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Abstract—We present an efficient and effective nonlinear feature-
domain noise suppression algorithm, motivated by the minimum-
mean-square-error (MMSE) optimization criterion, for noise-
robust speech recognition. Distinguishing from the log-MMSE
spectral amplitude noise suppressor proposed by Ephraim and
Malah (E&M), our new algorithm is aimed to minimize the
error expressed explicitly for the Mel-frequency cepstra instead
of discrete Fourier transform (DFT) spectra, and it operates on
the Mel-frequency filter bank’s output. As a consequence, the
statistics used to estimate the suppression factor become vastly
different from those used in the E&M log-MMSE suppressor.
Our algorithm is significantly more efficient than the E&M’s
log-MMSE suppressor since the number of the channels in the
Mel-frequency filter bank is much smaller (23 in our case) than the
number of bins (256) in DFT. We have conducted extensive speech
recognition experiments on the standard Aurora-3 task. The
experimental results demonstrate a reduction of the recognition
word error rate by 48% over the standard ICSLP02 baseline, 26%
over the cepstral mean normalization baseline, and 13% over the
popular E&M’s log-MMSE noise suppressor. The experiments
also show that our new algorithm performs slightly better than
the ETSI advanced front end (AFE) on the well-matched and
mid-mismatched settings, and has 8% and 10% fewer errors than
our earlier SPLICE (stereo-based piecewise linear compensation
for environments) system on these settings, respectively.

Index Terms—Mel-frequency cepstral coefficient (MFCC),
minimum-mean-square-error (MMSE) estimate, noise reduction,
phase asynchrony, robust automatic speech recognition (ASR).

I. INTRODUCTION

I T IS generally held that the desirable signal domain to which
noise reduction or speech enhancement should be applied

differs between human listening and automatic speech recog-
nition (ASR). Conventional wisdom posits that the lower the
distortion is between the enhanced speech and the clean speech
in the domain closest to the “backend” (human perception or
machine recognition), the better the enhancement performance
will be. For subjective human listening, noise reduction has been
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traditionally applied in the spectral domain (e.g., spectral sub-
traction, Wiener filtering, and Ephraim/Malah spectral ampli-
tude MMSE suppressor [7], [13]). Subjective human listening
experiments [11] show that speech enhancement becomes more
effective when it is applied to the logarithmic spectral ampli-
tude domain [8]. This agrees with the observation that the pe-
riphery auditory system performs the kind of compression sim-
ilar to logarithmic scaling [5].

In this paper, we apply the same line of thinking to speech fea-
ture enhancement for ASR applications, where Mel-frequency
cepstral coefficients (MFCCs) have been proven to be effective
and used pervasively as the direct input to the ASR backend [12].
Specifically, we propose a nonlinear feature-domain noise reduc-
tion algorithm motivated by the minimum-mean-square-error
(MMSE) criterion on MFCCs, which are immediate to the ASR
backend, for environment-robust speech recognition. We explain
that the problem of seeking an MMSE estimator on MFCCs can
be reduced to seeking a log-MMSE estimator on the Mel-fre-
quency filter bank’s output, which can be solved independently
for each filter bank channel. We derive the algorithm by as-
signing uniformly distributed random phases to the real-valued
filter bank’s outputs and assuming that the artificially generated
complex filter bank’s outputs follow zero-mean complex normal
distributions. We show that while the suppression rule derived in
this way is similar in form to the log-MMSE spectral amplitude
estimator proposed by Ephraim and Malah (E&M) [8], it has two
important differences. First, the suppression rule in our algorithm
is applied to the power spectral magnitude of the filter bank’s
output instead of the discrete Fourier transform (DFT) spectral
amplitude. Second, the noise variance used in our algorithm has
been derived to contain an additional term resulting from the fact
that the clean speech and the mixing noise are not in phase with
each other. We also demonstrate that operating on the MFCC,
which is closer to the backend, does provide us better perfor-
mance compared with approaches operating on the DFT domain.

