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Abstract

This paper addresses the novel problem of automatically
synthesizing an output image from a large collection of dif-
ferent input images. The synthesized image, called a digital
tapestry, can be viewed as a visual summary or a virtual
‘thumbnail’ of all the images in the input collection. The
problem of creating the tapestry is cast as a multi-class la-
beling problem such that each region in the tapestry is con-
structed from input image blocks that are salient and such
that neighboring blocks satisfy spatial compatibility. This is
formulated using a Markov Random Field and optimized via
the graph cut based expansion move algorithm. The stan-
dard expansion move algorithm can only handle energies
with metric terms, while our energy contains non-metric
(soft and hard) constraints. Therefore we propose two novel
contributions. First, we extend the expansion move algo-
rithm for energy functions with non-metric hard constraints.
Secondly, we modify it for functions with “almost” metric
soft terms, and show that it gives good results in practice.
The proposed framework was tested on several consumer
photograph collections, and the results are presented.

1 Introduction

Consider the collection of consumer photographs shown
in fig. 1(top). This paper addresses the problem of auto-
matically summarizing such a collection in a single pho-
tomontage, termed a digital tapestry. Fig. 1(a) shows a
manually generated tapestry using commercial image edit-
ing software [1]. The digital tapestry will be useful for two
main purposes: to remind the user of the photo collection,
a ’thumbnail’ of the image collection; to act as an image
retrieval system - e.g. by selecting a part of the tapestry, all
images that have similar regions can be retrieved from the
collection.

In principle, one could generate a naive version of a
tapestry by first selecting a subset of images from the in-
put collection based on some global image properties, e.g.
color, and then creating a mosaic using this subset. Fig.1(b)
shows an example mosaic tapestry using a subset of 4 im-
ages. The advantage of using entire images is that the shape
and appearance of the tapestry regions are preserved. How-
ever, in addition to not being visually appealing, the main
drawback of such a tapestry is that it comprises informa-
tion from a very small number of images, where several re-
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gions are potentially uninformative (grass in this case). In
a tapestry one would like to include as many salient regions
from different images in the collection as possible. Another
possible choice is to synthesize a tapestry through texture
synthesis. However, the traditional texture synthesis tech-
niques, both parametric [16] as well as non-parametric [5]
address the problem of synthesizing a large texture image
given a small sample. Clearly, these will be insufficient to
generate a rich structure in tapestry because of the variety
of objects and textures contained in different input images.

Jojic et al. [7] recently proposed a generative framework
to obtain a condensed version of the input image called an
epitome. An epitome contains the essence of the shape
and appearance of the original image. Potentially, the epit-
ome framework could be extended to create a photomontage
from different images. However, as pointed out in [7], the
epitome model for several input images works well only if
these images contain similar objects (e.g., different images
of the same scene). On the contrary, the collection from
which a tapestry is to be created will usually have many dif-
ferent images. Fig. 1(c) shows the epitome for the mosaic
images in fig. 1(b)!. The structure of the regions is not pre-
served in the epitome. It should be noted that an epitome
can generate the original image again using a smooth map
which is also learned in the framework. However, in the
tapestry framework, the aim is to obtain a salient represen-
tative image from the collection of input images, free of the
need to generate input images from the tapestry.

In the domain of user-assisted techniques, recently a
system called digital photomontage has been proposed [2]
which combines parts of a set of photographs into a single
composite picture. The input set of images are assumed to
be of the same scene and roughly registered, e.g. several
images from the same camera viewpoint. In our case, the
images from a collection will usually contain very different
scenes and registration is infeasible. Kwatra et al. [11] have
described a framework to combine parts from two different
images. But the problem of which image parts to select and
where to place them is left to the user. In this paper we
present a framework to create a tapestry fully automatically
from a large number of input images. As we will see, the
basic concept for our framework is related to [11].

Thttp://research.microsoft.com/ jojic/software.htm. To remove artificial
seams, the epitome was initialized with the top, left image in fig. 1.



