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ABSTRACT 
 
Recently we have developed a non-linear feature-domain noise 

reduction algorithm based on the minimum mean square error 

(MMSE) criterion on Mel-frequency cepstra (MFCC) for 

environment-robust speech recognition. Our novel algorithm 

operates on the power spectral magnitude of the filter-bank’s 

outputs and outperforms the log-MMSE spectral amplitude noise 

suppressor proposed by Ephraim and Malah in both recognition 

accuracy and efficiency as demonstrated on the Aurora-3 corpora. 

This paper serves two purposes. First, we show that the algorithm 

is effective on large vocabulary tasks with tri-phone acoustic 

models. Second, we report improvements on the suppression rule 

of the original MFCC-MMSE noise suppressor by smoothing the 

gain over the previous frames to prevent the abrupt change of the 

gain over frames and adjusting gain function based on the noise 

power so that the suppression is aggressive when the noise level is 

high and conservative when the noise level is low. We also 

propose an efficient and effective parameter tuning algorithm 

named step-adaptive discriminative learning algorithm (SADLA) 

to adjust the parameters used by the noise tracker and the 

suppressor. We observed a 46% relative word error (WER) 

reduction on an in-house large-vocabulary noisy speech database 

with a clean trained model, which translates into a 16% relative 

WER reduction over the original MFCC-MMSE noise suppressor, 

and 6% relative WER reduction on the Aurora-3 corpora over our 

original MFCC-MMSE algorithm or 30% relative WER reduction 

over the CMN baseline. 

Index Terms — MMSE Estimator, MFCC, Noise Reduction, 

Robust ASR, Speech Feature Enhancement, RPROP, SADLA 

 

1. INTRODUCTION 
 

Recently we have proposed a non-linear feature-domain noise 

reduction algorithm based on the minimum mean square error 

(MMSE) criterion on Mel-frequency cepstra (MFCCs) for 

environment-robust speech recognition [1]. In [1] we explained 

that seeking an MMSE estimator on MFCCs can be reduced to 

seeking a log-MMSE estimator on the Mel-frequency filter bank’s  

(MFFB’s) outputs, which in turn can be solved independently for 

each filter bank channel. We derived the MFCC-MMSE noise 

suppressor by assigning uniformly distributed random phases to 

the real-valued filter bank’s outputs with the assumption that the 

artificially generated complex filter bank’s outputs follow zero-

mean complex normal distributions.  

There are two key differences between the MFCC-MMSE 

noise suppression algorithm and the log-MMSE spectral amplitude 

estimator proposed by Ephraim and Malah (E&M) [4]. First, the 

MFCC-MMSE suppression rule is applied to the MFFB’s outputs 

which are better smoothed (lower variance) than the FFT spectral 

amplitude. Second, the noise variance in the suppression rule used 

by the MFCC-MMSE suppressor contains an additional term 

resulting from the phase differences between the clean speech and 

the noise. We demonstrated on the Aurora-3 corpora [5] that the 

MFCC-MMSE noise suppressor can achieve better recognition 

accuracy than the E&M log-MMSE suppressor over all conditions, 

and the AFE over the well-matched and mid-mismatched 

conditions combined [1]. The MFCC-MMSE suppressor is also 

more efficient since the number of the channels in the MFFB is 

usually much smaller than the number of bins in the FFT domain. 

     This paper serves two purposes. First, we show that the 

algorithm is effective on large vocabulary tasks with tri-phone 

acoustic models. Second, we report improvements on the 

suppression rule of the original MFCC-MMSE noise suppressor by 

smoothing the gain over the previous frames to prevent the abrupt 

change of the gain over frames and adjusting gain function based 

on the noise power so that the suppression is aggressive when the 

noise level is high and conservative when the noise level is low. 