Compared with our previous noise-robust technique of
SPLICE (stereo-based piecewise linear compensation for en-
vironments) [2], [6], the new algorithm has three distinctive
advantages. First, it does not require a codebook to be con-
structed using training data and thus is more robust to unseen
environments and easier to deploy. Second, it introduces no ad-
ditional look-ahead frame delay. Third, it is applied to the filter
bank’s output and hence can be easily plugged into the existing
feature extraction pipeline. Speech recognition experiments
on the Aurora-3 task, to be shown in Section V, demonstrate
that our proposed algorithm can reduce word error rate (WER)
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by 48.33% relative to the ICSLP02 baseline, 25.59% over the
cepstral mean normalization baseline, and 13.41% over the
conventional E&M log-MMSE noise suppressor. Compared
with the E&M log-MMSE noise suppressor, our new algorithm
is also much more efficient since the number of the channels in
the Mel-frequency filter bank is much smaller than the number
of bins in the DFT (23 versus 256). The results also show that
our algorithm performs slightly better than the ETSI advanced
front end (AFE) [14] and SPLICE [2], [6] on the well-matched
and mid-mismatched settings.

The rest of the paper is organized as follows. In Section II, we
formulate the MMSE estimation problem in the MFCC domain
and show how the problem can be reduced to log-MMSE estima-
tion of the Mel-frequency filter bank’s outputs. In Section III, we
provide detailed derivation of the nonlinear noise reduction algo-
rithm, with the emphasis on the special treatments employed and
the difficulties introduced by the use of the Mel-frequency filter
bank. In Section IV, we illustrate how the parameters used in the
algorithm are estimated with the focus on noise tracking and the
additional variance caused by the phase difference between the
clean speech and the mixing noise. We describe the evaluation
procedure on the Aurora-3 task and report the experimental re-
sults in Section V. In Section VI, we conclude the paper.

II. PROBLEM FORMULATION

Without lack of generality, we denote as the channel-
convoluted clean speech waveform and refer to it as clean
speech henceforth. We assume that is corrupted with the
independent additive noise waveform to become the noisy
speech waveform , i.e.,

(1)

where is the sampled time index. Given the additive noise as-
sumption (1), we get the relationship in the DFT domain

(2)

where , , and are the DFT of the noisy speech
waveform , the clean speech waveform , and the noise
waveform , respectively.

The Mel-frequency filter bank’s output power for noisy
speech is

(3)

where is the th Mel-frequency filter’s weight for the fre-
quency bin . A similar relationship holds between the filter-
bank output of clean speech and its DFT , and be-
tween the filter bank output of the noise and its DFT

. The th dimension of MFCC is calculated as

(4)

where

are the discrete cosine transform coefficients.

Our goal is to find the MMSE estimate against each sep-
arate and independent dimension of the clean speech’s MFCC
vector , given the noisy MFCC . More specifically, we
aim to find a mapping from to such that

(5)

There are three reasons for choosing the dimension-wise in-
stead of the full-vector MMSE criterion. First, each dimension
of MFCC vector is known to be relatively independent with
each other, and hence diagonal covariance matrices are usually
used in modeling the MFCC space in ASR [12]. Second, the dy-
namic range of MFCC is vastly different across dimensions. If
the MMSE criterion is applied to the MFCC vector, each dimen-
sion needs to be weighted differently to avoid the problem that
the error is dominated by one or two dimensions. Choosing the
appropriate weights not only is difficult but it also introduces un-
necessary computational overhead. Third, the dimension-wise
MMSE criterion decouples different dimensions, making the al-
gorithm easier to develop and to implement.