\.« - BR

— 2
(é) Manual Tapestry

4!:&’}

b,

(b) Mdic of representative méges

(c) Epitome

Figure 1. Tapestry comparison. Top: eight different images from a consumer photo collection. Bottom: Four different
ways to visually summarize such a collection: (a) Manually created tapestry using commercial image editing software
[1]; (b) mosaic of representative images; (c) shape and appearance preserving epitome [7]; (d) digital tapestry created

with the proposed method.

First, we describe the properties of what we call an ideal
tapestry. An ideal tapestry should contain visually infor-
mative regions from as many different input images as pos-
sible. These regions should be placed in the tapestry re-
alistically. The redundancy in appearance between differ-
ent regions should be minimal and the main texture types
from different images should be represented. However, the
tapestry does not have to resemble a real image. For this, we
propose a framework which answers three essential ques-
tions: which regions of the input images should be selected,
where to place them in the tapestry, and finally how to re-
move any residual visual artifacts. The main contribution of
this paper is to present a fully automatic framework which
addresses these questions in a principled manner. Our tech-
nique does not require a-priori scene understanding or de-
tection of generic objects. We also demonstrate how high-
level knowledge, such as face detection can be incorporated
in the framework which improves the tapestry. One ex-
ample tapestry created automatically by our framework is
given in fig. 1(d). Compared to fig. 1(b), redundant infor-
mation is removed, so that all input images are represented.
The difference between fig. 1(a) and (d) clearly shows the
lack of high-level knowledge in our framework.

In the proposed framework, we formulate the tapestry
problem as a multi-class labeling problem over a Markov
Random Field (MRF), such that each region in the tapestry
is constructed from salient input image blocks and neigh-
boring blocks satisfy spatial compatibility. The formulation
is presented in detail in sec. 2. In sec. 3 we describe how the
MREF energy is minimized using the expansion move algo-
rithm of Boykov et. al. [3]. The standard expansion move
algorithm can only handle energies with metric terms, how-
ever, our energy contains hard and soft constraints which are
non-metric. This leads to two novel contributions. Firstly,
we extend the expansion move algorithm for energy func-

tions with non-metric hard constraints. Secondly, we mod-
ify it for functions with “almost” metric soft terms. Sec. 4
describes some more experiments on consumer photo col-
lections, and finally we conclude in sec. 5.
Input image 2
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Figure 2. Tapestry Labeling. Input blocks are
matched from the input images to the tapestry. For
example, image ¢ = 1 has shift s = —2 with respect
to the tapestry. Matching an input block from this im-
age to the tapestry means that the tapestry block p has
label f, = (i,s) = (1,—2). Furthermore, given the
tapestry block p at position z,, = 2 in the tapestry, and
its label f, we can derived uniquely the input image
block k¥ € K in image ¢ = 1 at position z, — s = 4.
Note that for simplicity this is a 1D illustration.

2 Problem formulation

After introducing the notation, we explain in sec. 2.1 the
basic constraints which are necessary to obtain tapestries
without any prior scene knowledge. These basic constraints
give us a problem which we call matching with smoothness,
which is discussed in sec. 2.2. To improve the quality of
the tapestry we introduce in sec. 2.3 additional constraints
based on prior scene understanding.
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Figure 3. Digital Tapestry. (a) Input images. (b) Without block uniqueness constraint the most salient block is
duplicated over the whole tapestry. (c) With block uniqueness the tapestry contains the most salient blocks (column-
wise starting top,left). (d) A constant pairwise constraint (MRF with Potts model) has the positive effect that regions of
input blocks are coherent. (e) Given appearance-based clustering, certain textures, e.g. sky, can only occur at specific
locations, e.g. on the top. (f) Transitions between neighboring blocks are realistic, e.g. the sheep are now placed on
a grass background. (g) Each image can only appear with one unique shift in the tapestry, e.g. the upper part of the
body and the legs in (f) are now correctly placed. Also face detection [15] prevents faces from being chopped off or
excluded. (h) Visual artifact removal using pixel-wise graph cut texture [11] and feathering [14].

