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Abstract—This paper considers a large-scale wireless sensor
network where sensor readings are occasionally collected by a
mobile sink, and sensor nodes are responsible for temporarily
storing their own readings in an energy-efficient and storage-
efficient way. Existing data persistence schemes based on erasure
codes do not utilize the correlation between sensor data, and
their decoding ratio is always larger than one. Motivated by the
emerging compressive sensing theory, we propose compressive
data persistence which simultaneously achieves data compression
and data persistence. In the development of compressive data
persistence scheme, we design a distributed compressive sensing
encoding approach based on Metropolis-Hastings random walk.
When the maximum step of random walk is 400, our proposed
scheme can achieve a decoding ratio of 0.36 for 10%-sparse data.
We also compare our scheme with a state-of-the-art Fountain
code based scheme. Simulation shows that our scheme can
significantly reduce the decoding ratio by up to 63%.

I. INTRODUCTION

This paper considers a large-scale wireless sensor network
where sensors are deployed in harsh environment and there is
no static powerful sink deployed. Sensors periodically generate
readings, but these readings have to be saved within the
network until a mobile sink visits and gathers them. Since
sensors are energy-constrained and prone to failures, it is
desired that sensor readings are stored with redundancy, so
that the sink is able to reconstruct the readings even if a large
portion of sensor nodes cease to function. This problem is
known as the data persistence problem.

The data persistence problem is essentially equivalent to the
reliable data transmission problem in an erasure channel, and
therefore can be addressed through erasure codes. For a source
message comprising of m symbols, an erasure code generates
n(n > m) encoded symbols, such that the original symbols
can be reconstructed from a subset of the encoded symbols.
The ratio of m to n is defined as the code rate. Denote m/’
as the number of encoded symbols required for successful
decoding, then the ratio m’/m indicates decoding efficiency.
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Reed-Solomon codes and low-density parity-check (LDPC)
codes have been widely used for data persistence in dis-
tributed data storage [1][2]. Usually, source data are encoded
in a centralized location and then the encoded symbols are
distributed to different machines for storage. However, in a
wireless sensor network, data sources are distributed. It is
not practical to designate an energy-constrained sensor node
to perform centralized encoding, not to mention about the
communication cost to transmit all sensor readings to the
rendezvous point. In order to achieve data persistence in a
wireless sensor network, it is desired that encoding of the
erasure code can be implemented in a distributed way.

Random linear network code, as the name suggests, encodes
the source data with linear operations while they flow in the
network. It has been successfully applied in wireless sensor
networks to improve the degree of fault tolerance [3][4][5].
However, the decoding complexity of random linear network
code is O(m?), which consumes a huge amount of computing
resources when the scale of sensor network is large. Digital
Fountain codes [6], a.k.a. rateless erasure codes, then arise as
a low-complexity alternative [7][8]. The decoding complexity
of Fountain codes is only O(mlogm), and the encoding can
be achieved distributedly because the encoded symbols are
independent from each other. In particular, Dimakis et al. [7]
assume that each node knows its location and uses geographic
routing to disseminate the source data. Lin et al. [8] relax
this assumption and significantly reduce the routing control
overhead by using random walk to disseminate source data.

These previous works based on erasure codes all neglect an
important fact that sensor readings are correlated data instead
of independent ones [9]. If data correlation is taken into ac-
count, the original m symbols can be potentially reconstructed
from less number of encoded symbols, i.e. the decoding ratio
m'/m could be less than one. Motivated by the compressive
sensing (CS) theory [10][11] and its recent development in
Bayesian CS [12], we propose compressive data persistence
(CDP) which simultaneously achieves sensor data compression
and data persistence. The original sensor readings are routed to
the storage nodes through Metropolis-Hastings random walk.
Then, each encoded symbol, or so called CS measurements
in our scheme, is distributedly computed at storage nodes.
With our proposed scheme, sensor data reconstruction can be



achieved at a decoding ratio far less than one.

The rest of this paper is organized as follows: Section
IT provides background on compressive sensing theory and
reviews related work on distributed compressive sensing. Sec-
tion III describes the proposed compressive data persistence
scheme. Section IV validates the design choices in CDP and
demonstrates its effectiveness through simulations. Finally,
section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Background of compressive sensing

Compressive sensing theory concerns the representation and
reconstruction of sparse signals. An m-dimensional signal x
is called an s-sparse signal if it has only s non-zero entries, or
can be represented by s non-zero coefficients in a transform
domain V. The intuition behind compressive sensing is that
a small number of linear projections (or so called measure-
ments) of a sparse signal contains adequate information for
its reconstruction. Mathematically, let x = [2175 ... 2,,]T be
an s-sparse signal. Let us take m’ measurements of x through
linear projection:
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CS theory states that the m-dimensional signal x can be
perfectly reconstructed from m/-dimensional (m’ < m) mea-
surement y under certain conditions [10][11]. The central
problem in CS is how measurement matrix ¢ should be
designed and what algorithm should be used to recover x from
the underdetermined linear system defined in (1).