Based on standard estimation theory, it can be shown that the
solution to (5) is the conditional expectation

(6)

Note that according to (2) and (3), we can assume that
is independent of given and thus can be
reconstructed solely from ; i.e., (6) can be further simpli-
fied to

(7)

The problem is thus reduced to finding the log-MMSE esti-
mator of the Mel-frequency filter bank’s output

(8)

There can be many different solutions to (8) based on dif-
ferent assumptions on the noise and noisy speech models. In
Sections III–V, we derive a solution by assigning uniformly
distributed random phases to the real-valued filter bank’s out-
puts and assuming that the artificially generated complex filter
bank’s outputs follow zero-mean complex normal distributions.

III. NOISE SUPPRESSOR FOR MFCC

To motivate the solution, we set up a “straw man” by first
rewriting (8) to

(9)
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Fig. 1. Feature extraction pipeline where the E&M log-MMSE magnitude sup-
pressor is directly applied to the magnitude spectrum of the filter bank output.

which has exactly the same form in the objective function as
the E&M log-MMSE amplitude spectral suppressor [8], since

is in the amplitude spectral domain. At the first glance
of (9), it appears that we can apply the E&M log-MMSE noise
suppressor directly to the filter bank output by first converting
the power spectra to the amplitude spectra and then converting it
back after the E&M suppression is applied. These steps, as part
of the overall feature extraction process in our ASR system, are
illustrated in Fig. 1. This naive approach, however, violates the
original assumptions made in the E&M log-MMSE suppressor
and has produced poor recognition results in our experiments
(see details in Section V). Such failure motivates a more prin-
cipled approach, which we have developed as will be described
in this section.

Note that the filter banks’ outputs , , and
take real values in the range of according to (3), and
thus it is inappropriate to model them with real-valued normal
distributions. To develop appropriate models, we construct three
artificial complex variables , , and such that

(10)

That is, we consider , , and as modulus
of the constructed complex variables , , and

, respectively. Many , , and would
satisfy (10), among which we choose the ones with uniformly
distributed random phases , , and (which can
be considered as the weighted sum of the phases over all the
DFT bins). Selecting the uniformly distributed random phases
permits us to make the assumption that complex variables

and both follow the zero-mean complex
normal distributions. Note that mapping the real variables

, , and to the complex variables ,

and allows us to operate at a two-dimensional
space with simpler statistical models.

Since contains all information there is in , (8)
can be rewritten as

(11)

To solve (11), we follow the approach adopted in [8] by first
evaluating the moment generating function

(12)

and then find the solution to (11) as

(13)

which can be easily verified by noting

Now we assume that , , and are independent
and uniformly distributed (from 0 to ) random variables, as
shown by (14) at the bottom of the page.

Since is assumed to follow the zero-mean complex
normal distribution [7], [17], we have

(15)

where . Similarly, given
that follows the zero-mean complex normal
distribution, we obtain (16) at the bottom of the next page, where

(17)

and triangular inequality is used above. Since

(18)

(14)
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where is the phase difference between and , it
follows that

(19)

where we have used the result of

given that and are independent of each other. It was
shown in [4] that approxi-
mately follows a zero-mean normal distribution. If we denote
its variance by , we then have

(20)

where . Note that (20) is one of the major
differences between our approach and the original E&M log-
MMSE algorithm. In the original E&M log-MMSE algorithm

and so

By substituting (15) and (16) into (14) and replacing variable
by , we obtain

(21)

where

(22)

This can be shown to be simplified to [8]

(23)

where

(24)

is the integral representation of the modified zeroth-order Bessel
function

(25)

and

(26)

is defined from the a priori signal-to-noise ratio (SNR) (mod-
ified and adjusted from that proposed in [7] and [8] by using
the cepstra-domain representation and by accounting for phase
asynchrony)

(27)

and the adjusted a posteriori SNR

(28)

Given the above definitions, (21) can be rewritten as

(29)

(16)
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Fig. 2. Gain function against the a priori SNR and the a posteriori SNR.