Assume that the input images and the tapestry image are
divided into equally sized blocks, here 32 x 32 pixels. The
tapestry image is created by matching a subset of input im-
age blocks to the tapestry?. We will view this problem as a
labeling problem of the tapestry blocks, see fig. 2.

Let 7 be the set of input images and ¢ an image. K is the
set of all input image blocks where & is a block. Further-
more, let p, ¢ € P be blocks in the tapestry. Let us define
a label space £L = 7 x &, where S is the set of all possi-
ble 2D “block-shifts” of an input image with respect to the
tapestry image®. The labeling of tapestry block p is defined
as fp = (i,s) with s € S. Given the tapestry block p, at
position x,, in the tapestry, and its label f, = (i,s) we can
derive uniquely the input image block as b(p, f,) = k € K,
at position x, — s in image ¢ (see fig. 2). The function
b(p, fp) is the unique (backward) mapping from the pair
(p, fp) onto the set of all input blocks K. The synthesis
problem is to find a mapping (configuration) f : P — L,
which assigns uniquely a label to each tapestry block. We
define an energy function E( f) for each configuration f,

E(f)=2,, DP(fP)+Zp,q€NV Vp,q(fp7fq)+2p,quH Hpq(fprfa)-

ey

2This is similar to [11] where a block is replaced by a pixel.
3For simplicity we assume that all input images are of the same size.

It consists of three terms: the data term D, (-) € R imposes
unary constraints, the pairwise soft constraint V, ,(-,-) € R
encodes smoothness between neighboring blocks p, ¢ in the
tapestry, and Hp, 4(-,-) € {0, 00} encodes hard constraints,
which prohibits certain configurations.

2.1 Basic Constraints

The goal of a tapestry is to remind a user of the summa-
rized photo collection (typically their personal collection).
When we consider individual image blocks, we believe that
some blocks are more informative (salient) than others to
prompt the user’s memory. To confirm this conjecture, we
ideally have to learn “saliency” from a psychological exper-
iment. Until then we assume that blocks with high contrast
are salient. A high contrast block is more likely to contain
shape information. For instance, a block of uniform sky is
less salient than its neighboring block containing the hori-
zon (fig. 3(a)). Obviously, the uniform sky block is also
needed to explain the neighboring horizon block. We will
deal with this spatial constraint of neighboring blocks later.
The most salient blocks of the input images are shown in
fig. 3(c) (column-wise starting top, left).

To determine the contrast blocks we first smooth and
down-sample the image, so that an image block is now of
size 2 x 2 pixels. The contrast is then computed as the sum
of the gradient magnitudes within the down-sampled image




block. This defines the data term as
Dy (fp) = —Saliency(b(p, f)) - (2)

In order to encourage that each image contributes to the
tapestry, the saliency value of all blocks of one image are
normalized to one. Additionally, we use the heuristic as-
sumption that the image center is more informative about
the image’s content than the border, details are omitted.

Optimizing the energy E in eqn. (1) with the saliency
constraint as the only term has the effect that the most
salient block is duplicated over the whole tapestry (fig.
3(b)). To avoid this, we have to constrain the energy so
that any two tapestry blocks are from different input blocks,
i.e. b(p, fp) # b(q, fy) for all blocks p, ¢. In terms of en-
ergy, we can write this block uniqueness constraint as a
hard constraint of the form

Hp,q(fpafq) = lf b(pa fp) = b(qafq) . (3)

This hard constraint gives us a matching problem: we want
to find a mapping between image blocks and tapestry blocks
such that each tapestry block has one match.