In the early stage of CS theory development, a dense matrix
whose entries are random variables drawn from i.i.d. Gaussian
distribution A/(0, %) is often used as the measurement matrix.
Reconstruction of x from measurement y can be achieved
through solving the following [;-minimization problem by
linear programming:
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Recently, several papers have reported the consideration of
CS reconstruction from Bayesian inference if the statistical
characterization of the signal is available [12][13][14]. This es-
sentially bridges CS with LDPC codes, although the operation
in CS is arithmetic plus instead of logical exclusive or (XOR).
Due to the complexity in belief propagation, CS reconstruction
by Bayesian inference can be practically implemented only if
® is a low-density matrix. Baron et al. [12] propose to use
a low-density measurement matrix whose elements are drawn
from {0, 1, —1}. It is reported that the decoding complexity is
on the order of O(mlogm).

B. Distributed compressive sensing

Compressive sensing has the potential to be used for data
persistence in wireless sensor network because sensor data
are usually correlated. In particular, spatially correlated sensor
data have been shown to be sparse in wavelet domain [15][16].
Baron et al. [17], Bajwa et al. [18], and Luo et al. [19] have
reported the efficiency of distributed CS in wireless sensor data
gathering when a sink is constantly available. In this paper, we
are interested in the case where sensors continuously generate
data but the sink visits and collects data only occasionally.
In such a network, the main challenge is how to preserve
sensor data by sensor nodes in an energy-efficient and storage-
efficient way.

Rabbat et al. [20] realize distributed CS for data persis-
tence through randomized gossiping. In particular, in order to
generate the 7" measurement y;, each sensor node multiplies
its reading x; with a random coefficient ¢;; and generates
its initial message ugg). Then, sensor nodes start random
gossiping. Suppose, at time step ¢ 4+ 1, node j receives a
message from its neighbor %, denoted as ul(.z), it then updates
its own message as ugﬂ) = %(ug) +UZ(-Z))- It has been proved
that, after sufficient time steps 7', messages at all sensor nodes
will converge to the same value which is equivalent to the
average of all the initial values. Mathematically,
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Repeat this process for m' times, then all the sensors will
have a copy of each of the CS measurements. Therefore, by
visiting any of the sensor nodes, the sink is able to obtain
m’ CS measurements and reconstruct the original data. In
order to save the storage, each sensor can choose to store
only a subset of the measurements, and the sink can collect
all the measurements by visiting a few sensors. This approach
consumes huge computation and communication resources for
two reasons. First, because a dense measurement matrix is
employed, every sensor node is involved in generating all
the m’ measurements. Second, random gossiping requires
considerable amount of message exchange and takes a long
time to converge.

Wang et al. [21] propose to employ a low-density measure-
ment matrix for CS encoding. In addition, the measurements
are generated in a controlled instead of randomized manner.
To compute one CS measurement, every sensor j locally
generates a random variable ¢;; . If the variable is zero,
the sensor does nothing. If it’s nonzero, the sensor sends the
product of ¢;;x; to storage node ¢. The complexity in this
approach mainly resides in precise routing in multi-hop ad
hoc network. As we know, there is usually no stable routing
structure in a large-scale sensor network. Transmitting data
to a specified node needs sensor coordination and incurs
considerable amount of control overhead.



III. COMPRESSIVE DATA PERSISTENCE

We propose compressive data persistence (CDP) based on
Bayesian CS and random walk. We consider a wireless sensor
network with m sensing nodes and n storage nodes. For sim-
plicity, the sensing nodes are only responsible for generating
sensor readings, and the storage nodes are responsible for
distributed data encoding and storage. Our proposed CDP is
composed of three phases. In the data distribution phase, sen-
sor readings are sent out by sensor nodes, and being distributed
among storage nodes through random walk. Then, sensor
readings are encoded and the generated CS measurement is
stored at the corresponding storage node. In the last phase,
the sink visits a subset of the storage nodes to collect m’
measurements which are sufficient for reconstructing original
sensor data.

A. Data distribution through random walk

CDP intends to generate CS measurements using a low-
density matrix ®. If each storage node generates one CS
measurement, ® is an n x m matrix. We follow the matrix
construction used by Baron et al. [12]. In each row of &
matrix, there are only [ non-zero entries uniformly drawn from
{—1,+41}. The value of [ is also referred to as row weight of
®. Correspondingly, the column weight of ® is denoted by
r. When the row and column weights are both constant, they
have the following relationship:

mr = nl )

The column weight r indicates the number of measurements
that a particular sensor reading contributes to. Therefore, in the
data distribution stage, every sensor node injects r copies of
its reading to the network. This is achieved by transmitting
its reading to a randomly picked storage node within its
communication range, and repeat this process for r times.
Then, sensor readings are disseminated among storage nodes
through random walk.