We also propose an efficient and effective parameter tuning 

algorithm named step-adaptive discriminative learning algorithm 

(SADLA) to adjust the parameters used by the noise tracker and 

the suppressor. We observed a 45.84% relative word error (WER) 

reduction on an in-house large-vocabulary noisy speech database 

with a clean trained model, which translates into a 15.75% relative 

WER reduction over the original MFCC-MMSE noise suppressor, 

and 6.35% relative WER reduction on the Aurora-3 corpora over 

our original MFCC-MMSE algorithm or 30.35% relative WER 

reduction over the CMN baseline. If cepstral mean and variance 

normalization (CMVN) is applied, the WER is reduced to 10.23% 

The rest of the paper is organized as follows. In Section 2, we 

review the MFCC-MMSE noise suppressor with the focus on the 

gain function and the statistics used. In Section 3, we describe the 

improvements on the gain function, including the gain smoothing 

and noise-level adjusted gain function. In Section 4, we introduce 

the SADLA parameter tuning algorithm and the trade-offs made in 

the algorithm. We report the experimental results in Section 4 and 

conclude the paper in Section 5. 

 

2. MFCC-MMSE NOISE SUPPRESSOR 
 

The MFCC-MMSE noise suppressor aims to estimate the clean 

speech MFCC  𝑐 𝑥 𝑘   from the noisy speech 𝒚 for each cepstrum 

dimension 𝑘  by minimizing the mean square error between the 

estimated MFCC 𝑐 𝑥 𝑘  and the true MFCC 𝑐𝑥 𝑘  with the 

assumption that noises are additive. We have shown in [1] that the 

solution to this problem is 

𝑐 𝑥 𝑘 = 𝐸 𝑐𝑥 𝑘  𝒎𝑦   
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where 𝑎𝑘,𝑏  are the discrete cosine transform (DCT) coefficients,  
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are the Mel-frequency filter bank’s output in power for the clean 

and noisy speech respectively, 𝑏 is the filter bank channel id, and 
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is the gain function for each filter-bank output. In (3), the quantity 

𝜈 𝑏 =
𝜉 𝑏 

1 + 𝜉 𝑏 
𝛾 𝑏  (4) 

is defined by the adjusted a- priori SNR  
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and the adjusted a-posteriori SNR 
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for each filter bank channel 𝑏. 

The noise variance 𝜎𝑛
2 𝑏 = 𝐸 𝑚𝑛

2 𝑏   is estimated using a 

minimum controlled recursive moving-average noise tracker 

similar to the one described in [2], 𝜎𝑥
2 𝑏  is estimated using the 

decision-directed approach documented in [3][4], and the variance 

𝜎𝜑
2 𝑏  resulted from instantaneous phase differences between the 

clean speech and the mixing  noise is estimated as 

𝜎𝜑
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The complete feature extraction pipeline is shown in Fig. 1. 
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Fig. 1: Feature extraction pipeline for the MFCC-MMSE system. 

 

3. SUPPRESSION RULE IMPROVEMENTS 
 

In our original MFCC-MMSE algorithm, the gain 𝐺  in (3) is a 

function of the a-priori SNR 𝜉 𝑏  and a-posteriori SNR 𝛾 𝑏 . In 

this section, we describe two improvements we have made on the 

gain functions. 

 

3.1 Noise-level dependent gain function  
 

It is well known that most speech enhancement algorithms improve 

the ASR recognition accuracy for the noisy speech at the cost of 

the degraded performance for the clean speech. Theoretically, this 

should not happen. For example, when the SNR is very high, the 

gain 𝐺 𝜉 𝑏 , 𝜈 𝑏   based on (3) is close to 1 (no suppression) in 

theory. However, in reality it’s very difficult to accurately estimate 

the noise and the SNR. Distortions are inevitably introduced in the 

enhanced speech and can outweigh the noise reduction for the 

clean speech. We have observed this behavior using the model 

trained with clean speech as reported in Section 5.  

To prevent the recognition accuracy degradation for the clean 

speech, we revised the gain function to be  
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where 𝜃𝑙  and 𝜃ℎ  are thresholds, so that it depends not only on 

instantaneous SNRs, but also on the noise power. The gain 

function (8) indicates that no suppression is applied if the noise 

power is below the threshold 𝜃𝑙 , and the full suppression is applied 

if the noise power is above the threshold 𝜃ℎ . If the noise power is 

within  𝜃𝑙  𝜃ℎ   , the gain is reduced based on the noise power level. 

We make the gain function dependent on the noise power instead 

of the SNR due to the fact that the noise power is usually more 

stable than the instantaneous SNR and can be estimated without 

introducing latency as compared to the utterance SNR. 

