implies that the light vec-

tors lP1
and lP2

at P1 and P2 form the same angle with

the plane normal, so the dot products must be equal, i.e.,

nTlP1
= nTlP2

. Condition (4) implies that the light vec-

tors at P1 and P2 form the same angle with the light axis,

and as the RID is radially symmetric, we have EP1 = EP2 .

From this, we conclude that I ′P1
= I ′P2

. As this holds

true for any pair of points located equidistant from lXY and

its line segment is perpendicular to lXY, the image I ′ is

bilaterally symmetric with respect to that line. �

Lemma 2 (Radial Symmetry) The shading from the light
L on the plane Π is radially symmetric with respect to
X, the closest point on Π from L when either the light is
isotropic or the light is non-isotropic but is oriented such
that its dominant axis is perpendicular to the plane.

Proof of Lemma 2. For an isotropic light, consider points

on Π at a constant distance from L. Any point P in this

set lies on a circle C centered at X. The light vector at P
i.e. the line lLP traces out a right circular cone with axis

lLX and C as its base. This implies that the terms nTlP
and dP are constant for all points P on C. As E is a global

constant, it implies image intensities at all points on C must

be equal making the image radially symmetric w.r.t. X.

For a non-isotropic light, when the light axis v is per-

pendicular to the plane, the point Y, where the axis meets

the plane coincides with X. Points on a circle centered at X
are again equidistant from L and their light vectors form the

same angle with the plane normal. Hence, E(φ) is constant

for all points on the circle which implies that the observed

intensities at these points are equal and the image is radially

symmetric with respect to the center X. �

3.3. Geometric Constraints

The symmetry properties imply that for a calibrated cam-

era and a known plane illuminated by an unknown light
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Figure 3. (a) Half-vector h and angles θh and θd at the point X on

the plane Π. (b) Light camera configuration for the case when C
is not coplanar with L, X and Y. The lines lLC and lXY meet on

Π at an angle ψ (see Sec. 3.4).

source, detecting the axis of bilateral symmetry in the image

provides a plane constraint that is equivalent to one linear

constraint on the coordinates of L. Alternatively, the cen-

ter of radial symmetry if detected, provides a line constraint
that provides two linear constraints on L. In Sec. 4.2, we de-

scribe our algorithm that uses these constraints to estimate

the light position and orientation.

3.4. Non-Lambertian surfaces

We now address the non-Lambertian case and analyze

how the symmetry deviates from the perfect case depending

on the camera-light geometry or the type of BRDF.

We replace ρ(nTl) in Eq. (1) with ρ(θh, θd), an isotropic

BRDF model which is a function of θd, the angle between

h and lXL and θh, the angle between n and h, where h
is the half-way vector [16, 19] (Fig. 3a). This biquadratic

BRDF model is known to be appropriate for modeling low-

frequency components of isotropic BRDFs [19].

Consider the plane ΠLC passing through L and C or-

thogonal to Π. Let lXC′ denote the line where ΠLC inter-

sects Π (Fig. 3b). For any two points on a line perpendic-

ular to lXC′ on Π, equidistant from lXC′ and on opposite

sides of it, their half-vectors form the same angle with the

plane normal and their difference angles are also equal. So

the BRDF map will be bilaterally symmetric with respect to

lXC′ . Therefore, if lines lXC′ and lXY coincide, symme-

try is preserved about this line for any isotropic BRDF. This

occurs when the four points L, X, Y and C are coplanar.

If there are not coplanar, the lines lXC′ and lXY do not co-

incide anymore but intersect at some arbitrary angle ψ at X
(see Fig. 3b). The degree of asymmetry due to the BRDF

with respect to lXY will be maximum when ψ = π
2 .

The degree of asymmetry also depends on the ratio ω =
‖LC‖
‖CC′‖ where ‖LC‖ and ‖CC′‖ are distances between L

and C and between C and its closest point on Π. Consider

the case where the distance between the camera and light

position is similar to the distance of the camera from the

plane. In this case, θd will vary more and this may cause a

large variance in the observed BRDF.