Random walk proceeds in steps. For a particular copy of a
sensor reading, denote X (t) = n; as its position after ¢ steps
of random walk. In (¢4 1)*" step, node n; randomly picks one
neighbor storage node and forwards the data. A random walk
can be modeled as a time-reversible Markov chain, and be
characterized by a transition matrix P. Each entry P;; in the
matrix indicates the probability that node n; forwards the data
to node n;. The design of the transition matrix P is associated
with the desired equilibrium distribution 7 = (mq, ma...7p,).
In CDP, since every storage node is expected to receive the
same number of sensor readings, the equilibrium distribution
is a uniform distribution. Then, the entry F;; in the transition
matrix can be written into the following simplified form when
the Metropolis-Hastings algorithm is adopted [22].
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where d; is the degree of node i in the connectivity graph,
and & is the set of communication links.

Let 7(t) be the probability distribution of the state after step
t, the state distribution satisfies 7(t+ 1) = «(¢) P. It has been
shown [23] that the total variation distance of m(¢) and the
uniform distribution is bounded by:
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where 4 is the second largest eigenvalue modulus of matrix
P.

In CDP, the data distribution phase stops after 7' random
walk steps. The selection of T is an engineering choice,
which should strike a tradeoff between communication cost
and the quality of state distribution. Denote [; as the number
of sensor readings received by storage node n; at the end of
data distribution phase. Then the mean of [;, i = 1,2..n is
[, but each individual value may not be equal to [ due to the
randomization in random walks.
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B. CS encoding and reconstruction

In CS encoding phase, each storage node generates one CS
measurement based on the sensor readings it receives. Let
11,1%2...4;; be the sequence numbers of the sensor readings
received by node n;. Then, measurement y; is generated by:
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where ¢;. are drawn from set {—1, +1} with equal probability.
They represent the non-zero coefficients in the i** row of the
CS measurement matrix .

In the third phase of CDP, the sink visits the network and
collects CS measurements from a subset of storage nodes. The
number of storage nodes that the sink should visit, denoted by
m’ is determined by the sparsity of sensor data. The more
sparse the data are, the less number of measurements are
required for perfect reconstruction. In addition, the size of m’
is also affected by the state distribution of random walk. All
these factors will be evaluated in the next section.

When the sink has collected sufficient number of measure-
ments, it can reconstruct the original sensor readings through
belief propagation (BP) algorithm introduced by Baron et al.
[12]. The BP reconstruction resembles the BP decoding for
LDPC codes. As CS measurements are obtained by arithmetic
plus instead of XOR, the belief messages are represented
by a probability distribution function instead of a single log
likelihood ratio (LLR). Despite of this additional complexity,
the BP process for CS reconstruction also has the potential to
be sped up through parallelization.

IV. EVALUATION

We validate the design choices of the proposed CDP and
evaluate its performance through simulations. A total of 3000



nodes are uniformly distributed in a unit disc, in which 1000
are sensor nodes and 2000 are storage nodes (m = 1000
and n = 2000). Two nodes whose Euclidean distance are
within 0.1 are able to directly communicate with each other.
Therefore, the diameter of the network is around 10 hops. All
of the simulations are performed on MATLAB 2009a.

Without loss of generality, we assume binary sensor read-
ings in our simulation. Although this simplification is mainly
to speed up CS decoding process, binary sensor readings do
have applications in many practical networks. In environment
monitoring, an alert (a reading of “1”) should be generated if
the sensed environment parameter exceeds a predefined range.
In object detection networks, a reading of “1” is generated if
an object is detected in the monitored area.

A. Design choices of CDP

1) Low-density CS measurement matrix: In the proposed
CDP, we adopt low-density measurement matrix ¢ for CS
encoding. The row weight [ is an important design parameter.
According to (5), when the sizes of m and n are fixed,
the number of duplicate copies of each sensor reading is
proportional to the size of [. Therefore, selecting a small [
can reduce the overall communication cost. However, a too
small ! may not be sufficient to capture source information
and may result in low reconstruction accuracy.

Fig. 1 plots the bit error ratio (BER) of CS reconstruction
when different measurement matrices are used. In this sim-
ulation, a 10%-sparse binary source with length m = 1000
is considered, i.e. the probability of each bit being a “1”
is 10%. When a dense random Gaussian matrix is used,
CS decoding is performed through !;-minimization. For all
the three low-density measurement matrices, we use belief
propagation algorithm for decoding. Surprisingly, using low-
density measurement matrix does not cause performance loss,
in the case of binary sources. The reconstruction BER de-
creases as the row weight [ increases, but it shows asymptotic
behavior when [ is sufficiently large. Therefore, in the rest of
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Fig. 1. Comparing CS reconstruction performance of dense measurement

matrix and low-density measurement matrix with different row weights

the simulation, we set [ = 30. Correspondingly, in the data
distribution phase of CDP, each sensor node distributes 60
copies of its reading.