 

3.2 Gain Smoothing 
 

In our original MFCC-MMSE noise suppressor, the gain 𝐺 in (3) 
depends only on the a-priori SNR 𝜉 𝑏  and a-posteriori SNR 𝛾 𝑏  
of the current frame. Sometimes the instantaneous SNR changes 

drastically which in turn causes abrupt change of the gain. To 

prevent this from happening, we smooth the gain with the previous 

frame so that 
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where 𝛼 is the smooth factor. Note that while the optimal 𝛼 should 

be SNR dependent, we have chosen to use one 𝛼 for all conditions.  

. 

4. PARAMETER TUNING 
 

Conventionally the parameters used in the noise tracking and 

speech enhancement algorithms are determined by trial-and-error 

or by an expert who knows the approximate range of the best 

values. In our original experiments [1], we set the parameters 

based on the suggestions from [2] and [4].  In this section, we cast 

the parameter tuning problem as a multi-objective minimum word 

error rate optimization problem and propose an efficient and 

effective way to train the parameters.   

 

4.1 Multi-objective optimization problem  



 

To optimize the parameters, we need to have a reference and a 

judgment function. In the human-to-human communication 

scenario, the reference for the speech enhancement algorithms is 

usually the clean speech, and the judgment function is usually the 

5-level mean opinion score (MOS) provided by the human listeners 

or its approximation perceptual evaluation of speech quality 

(PESQ) score. Since the goal of our speech enhancement algorithm 

is to improve the ASR recognition accuracy by making the noisy 

speech closer to the clean speech we use the clean-trained ASR 

model as the reference and the word error rate as the judgment 

function.  

There are two objectives in our optimization process. First, we 

want to optimize the parameters to minimize the average WER 𝜀𝑎 , 

i.e., 

𝜌 𝑎 = argmin
𝜌

𝜀𝑎 . (10) 

Second, we want to optimize the parameters to minimize the WER 

𝜀𝑐  on the clean speech, i.e., 

𝜌 𝑐 = argmin
𝜌

𝜀𝑐 . (11) 

Note that these objectives may conflict with each other. For 

example, a more aggressive suppression would reduce the average 

WER but may increase the WER on the clean speech. This two-

objective optimization problem can be reduced to a single-

objective optimization problem by choosing an operating point 

𝛽 ∈  0 1  such that 

𝜌 = argmin
𝜌

𝜀 = argmin
𝜌

𝛽𝜀𝑐 +  1 − 𝛽 𝜀𝑎 . (12) 

For example, if we seek to have no degradation or little 

degradation on the clean speech, we can choose 𝛽 = 0.9, which 

means we are willing to sacrifice 1% of the WER on the clean 

speech only if the reduction on the average WER is 9% or more. 

Different operating points can be used based on the specific usage 

condition. 

 

4.2 Optimization algorithm  
 

The optimization of the objective function (12) has two intrinsic 

difficulties. First, many parameters used in our noise suppressor 

are thresholds and smoothing factors. It is very difficult (if not 

impossible) to get the closed form formula of the derivatives of the 

WER against the parameters. In other words, the algorithm cannot 

depend on the closed-form derivatives. Second, there are many 

local minimums and plateaus in the search space since there are 

many parameters to lean and the relationship between the 

parameters are very complicated. The algorithm needs to have 

some ability to jump out of the local minimums. 

With these requirements and constraints in mind we have 

developed an efficient and effective optimization algorithm. The 

algorithm optimizes the parameters one by one using approaches 

similar to the RPROP algorithm [6] with three key differences. 

First, our algorithm does not require the derivative information and 

can walk through the plateaus quickly. Second, our algorithm 

randomly chooses the equally good values and has better chance to 

walk down the hill instead of being locked at a local minimum. 

Third, our algorithm splits the training set into several parts and 

tunes the parameters with one additional part included iteration by 

iteration until the whole training set is used. We have observed that 

by doing this the algorithm has better chance to walk out of the 

local minimum.  

Table 1 and 2 summarize the detailed steps in the algorithm. 

Note that although the algorithm works well practically, it does not 

guarantee a global optimal solution. In fact, it is a good 

compromise between efficiency and the possibility of finding the 

optimal solution. Some algorithms such as the particle swarm 

optimization can have better chance to find the optimal solution 

but turned out to be much less efficient compared to the algorithm 

proposed here. Also note that our algorithm is generic enough that 

it can be used to solve other optimization problems. 