A tapestry which contains just the most salient blocks is
not very informative, fig. 3(c). In order to capture larger,
salient image regions, we want to “grow”, in the tapestry,
blocks which are from the same input image. The most sim-
ple spatial constraint on the tapestry blocks is to introduce
a MRF with a Potts model. We add to our energy the soft
block coherence constraint

VP,Q(fpqu):Al iffp#fqa 4

where V' has an 8-neighborhood system Ny and the weight
A1 decides how spatial coherent the tapestry is. Note that
neighboring tapestry blocks p, ¢ with identical labels f, =
fq are always neighboring blocks in the input image. Fig.
3(d) shows that these three basic constraints are sufficient to
obtain a reasonably looking tapestry. To improve the result,
additional constraints based on intermediate and high-level
knowledge are necessary, as we will discuss in sec. 2.3

The coherence constraint transforms the matching prob-
lem, introduced above, to the problem of matching with
smoothness, as we denote it. How this problem can be ad-
dressed is discussed in the next section.

2.2 Matching with smoothness

The block uniqueness constraint and block coherence con-
straint gives us a problem which we call matching with
smoothness. Minimizing the corresponding energy func-
tion E is NP-hard, therefore, we have to resort to approxi-
mation techniques such as graph cut based expansion move
algorithm or loopy belief propagation. It might seem that
they are not practical since we have a fully connected MRF
model. However, we will show in sec. 3.4 that our prob-
lem can be tackled efficiently by the expansion move algo-
rithm [3]. In particular, in each step of the algorithm the

number of edges needed for enforcing the block uniqueness
constraint is at most linear in the number of tapestry blocks.

The expansion move algorithm was also used for the
matching with smoothness problem in the context of
stereo [8, 9]. Unlike our problem, stereo is symmetric: oc-
clusions are allowed in both left and right images, while we
allow “occlusions” (non-matched blocks) for input blocks
but not tapestry blocks. Algorithms in [8, 9] could be
adapted to our problem by setting appropriate occlusion
penalties to infinity. However, the graphs constructed dur-
ing a-expansion steps would contain approximately twice
as many nodes as in our formulation.

2.3 Additional Constraints

To further improve the quality of the tapestry, we introduce
additional constraints based on prior scene understanding.
Localization constraint. One of the requirements while
creating a tapestry is where to place the salient regions from
different images in the tapestry. We formulate this by intro-
ducing a hidden variable, h, which can be seen as a cluster
variable representing the appearance clusters of the input
image blocks. As appearance of a block we currently use
its dominant block color. Thus, the distribution over loca-
tions, x, in the tapestry for a given block k£ = b(p, fp) can
be expressed as: P(zp|k) =Y, P(zp|h)P(h|k), where
P(z,|h) encodes the preference of certain cluster of blocks
to appear at particular locations (e.g. sky tends to be on the
top - see fig. 3(e)). The second term, P(h|k), indicates the
cluster membership of the given block k. This term can be
obtained using EM for mixture of Gaussian (MoG) cluster-
ing. Assuming the independence of the image blocks, the
first term can be written as,

P(zplh) o< H d(zg — xp)p(K'|h),
k€K
where 0(t) = 1if ¢t = 0 and 0 otherwise, and p(k'|h) is the

cluster likelihood, obtained directly from MoG. We add to
the data term, define in eqn. (2), the location constraint as

Dp(fp) = Dp(fp) — A2 log P(zplb(p, fp)) . (5)

Appearance dependent MRF. We defined our ideal
tapestry with the property that image regions should be
placed realisticly. Fig. 3(e) shows that many block transi-
tions are violating this constraint, e.g. the sheep have grass
as background, however, are placed in the sky. Similar to
Kwatra et al. [11] we introduce an appearance based block
transition. We replace the pairwise constraint in eqn. (4) by

Voa(forfa)=A1+As min (||0<b(p,fp>>fo<b(p,fq>>||2,

||C(b(q,fq)—0(b(q,fp)||2) it fp#f

where C'(k) is the appearance of block k, which is currently
its dominant color. To be robust to salient blocks, which



might contain two different textures, we use the min(-)
function. Note that V' might be non-metric, which can
not be handled by the standard expansion move algorithm.
Therefore, we extend the algorithm in sec. 3.3.
Image-Shift uniqueness. One possibly undesirable phe-
nomena is that two blocks, assosciated with one object in
some input image, both appear in the tapestry but mutually
misregistered, i.e. with a different image-shift, such as the
upper part of the body and the legs in fig. 3(f). Therefore,
we introduce the hard constraint that every image can only
be present in the tapestry with one unique shift. This has
the negative side effect that less salient parts, like the two
smaller sheep in fig. 3(f) are discarded, fig. 3(g).