2) Metropolis-Hastings chain: The efficiency of a random
walk algorithm can be characterized by the mixing time,
which is defined as the minimal length of a random walk to
approximate the steady-state distribution within a certain error.
Several simple algorithms have been proposed to achieve fast
mixing [22]. Lin et al. [8] adopt the maximum-degree chain
by assigning the following transition probabilities:
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where D, is the maximum node degree in the entire network.

It has been shown in (7) that the total variation distance
between state distribution and uniform distribution after ¢ steps
of random walk can be bounded by %\/ﬁut. We compare the
bounds of the maximum-degree chain used by Lin et al. [8]
and the Metropolis-Hastings chain adopted in CDP. Fig. 2
clearly shows that the state distribution of Metropolis-Hastings
chain converges to uniform distribution more quickly than
the maximum-degree chain. In addition, using Metropolis-
Hastings chain does not require the global information of D,,
and will simplify the implementation.

B. Performance

1) Results for 10%-sparse data: In the first set of experi-
ments, the sensor readings are 10%-sparse. In the first phase
of CDP, they are injected into the network through 7' steps of
random walk. Then storage nodes independently encode their
received sensor readings. After that, m’ randomly selected
measurements are collected for CS decoding. In the case that
certain sensor readings are not encoded in any of the m/
measurements, we randomly pick more measurements until
the entire set of sensor readings are covered.
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Fig. 3. Bit error rate of CS reconstruction vs. the number of storage nodes
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Fig. 3 shows the reconstruction BER when different number
of random walk steps are taken. Each data point shown in
the figure is averaged over 200 test runs. It is clear that the
reconstruction error decreases as the number of measurements
increases. After 100 steps of random walk, the reconstruction
BER drops below 10~* when 360 measurements are used
for decoding. The sensor data can be perfectly reconstructed
from 360 measurements if 400 steps of random walk are taken
during data distribution phase. This corresponds to a decoding
ratio of 0.36, which is far below the decoding ratio that can
be achieved by any erasure coding based schemes.

There is a tradeoff between the decoding ratio and the
average energy consumption. Define unit energy as the energy
consumed to transmit one sensor reading, then the energy
consumption of each node equals to the number of sensor
readings it transmits. For the proposed CDP, the average
energy consumption is 2283.8, 4435.4, 9484.2 and 12959.0
after 100, 200, 400 and 600 steps of random walk. The average
energy consumption scales not only with the number of
random walk steps, but also with the number of storage nodes.
Since CS based reconstruction only requires the measurements
from a few hundred storage nodes, we may put a random set of
storage nodes in sleep. This would further reduce the average
energy consumption.

This figure also shows the reconstruction performance if
every copy of sensor reading only takes 20 steps of random
walk. When 7" = 20, the energy consumption is similar to
Wang et al’s scheme [21] which requires precise routing.
As we have pointed out, precise routing in a large-scale ad
hoc network incurs high control overhead. In contrast, our
proposed CDP completely avoids this overhead. Although
the reconstruction BER is less stable when T' = 20, the
performance loss can be compensated by letting the mobile
sink visit a few more storage nodes.

2) Comparison with Fountain code: We compare CDP with
Lin’s scheme [8] which is based on digital Fountain code.
We are mainly interested in the decoding ratio m’/m. The
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Fig. 4. Decoding ratio of CDP and Fountain code based scheme

simulation is carried out on a set of non-compressible data, i.e.
the probability of bit “1” in the sensor readings is 50%. Lin et
al. distribute data through a maximum-degree chain, which has
a longer convergence time but consumes less energy after the
same number of random walk steps. In order to ensure a fair
comparison, we use the average energy consumption instead
of random walk steps as the x-axis in Fig. 4. As expected,
the decoding ratio is always larger than 1 in Lin’s scheme.
Our proposed CDP can always achieve a decoding ratio below
0.6. When the random walk steps is small, the reduction in
decoding ratio is up to 63%.

V. CONCLUSION

We have described in this paper a compressive sensing based
scheme for data persistence in large-scale wireless sensor
networks. The contributions are two fold. First, the proposed
CDP scheme utilizes the correlation between sensor data, and
therefore simultaneously achieves data compression and data
persistence. Second, we implement distributed CS encoding
through Metropolis-Hastings random walk. This avoids the
high control overhead that a precise routing scheme may incur.
We have validated the design choices and evaluated the CDP
scheme through extensive simulations. Results show that CDP
can reduce the decoding ratio of a state-of-the-art Fountain
code based scheme by up to 63%.
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