To quantify the deviation in symmetry for a reasonable

Algorithm: Light Calibration

Input: Images {Ik}, Cameras {Pk}, plane Π
Output: Light position L, direction v in camera

coordinates, parameters of E(φ).
1. Rectify {Ik} using plane-induced homographies H .

2. Detect specular highlights.

3. Recover shading images.

4. Detect axes of symmetry in shading images.

5. Estimate L and v using output of steps 2 and 4.

6. Estimate coefficients of E(φ) using estimated L, v.

range of configurations values for ψ and ω, we analyzed

pose parameters for the camera-light rig i.e. C and L for

values of ψ ∈ (0, π
2 ) and ω ∈ ( 1

50 , 1). We considered realis-

tic BRDF values from the database used in [19] in this anal-

ysis and empirically selected different BRDF functions to

measure the deviation from symmetry in the average case.

In our analysis, the deviation in symmetry for many BRDFs

is small enough when ω is less than 0.1 i.e. the distance

between L and C is less than one-tenth the approximate

distance to the plane. The details of this analysis can be

found in the supplementary material. Thus, we conclude

that except for BRDFs with extreme values, we expect the

deviation in symmetry to be small and that our method will

work accurately in most configurations.

4. Proposed method

In this section, we describe our method for calibrating a

point light rigidly attached to a camera using multiple im-

ages of a plane. See Algorithm 1 for an overview. We refer

to the input images as {Ik}, the camera projection matrices

as {Pk} and camera centers as {Ck} respectively. For each

camera position Ck, the corresponding light position in the

world coordinate system is denoted Lk.

Camera Calibration. We use structure from motion [9]

to calibrate the cameras and then estimate the plane by ro-

bustly fitting a plane to the reconstructed 3D points. We

assume that the scene is planar, has a single material and

has enough texture for automatic feature matching to work.

Specular Highlight Detection. We detect highlights in im-

ages by analyzing pixel intensity distributions. Images con-

taining specular highlights tend to have long-tail distribu-

tions as pixels at and around the highlight are much more

brighter than pixels in the rest of the image. On the other

hand, image without highlights tend to have short-tail dis-

tributions. Hence, we construct a histogram of image inten-

sities using all image pixels and fit a 1D Gaussian N(μ, σ)
to the histogram values. Bright pixels, whose intensities ex-

ceed the value 6σ are classified as specular highlights and

we fit a 2D ellipse to those pixels and use the ellipse center

for light position estimation.



Gradient Filtering. Since our method requires a shading

image, we first need to remove high frequency gradients in

the input image that correspond to albedo edges. We re-

cover the shading image Î by minimizing the following ob-

jective function

Î = argmin
I

∑
p∈P

{(
∂Ip
∂x

− f(
∂Op

∂x
)

)2

+λwp(Ip−Op)
2

}
,

(5)

where f(·) is gradient clipping function defined as

f(x) =

{
x if ‖x‖2 < τ
0 otherwise.

(6)

and O is the input image. This problem can be formulated

as a discrete Poisson problem which can be solved effi-

ciently using a sparse linear solver. In Eq. (5), the first term

encourages the gradients in I to match the clipped gradient

of O whereas the second term encourages the intensities to

be similar. The second term is also modulated by a per-pixel

weight wp ∈ [0, 1] that accounts for outliers arising from

strong gradients in the albedo map or specular highlights.

We define wp as follows.

wp = sp(1− |Op −G ∗Op|), (7)

where G is a ρ×ρ gaussian kernel (ρ = 100), ’*’ is the con-

volution operator and sp is a binary variable (zero when the

pixel is classified as a specular highlight). wp is inversely

proportional to per-pixel values in |Op−G ∗Op|, the high-

pass filter response on O. Parameters λ and τ are set to

0.1 and 0.5 respectively for I ∈ [0, 255]. An example of a

recovered shading image is shown in Fig. 4.

Ortho-Rectification: Using the known plane and camera

parameters, we compute the plane-induced homographies

for each image and rectify the shading image Îk computed

in the previous step to remove all perspective effects and

create rectified images required by our method.