Let us introduce the label f; € S which represents the
shift of image ¢. We replace the block uniqueness constraint
(eqn. (3)) by the image-shift uniqueness constraint

Hp,i(fpafi):Oo lffp:(Z,S) andfi#s- (6)

An alternative option for avoiding two differently shifted
parts, in the tapestry, of one salient region is described next,
which however involves object detection.
Face (object) detection. Assume an object detection sys-
tem identifies that blocks in an image belong to the same
object, such as a face in fig. 3(g). Obviously these blocks
should appear as a connected region in the tapestry. There-
fore, we add the hard constraints Hp 4(fp, fq) = oo if
fp # fy and b(p, fp),b(q, fy) are two blocks of the same
object. We currently use the face detection system of [15].
Since faces are important to prompt the user’s memory,
we would like to include the face of each person present
in the photo collection. The data term of a “face block”
b(p, fp) is adapted to D,(f,) = —const, where const >
maz(D(-) + 8 max(V (-,-)). To reduce the risk of dupli-
cating faces of the same person, we adapt only those “face
blocks” which appear in the image with the most faces, typi-
cally a group photograph. The automatic clustering of faces
[6] is a challenging task which we plan to address.
Class uniqueness. In a typical photo collection very simi-
lar images frequently appear, e.g. same shot with different
lightning. Since the tapestry can only represent a fraction
of all images, depending on tapestry size and )\;, differ-
ent tapestry regions with very similar appearance have to
be avoided. To address this issue, we cluster “similar” im-
ages, based on global image properties, such as histogram
of colors [13]. We introduce the constraint that the tapestry
must contain only one sample image per cluster.

Let us define a cluster variable ¢ € C. This variable has
a label f. € 7 which denotes that the cluster ¢, if present
in the tapestry, is represented by image f.. We add to our
energy the class uniqueness constraint

Hyp o(fpfe)=00 if f=(i,s), b(p,fp)=c and fe#i. @)

This constraint is used for all examples in sec. 4. We plan
to extend this constraint from redundant image detection to

redundant region detecting, which however needs a reliable
and un-supervised texture clustering as addressed in [4].
Removing Visual Artifacts. In fig. 3(g) we see that us-
ing blocks instead of pixels introduced two noticeable arti-
facts. Firstly, true object boundaries may be missing, like
the hairline of the person. We remove this artifact by using
a variation of [11] where the seam prefers to follow existing
boundaries. Secondly, the boundaries between the blocks
introduce an artificial seam, e.g. transition from dark to
bright grass. We adjust the colors at the seam using feather-
ing within a ribbon around the seam [14]. Since we do not
want to blur true objects boundaries, the size of the ribbon
depends on the strength of the existing boundary. The final
tapestry is shown in fig. 3(h).

3 Energy minimization via Graph Cuts

In this section we discuss the optimization framework for
the energy introduced above. As discussed in sec. 2.2, we
believe that expansion move algorithm of Boykov et al. [3]
is the most suitable technique for our problem. Indeed, we
show in sec. 4 that iterated conditional modes (ICM) per-
forms worse.

The energy contains non-metric (soft and hard) con-
straints, which can not be handled by the standard expan-
sion move algorithm. Therefore, in sec. 3.2 we extend the
expansion move algorithm for functions with non-metric
hard terms. Sec. 3.3 introduces a modify version for gen-
eral functions with non-metric soft terms.