 

Table 1: The top-level function of the SADLA parameter tuning 

algorithm 

Run 𝑛 iterations  { 
    Add a new part from the training set; 
    For each parameter  { 

 Tune the parameter to minimize 𝜀; 
    } 
} 

 

Table 2: The function to learn one parameter 𝑝 in the SADLA 

parameter tuning algorithm 

Initialize current value 𝑣 , step size 𝑠, current WER 𝜖  , and 
current best WER  𝜀 ; 

Initialize last decision 𝑑𝑡−1 to be correct; 
Set current best values 𝑣 ←  𝑣 ; 
 
Run 𝑚 iterations or till |𝑠|< minimum step 𝑠𝑝  { 

𝑣 ← 𝑣 + 𝑠;  
Get the new WER 𝜖𝑚  on the training set; 

    if (𝜀 > 𝜖𝑚 )  {  𝜀 ← 𝜖𝑚 ;  𝑣 ←  𝑣 ; } 
    else if (|𝜀 − 𝜖𝑚 | ≤ 𝜃)  {  𝑣 ← 𝑣 ∪  𝑣 ; } 
 
    if (𝜖𝑚 < 𝜖)  { 
        if (𝑑𝑡−1 = 𝑡𝑟𝑢𝑒) 𝑠 ← 𝑠 × 1.2; 
        else 𝑠 ← 𝑠 × 0.5; 
        𝑑𝑡−1 ← 𝑡𝑟𝑢𝑒; 
    } 
    else { 𝑠 ← −𝑠 × 0.5;   𝑑𝑡−1 ← 𝑓𝑎𝑙𝑠𝑒; } 
 
    𝜖 ← 𝜖𝑛 ; 
} 
 
Return a randomly selected value from 𝑣 . 

 

5. PERFORMANCE EVALUATION 
 

We have evaluated the improved MFCC-MMSE noise suppressor 

on an in-house large-vocabulary speech recognition task and the 

standard Aurora-3 task [5]. 
The in-house dataset consists of a 1078-word noise suppressor 

parameter tuning set, a 399-word development set, and a 12351-

word test set, each of which is equally separated into three 

categories: recorded under quiet environment (QE), under mild 

noise condition (MN), and under high noise condition (HN), all 

with far-end microphones. The clean-trained (using a large 

collection of other datasets) tri-phone acoustic model (AM) with 

five Gaussian mixtures per state is used in the experiments. The 

13-dimention mel-frequency cepstrum coeffient (MFCC), its delta, 

delta-delta, and triple-delta features are transformed into a 39-

dimention feature using the HLDA algorithm. The detailed feature 

extraction pipeline is depicted in Figure 1. We have run five 



iterations of the SADLA algorithm to adjust the noise suppressor 

parameters and selected the parameter set that achieved the highest 

accuracy on the weighted average of the training set and the 

development set. 

Fig. 2 and Tables 3 and 4 compare the recognition performance 

on the in-house dataset under the conditions of without noise 

suppressor (baseline), with the original MFCC-MMSE noise 

suppressor and with the improved MFCC-MMSE noise suppressor. 

We can see that the original MFCC-MMSE noise suppressor 

achieved 35.71% relative WER reduction over the baseline on 

average. However, it increases the WER under the quiet 

environment by 24.28% relatively since the distortions introduced 

outweigh the gain under that condition. The improved MFCC-

MMSE noise suppressor solved that problem as indicated by the 

1.23% relative WER reduction under QE condition by using the 

noise-power-dependent gain function. The noise-power-dependent 

gain function, together with the gain smoothing technique also 

allows for more aggressive suppression under high noise condition 

and thus leads to higher WER reduction on average. Tables 3 and 4 

show that the improved noise suppressor achieved 45.84% relative 

WER reduction against the baseline system, and 15.75% relative 

WER reduction over the original noise suppressor. 
 