4.1. Bilateral Symmetry Detection

We now describe our method for detecting the symmetry

axis in the rectified shading image using RANSAC in a typi-

cal hypothesize-and-verify framework. We use the fact, that

for a least squares quadratic fit g(z) = az2+bz+c to sam-

ples of a 1D function f(z) symmetric about z∗, evaluated at

points sampled at uniform steps in z∗±D, the function g(z)
will attain an extremum at z∗. However, this is not always

true for an asymmetric 1D function.

To evaluate any line l for symmetry, we select a point

xj on l and sample points along l⊥j , the line perpendicular

to l through xj at uniform steps along l⊥j . We consider the

intensity profile I⊥j at these sampled points between points

z+j and z−j that are equidistant from xj but in opposite di-

rections, such that either z+j or z−j is on the image boundary.
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Figure 4. (a) Input image. (b) Corresponding shading image com-

puted by gradient filtering (Image contrast stretched for visualiza-

tion). (c) Intensity plots for the red and blue scanlines. (d) Per-

pixel weights wp used in Eq. (7).

Using least squares, we then fit a quadratic function Qj(z)
to I⊥j and compute the distance

dj = ‖z∗j − xj‖, where z∗ = argmax
z

Qj(z). (8)

To measure the overall degree of asymmetry, we perform

quadratic fits at n positions along l and calculate the aver-

age distance d(l) =
∑

j dj

n for all the positions. After gen-

erating random line hypotheses 1, we select the hypothesis

l̂ with the smallest value of d(l). We further refine the es-

timate l̂ using local optimization. In near degenerate cases,

bilateral symmetry degrades to radial symmetry and then,

multiple line candidates may have small values of d(l). The

center of symmetry can then be found by robustly intersect-

ing multiple such symmetric lines found using RANSAC.

4.2. Light Position and Axis Estimation

Each detected symmetry axis provides a plane constraint

on the light position in world coordinates (CW ). We trans-

form these planes to camera coordinates CC and derive a

linear constraint on the coordinates of L in CC . These lin-

ear constraints πkL = 0 can be stacked into a matrix of the

form AL = b. It may appear that a solution of this linear

system will provide an estimate of L. Unfortunately, these

linear equations are not independent even when the cameras

are in general positions. This is because the planes ΠLXY

for different light positions always form a bundle or pencil

of planes and pass through a 3D line. In fact, that 3D line is

the axis of the light, denote by R in CC . This implies that

we cannot directly compute L but it is possible to estimate

R by finding the null space of the linear system described

1In practice, a 1-point RANSAC is used when a prior guess for the light

position L is available, since the projection of L on Π lies on line l and

only one other point is needed.



above. Let L1 and L2 denote 3D points in CC whose linear

combination defines points on the line R.

In practice, we need at least 2 images, each of which

provides one plane constraint. As long as these planes do

not all coincide, there is no degeneracy. Multiple input im-

ages with random 3d camera orientations makes the degen-

erate case very unlikely. The presence of camera translation

avoids the degeneracy in the initial SfM stage and the 3D

plane fitting step.

If specular highlights are present, we can use them to

estimate L. Using the ellipse center as the image of the

reflection of L, we compute the corresponding incident light

ray in CW using the law of reflection. We transform this ray

into CC and obtain a line constraint on L, which gives two

linear constraints on its coordinates. We estimate L using

least squares assuming cameras in general position.

Alternate method. When specular highlights are absent

(as in Lambertian scenes), it is possible to estimate L indi-

rectly. If the 3D line R is known, we can parameterize the

unknown position L = L0 + λu, where L0 is a point on R
closest to the camera center C, u is a unit vector parallel to

R and λ is an unknown scalar. For each k-th plane, we can

find the point Yk where R intersects it. Then, the distance

from L to Yk denoted by dk, can be written in terms of λ.