3.1 The Expansion Move Algorithm

The basic idea of the expansion move algorithm is to reduce
the problem of minimizing function E (eqn. (1)) with mul-
tiple labels to a sequence of binary minimization problems.
These subproblems are called alpha expansions. They can
be described as follows, see [3, 10] for details.

Suppose that we have a current configuration (set of la-
bels) f and a fixed label a € L. In the a-expansion opera-
tion each pixel (or block in our case) p € P makes a binary
decision: it can either keep its old label or switch to label .
Therefore, we introduce a binary vector x € {0,1}” which
defines the auxiliary configuration f[x] as follows:

. [ fp ifz,=0
VpeP itis flx], = {a itz =1
This auxiliary configuration f[x] transforms the energy E
with multiple labels into an energy function of binary vari-
ables £(x) = E(f[x])*. It can be written in the form similar
to eqn. (1):

E(x) = ng(wp) + Z Epq(Tp, 7g) (®)

P,gEN

“Note that the notation E, € is used for energies with multiple and bi-
nary labels respectively.



where N' = Ny U Ny. Individual terms are defined by the
terms of function E. For example, for p, ¢ € Ny, we have

gp,q(o,o) Ep,q(O,l) Vp,q(fp,fq) Vp,q(fpaa)
Ep,a(1,0) | Epg(1,1) V(e fg) | Vogla, @)

Under certain conditions, described below, a global mini-
mum of £ can be computed efficiently using graph cuts.
The expansion move algorithm starts with an initial con-
figuration f°. It computes optimal a-expansion moves for
labels «v in some order, accepting the moves only if they de-
crease the energy. The algorithm is guaranteed to converge.
Its output is a strong local minimum characterized by the
property that no a-expansion can decrease the energy E.

3.2 Class of Energies with Strong Local Minima

In this section we discuss for which multi-label functions £
we can obtain a strong local minimum. As described above,
this can be done if for any a-expansion a global minimum
of function £ in eqn. (8) can be computed efficiently.

In previous work researchers considered the case when
the hard constraint term H in eqn. (8) is not present.
Boykov et al. [3] gave a graph construction which is ap-
plicable when V' is a metric. This condition was general-
ized in [10], where they showed that £ can be minimized
efficiently if it is regular, i.e. each term &, , satisfies the
following inequality:

Ep,q(0,0) + Epg(1,1) < &4 (0,1) + &,y (1,0) . (9)

Clearly, £ will be regular for any a-expansion if the term V'
satisfies V(3,7) + V(a,a) < V(B,a) + V(a,) for all
labels a, 3, . We refer to such a V' as expansion-regular.
We now extend the class of energies for which we are
guaranteed to converge to a strong local minimum. Specif-
ically, we allow a rather general hard constraint term H,
which does not need to be expansion-regular.
Theorem 1 Suppose that each term V), 4 in eqn. (1) is
expansion-regular and each term Hy ,(-,-) € {0,000} has
zero diagonal: H, ,(a,a) = 0 for any label a.. Then for
any a-expansion, function £ in eqn. (8) will be regular as-
suming that the initial configuration satisfies the hard con-
straints, i.e. E(f%) < oco.
The proof is given in Appendix A. Note that [9] uses a
hard (visibility) constraint in their formulation of the stereo
problem, which is a particular example of the class defined
in the theorem.

3.3 Modifying Expansion Move Algorithm
for General Energies

Unfortunately, in some applications such as [11, 2] and
ours not all terms V}, , are expansion-regular. However, the
number of such terms is relatively small, therefore the ex-
pansion move framework still seems desirable. This frame-
work is used in [11, 2] with excellent results; however the

authors do not discuss what they do when a term is not
expansion-regular. We now show how to modify the algo-
rithm to treat such terms correctly.

Suppose that during the a-expansion step we obtain a
function £ where some of the terms &, , are not regular.
Similar to [10] we could construct a graph for such a term.
However, it would contain edges with negative weights, so
a maxflow algorithm cannot be applied.