 
Fig. 2: Absolute WER on the in-house dataset 

 

Table 3: Relative WER reduction against the system without noise 

suppression on the in-house dataset 

  QE MN HN Average 

Original -24.28% 26.21% 48.05% 35.71% 

Improved 1.23% 36.72% 54.65% 45.84% 

 

Table 4: Relative WER reduction against the original noise 

suppressor on the in-house dataset 

  QE MN HN Average 

Improved 20.53% 14.24% 12.71% 15.75% 
 

The Aurora-3 [5] task consists of noisy digit recognition sub-

tasks under realistic automobile environments. In the Aurora-3 

corpus, each utterance was labeled as coming from either a high, 

low, or quiet noise environment, and as being recoded using  a 

close-talk microphone or a hands-free, far-field microphone. All 

AMs in Aurora-3 were trained with multi-style training scripts 

came with the corpora and covers well-match, mid-mismatch, and 

high-mismatch conditions. 

By applying the same techniques to the Aurora-3, we get 

11.36% absolute WER on average, which translates to 6.35% and 

30.35% relative WER reduction over the original MFCC-MMSE 

algorithm and the system without the noise suppressor (but with 

CMN) respectively as indicated in Table 5. With CMVN applied, 

the average absolute WER is reduced to 10.23%, or 37.28% 

relative WER reduction over the no-suppress baseline. 
 

Table 5: Experimental results on Aurora-3 corpus 

  No-suppress Original Improved +CMVN 

Absolute WER 16.31% 12.13% 11.36% 10.23% 

Relative WER reduction baseline 25.63% 30.35% 37.28% 

Relative WER reduction N/A baseline 6.35% 15.67% 

 

5. SUMMARY AND CONCLUSIONS 
 
In this paper, we presented new improvements over the MFCC-

MMSE noise suppressor we proposed recently [1]. Specifically, we 

introduced the noise-power-dependent gain function and gain 

smoothing technique to the noise suppressor, and described an 

efficient and effective step-adaptive discriminative learning 

algorithm to learn the parameters used in the noise tracker and 

suppressor. These improvements allow us to suppress aggressively 

under the high noise condition and conservatively under the quiet 

environment. The effectiveness of the improvements is 

demonstrated on an in-house large-vocabulary dataset and the 

Aurora-3 corpus.  On the in-house dataset, the improved noise 

suppressor achieved 45.84% and 15.75% relative WER reduction 

on average against the system with no noise suppression and with 

the original MFCC-MMSE noise suppressor respectively using the 

clean-trained AM. The higher average WER reduction was 

achieved with improved accuracy under the quiet condition. On the 

Aurora-3 corpora, we observed 6.35% relative WER reduction 

over the original MFCC-MMSE noise suppressor, or 30.35% 

relative WER reduction over the CMN baseline. 

 

REFERENCES 

[1] D. Yu, L. Deng, J. Droppo, J. Wu, Y. Gong, A. Acero, "a 

Minimum-Mean-Square-Error Noise Reduction Algorithm on 

Mel-Frequency Cepstra for Robust Speech Recognition", 

ICASSP 2008, Las Vegas, USA. 

[2] G I. Cohen and B. Berdugo. “Noise estimation by minima 

controlled recursive averaging for robust speech 

enhancement,” IEEE Signal Proc. Letters, Vol. 9, 2002, pp. 

12-15. 

[3] Y. Ephraim and D. Malah, “Speech enhancement using a 

minimum mean-square error short-time spectral amplitude 

estimator,” IEEE Trans. Acoustics, Speech and Signal Proc, 

Vol. ASSP-32, pp. 1109-1121, 1984. 

[4] Y. Ephraim and D. Malah, “Speech enhancement using a 

minimum mean-square error log-spectral amplitude 

estimator,” IEEE Trans. Acoustics, Speech and Signal Proc, 

vol. ASSP-33, pp. 443–445, 1985.  

[5] H. G. Hirsch and D. Pearce, “The Aurora experimental 

framework for the performance evaluation of speech 

recognition systems under noisy conditions,” Proc. ISCA 

ITRW ASR, 2000. 

[6] M. Riedmiller, and H. Braun, “RPROP - A fast adaptive 

learning algorithm”, Technical Report (Also Proc. of ISCIS 

VII), Universitat Karlsruhe, 1992. 

2.43%

8.85%

24.08%

11.06%

3.02%

6.53%

12.51%

7.11%

2.40%

5.60%

10.92%

5.99%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

QE MN HN Average

No-suppress

Original

Improved