To compute λ, we can substitute various terms for points

Yk into Eq. (1), namely the intensities IYk
, known values

of nTl and expressions for dk in terms of λ. As these points

lie on the light axis, i.e., φ = 0, the term E(φ = 0) is

unknown but constant. Taking ratios between pairs of equa-

tions eliminates ρ and E(φ = 0). Multiple equations pro-

vide a set of sample estimates of λ after which the median

value λ∗ is selected and used to compute L = L0 + λ∗u.

4.3. Radiant Intensity Distribution Estimation

Once the light position and axis is known, for each image

pixel, we can substitute I and d2 as well as values for φ, θh,

θd and d into Eq. (1) where the product of the polynomials

E(φ) and ρ(θh, θd) is expanded in terms of the unknown

coefficients q1, . . . , q6 and p1, . . . , p4.

ρ(θh, θd)E(φ) = (q1c
2
h + q2ch + q3)(q4c

2
d + q5cd + q6)

(p1φ
3 + p2φ

2 + p3φ+ p4). (9)

Here, ch = cos(θh) and cd = cos(θd) as proposed in [19].

On expanding ρ(θh, θd)E(φ), we get a higher-order poly-

nomial f(φ, θh, θd) with 36 unknown coefficients. These

coefficients of f , denoted by vector f can be estimated by

solving a least squares problem of the following form.

Af = Id2, (10)

where A has 36 columns and a row corresponding to a pixel.

To recover p1, . . . , p4 from f , we create a 9× 4 matrix F ,

F = [f1p1 f2p2 f3p3 f4p4], (11)
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Figure 5. (a) Synthetic dataset example. (b) RID curves with dif-

ferent angular fall-offs used for evaluation (best seen in color).

where fi ∈ R
9 are coefficients for pi. On noise-free data, F

would be a rank-1 matrix. Hence, we factorize F = UDV T

using singular value decomposition (SVD) and the values of

p1, . . . , p4 are obtained from the first column of V .

5. Experiments
We have tested our method with both synthetic and real

data. These results are now described.

5.1. Synthetic evaluation

We generated 50 synthetic datasets with 20 images each.

Each set has randomly generated cameras approximately

on a hemisphere oriented roughly towards the origin. The

scene plane is fixed and passes through the origin. Suit-

able intrinsic parameters are chosen randomly as well. The

light position and orientation was generated randomly in the

camera coordinates. Each dataset was assigned one of the

RID curves shown in Fig. 5b. Images were rendered at 320

×240 resolution and a Blinn-Phong model [6] was used to

generated specular highlights2. Image noise was added to

the synthetic images. The level of noise added was varied

from 1 to 8 on a scale of [0,255] on all 50 datasets to gener-

ate results for 400 different runs; these are now discussed.

We first present the symmetry axis detection results

in Fig. 6a where the detected line is compared with the

ground truth line using the Hausdorff distance. In general

the estimation is stable but the median errors across differ-

ent runs increases slightly with noise. As expected the de-

tection is consistently more accurate for lights that have a

stronger angular fall-off in their RID (blue curves).

The light axis estimation which depends on the accu-

racy of the previous step also appears to be quite stable in

general (Fig. 6b). The estimated direction is within 1◦ of

ground truth for the blue curves and is at most 2.3 degrees

for the light which has the most uniform distribution. The

position estimation using specular highlights clearly outper-

forms the alternative method that seems to be affected by

2We use a very high value of the shininess parameter (= 50) and when-

ever the specular highlight is observed within the image, the view vectors

are not at grazing angles to the plane. We confirmed that the error intro-

duced by the Blinn-Phong model which is approximate, is quite small.
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Figure 6. Median errors across multiple runs for (a) symmetry axis detection and for estimating (b) light direction, (c) light position using

specular highlights and (d) light position using the alternative method. Results are color-coded by the RID curves shown in Fig. 5b.
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Figure 7. Ground truth and estimated RID for each of the five light models (Fig. 5b). The medians of the estimated coefficients from 80

runs are used to plot the curve. The error bars show the deviation in the curve due to variance of each estimated coefficient.