We propose to “truncate” non-regular terms &£, 4, i.e. re-
place them with regular terms fp,q (as defined below), and
then minimize the new function £. This is justified by the
following theorem whose proof is given in Appendix A.

Theorem 2 Suppose that functions g , € (eqn. (8)) satisfy
the following conditions: Unary terms &, and &, are the

same, and for any p,q € N we have £, 4(0,0) < &, ,(0,0)

a”dgp,q(xpawq) 2 §p,q(wpa$q)f0’ (2p, zq) # (0,0). Ifx*
minimizes function € then £(x*) < £(0).

Note that £(0) is the energy of the current configuration,
and £(x*) is the energy of the proposed a-expansion move.
Therefore, the theorem states that the energy does not in-
crease. It means that the expansion move algorithm with
truncation is a valid energy minimization technique for ar-
bitrary functions, which is guaranteed to converge. How-
ever, each step is no longer guaranteed to find an optimal
a-expansion move, and the output does not necessarily has
the property of a strong local minimum.

Although the algorithm with truncation can be applied to
any energy function, it is likely to give good results only for
some applications. Intuitively, the method seems suitable in
situations when most of the terms V' are expansion-regular.

Let us summarize the truncation procedure. If term &, 4
does not satisfy inequality (9) then we perform one of the
following three operations: we either decrease &, (0, 0) or
increase &, 4(0, 1) or &, 4(1,0) until we obtain an equality.
Note that the fourth term should not be modified: to make
Ep,q regular we would need to decrease &y, 4(1,1), but then
it may happen that £(x*) > £(0).

Note that a different truncation procedure for semi-
metric terms was given in [3]. They propose to replace
non-metric terms V' with Potts terms. This approach has
certain approximation bound guarantees®. However, very
little information about the structure of V' is used.

3.4 Applying Expansion Move Algorithm
to Our Energy Function

It can be seen that the block uniquness constraint
(sec. 2.1) belongs to the class of hard constraints defined
in theorem 1. Moreover, it can be implemented very ef-
ficiently despite the fact that the neighborhood system is

5Tn fact, for functions with semi-metric terms without hard constraints
we proved that our technique yields the same approximation bound as
given in [3], assuming that truncation does not change £p,4(0, 0).
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Figure 4. Comparison of optimization techniques.
Average performance (50 runs) over 8 photo collec-
tions with each about 40 images. The energy and
initialisation is the same for all algorithms. As to
be expected, the expansion move algorithm outper-
forms ICM. For our application, the standard expan-
sion move algorithm (with random expansion order)
performed worse than our modified version with par-
allel expansion order (sec. 4).

the complete graph. Indeed, for each a-expansion it yields
term &, , for blocks p,q € P only if b(p, f,) = b(g, ) or
b(p,a) = b(q, fq)- Is is not difficult to see that the number
of such terms is at most |P|. Therefore, the number of edges
that we need to add to the graph constructed for minimizing
£ is at most linear in the number of tapestry blocks.

In sec. 3 we assumed that all variables f,, have the same
range L. It is straightforward to extend the framework to
handle image-shift and cluster variables f; and f. (sec. 2.3)
whose ranges are S and Z, respectively. For these variables
we need to define the meaning of an a-expansion move.
Consider, for example, the image-shift variable. If o =
(i, s) then we set

fIx; = {fi ifz; =0

s ifz=1

variables f; for j € Z — {i} do not change during this ex-
pansion. It can be seen that theorem 1 still holds assuming
that terms H), ; satisfy Hp ;((7,s),s) = 0 forall a = (i, s).

4 Experiments

We have tested digital tapestry on 8 different photo collec-
tions which contained on average 40 images. Various re-
sults are shown in fig. 1, 3, 5 and 6. They were achieved
with a standard set of parameters (except where explicitly
mentioned). In this paper, the tapestry size is the same as
the image size, due to limited space. The supplementary
material shows larger tapestries which contain up to 32 (out
of 40) input images. We initialise the expansion move algo-
rithm with the single image that is most salient (or a mosaic
of images for larger tapestries). This initialisation satisfies
all hard constraints and has in general a lower energy than a
random collection of the most salient blocks. In fig. 5 we il-
lustrate how the coherence strength influencies the tapestry.