Dataset I0 I1 Est. X Y Z MAE

CAMERA-LED 39 3 Pos. 5.57 9.02 0.94 8.97

Dir. 0.09 -0.05 0.99

SLR-FLASH 17 3 Pos. 0.29 26.35 17.38 15.35

Dir. 0.02 -0.25 0.97

Table 1. Statistics for real datasets: #images used for calibration

(I0) and held-out for evaluation (I1). Estimated light position and

orientations are listed (position reported in cm. from camera center

and direction reported as a unit vector).

noise levels (Fig. 6c and d). The results of the first method

also does not depend on the RID curve, which is another

advantage.

Figure 7 shows the ground truth RID curves and the es-

timated curves. In each case, the coefficients of the RID

curve were estimated from multiple runs and the curve cor-

responding to the median of these estimates is shown. The

deviation due to the 25-th and 75-th percentiles is indicated

using error bars. In general, the synthetic evaluation shows

that our method successfully estimates the RID curves with

high accuracy. Difficult random camera configurations was

a source of error in less than 5% of the cases – either the

optical axis was at a grazing angle to the plane or the an-

gle between the light vector and the optical axis was quite

large. In the second case, our method suffers in accuracy

due to the limited field of view (FoV).

5.2. Evaluation on Real datasets

To test on real data, we captured two datasets with 42

and 20 images of whiteboards (some of which contained

specular highlights) in two different dark rooms. The first

dataset CAMERA-LED was captured using a bright Cree

XM-L LED. rigidly attached to the top of a point-and-shoot

camera (Panasonic DMC-LX5). The second dataset SLR-

FLASH was captured with a Canon Mark III-1D camera

with an auxiliary flash. Even though the flash violates the

assumption of a point light source, we evaluate the perfor-

mance of our method on this dataset to assess to what extent

it can handle traditional camera flashes. After obtaining the

SfM reconstruction, we resolved the scale ambiguity using

prior knowledge of the scale. For these datasets, we ran-

domly held out three images for evaluating estimated pa-

rameters. We generated images using estimated parameters

and compared them to the held-out images using the mean

absolute error (MAE) 3 as the accuracy metric.

Figure 8 shows results on the CAMERA-LED and SLR-

FLASH datasets. For the Cree XM-L LED, our RID esti-

mate appears to be in reasonable agreement with the man-

ufacturer’s profile within a cone of 25◦ from the light axis.

For angles greater than 25◦, the insufficient horizontal field-

of-view (70◦ approx.) of the camera causes fewer pixels

with larger angular values to be observed. Having the dom-

inant axis of the light parallel to the camera’s optical axis

also adds to the error for the same reason. Therefore, the full

range of light emission may not be calibrated. However, cal-

ibrating the partial range is useful for post-processing im-

ages captured with the same camera and flash and that task

does not require calibration of the full range of light emis-

sion. The MAE for the CAMERA-LED dataset was 8.97.

The estimated geometric parameters of the light source is

reported in Table 1. For SLR-FLASH, our method recovers

a more flat RID curve as expected, since its built-in diffuser

causes it to behave like an isotropic light source. The MAE

in this case is 15.35. A likely reason for this is that the flash

in this case is a near area-light source. Nevertheless, the ge-

ometric parameters are accurately estimated (Table 1) – the

estimated light axis is almost parallel to the optical axis and

the light position appears accurate to within 1-2 cms based

on our best guess for the camera center.

3for image intensities that lie in the range [0,255]
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Figure 8. Results on CAMERA-LED and SLR-FLASH (top and bottom row resp.): (a) Camera-light rig. (b) Input image. (c) Shading image

generated using model. (d) Residuals and MAE between rendered and gradient-filtered image (not shown). (e) The recovered RID curve.

6. Conclusions

We have presented a practical method for calibrating a

non-isotropic near point light rigidly attached to a camera.

Our method uses images of a weakly textured planar scene

from multiple viewpoints and estimates light position and

orientation using shading cues and specular highlights. The

results on real data are encouraging and it seems that the

method can be feasible in situations where special hard-

ware/objects cannot be used. We expect that higher accu-

racy can be obtained by jointly optimizing all model pa-

rameters in a final stage. The investigation of more accurate

models for non-point near light source is another interesting

direction of future work.
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