A performance evaluation of different optimisation tech-
niques is shown in fig. 4. We have encountered that for
our applications the final result heavily depends on the or-
der of expansion moves (see fig. 5(b) and fig. 1(d)). The

standard expansion move algorithm [3] performs the move
in no particular order, e.g. random. We introduce an expan-
sion order scheme, denoted as “parallel expansion”, which
lead to an improved performance. Assume we can afford a
fixed number of expansion moves, larger than the number
of all labels. The rough block layout is often decided in the
first expansion moves. Therefore, we run K (here K = 5)
parallel processes (for a subset of labels in a random or-
der) and determine after R iterations which process gives
the lowest energy. This process is then run again over all
labels. R is choosen so that the maximum number of moves
is not exceeded.

5 Conclusions and Future Work

The main contribution of this paper is a framework for cre-
ating a visual summary - a tapestry - fully automatically
from a large number of different input images. The tapestry
can be used to remind the user of the photo collection. To
verify this point, we plan to conduct a user study where
tapestries are compared to mosaics of representative im-
ages. We also plan to learn the saliency measurement from
a psychological experiment.

The creation of the tapestry is phrased as a multi-label
energy minimization problem, and solved using expansion
move algorithm. The energy contains non-metric (soft and
hard) constraints, which can not be handled by the standard
expansion move algorithm. Therefore, we extended the al-
gorithm to incorporate these constraints, which is a further
contribution. In future work, we plan to improve the quality
of the tapestry by exploiting further high-level knowledge,
such as reliable un-supervised texture clustering, face clus-
tering, and automatic image scale detection.

A Proofs of Theorems

Theorem 1. Since E(f°) < oo itis H(fp, f;) = 0 for
all pixels p,q. The energy £ for an a-expansion move
is regular since V}, ; is expansion-regular and H(«, f;) +
H(fp,a) > H(fp, fy) + H(a, ) = 0 is valid for all p, q.
After a-expansion the energy of new labeling f' is still fi-
nite since E(f!) < E(f°) < oo. Therefore, we can apply
the same argument (i.e. use induction).

Theorem 2. Without loss of generality we can assume
that unary terms &, are not present since they can be
viewed as pairwise terms. Let us denote Ny = {p,q €
N | (l‘;,l‘;) = (0,0)}, Nl = N\No and C =
> p.aens €p,a(0,0). We can show that

Z Epygla

Ex)=C= Y &l

P,gEN: P,gENL
=Ex") = ) £4(0,0)<EO0)— Y £,40,0)
P,g€ENo P,gENo

Z £,.4(0,0) <

P,gENT

> £4(0,0).

P,gENT



(a) e;lk coherence ) Sndard coherence

(c) Strong coheéce

(d) Very strong coherence

Figure 5. Setting parameters. Four alternative tapestries for the input data set of fig. 1(top). The strength of the block
coherence constraint does steer the number of different labels (number of represented image parts) which appear in the
tapestry (22 labels in (a), 9 in (b), 3 in (c), and 1 in (d)). (a) A tapestry with weak coherence looks “overloaded”. (d)
If the coherence of the MRF is very strong the expansion move algorithm returns the initial configuration - the most
salient image. Note, two random variations of a tapestry, same parameters, in (b) and fig. 1(d) have nearly the same
energies (£ = —40.32 and — 40.41). It indicates that the energy function might contain many different local minima.

Figure 6. Further results. Tapestry for three different consumer photo collections (top: sample input images, bottom:
tapestry). In the last tapestry it is apparent that automatic face clustering is an important issue.

Therefore, £(x*) < C + 3 cn, Ep,4(0,0) = £(0).
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