Following similar steps in [8], we obtain

(30)

where

(31)

can be calculated efficiently using the technique described in
[8]. The MMSE estimate for the MFCC is thus

(32)

Fig. 2 depicts the gain function (31) against the a priori SNR
and the a posteriori SNRs . Note that normally the a

priori SNR and a posteriori SNR do not differ too much since
. In other words, some of the combi-

nations of and in the figure are rarely seen in the real
situation. Also note that the gain function (31) allows for gains
larger than 1 under some conditions. In our experiments; how-
ever, we have chosen to restrict the gains to be less than or equal
to 1 and used the gain function illustrated in Fig. 3 instead. This
restricted gain function performs slightly (not statistically signif-
icant) better than the original gain function in our experiments.

We would like to point out that while the noise suppression
rule (30), (31) appears in the same form as that proposed in [8],
the statistics used to estimate the parameters of the suppression
rule is vastly different. First, as indicated by (30), the suppres-
sion rule is applied to the power spectral domain instead of the
amplitude spectral domain as in [8]. In fact, applying (30) to

(i.e., convert to the amplitude spectral domain)
would invalidate the derivations starting from (17) and leads
to poor noise reduction performance as verified by our exper-
iments. Second, the a priori and a posteriori SNRs defined in
(27) and (28) are different from those defined in [7] and [8]. In
our algorithm, they have to be adjusted to include not only the

Fig. 3. Gain function restricted to be less than or equal to 1.

noise (in the power spectral domain) variance but also the ad-
ditional variance resulting from instantaneous phase dif-
ferences between the clean speech and the mixing noise (the
same quantity as treated in [4]) at the frame-wise DFT level.
Note that the variances derived in this way are still underesti-
mated as indicated in (19), and thus our noise suppressor is not
a strict MMSE one. An underestimated variance would
normally cause overestimation of a-priori SNR and thus
provide less suppression than is desired. Experiments in [7] have
shown that using an overestimated is more appropriate than
using an underestimate, and experiments in [16] have shown that
the optimal suppression rule tends to suppress less than the true
log-MMSE suppressor [8] due to noise estimation errors.

IV. ESTIMATION OF PARAMETERS

To apply the noise reduction algorithm (32), we need to esti-
mate the noise variance , the variance introduced by
the speech-noise phase differences, and the clean-speech vari-
ance (or equivalently the a-priori SNR ). We discuss
these estimates in this section.

A. Estimation of

In our current implementation, the noise variance is es-
timated using a minimum-controlled recursive moving- average
noise tracker similar to the one described in [1]. Briefly, a deci-
sion on whether a frame contains speech is made based on the
energy ratio test

(33)

where is the threshold, is the smoothed (across
filter bank channels and time) minimum noise power within a
sliding window which can be tracked efficiently, and is
the smoothed (using adjacent channels) power of the th filter’s
output (which is in the power domain by itself) at the th frame.
If the energy ratio test is true the frame is assumed to contain
speech and the new estimate of the noise variance becomes

(34)
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Otherwise, the noise variance is estimated as

(35)

using the smoothing factor .

B. Estimation of

In our current implementation is estimated using the
same decision-directed approach as that described in [7]. That
is, for the current frame is estimated using the estimated
clean speech from the previous frame and smoothed over the
past frames. The reason to use the decision-directed approach
instead of other approaches such as maximum-likelihood (ML)
estimation is that decision-directed approach has been proven to
perform better than the ML-based approaches when combined
with MMSE or Wiener filter noise suppressor [7].

C. Estimation of

According to the definition can be computed by

where we have used the assumption that the clean speech and
noise are independent and the phase difference between
clean speech and mixing noise at the DFT level is uniformly
distributed. This approach, however, requires the availability of
each DFT bin’s estimated speech and noise statistics, which
needs to be tracked with a high computational cost. Since we
only estimate and keep track of the statistics at the real-valued
filter bank’s output, we approximate as

(36)

in our current implementation. Note that (36) depends on
and . Therefore, needs to be estimated after esti-
mating and as described earlier in this section.

Fig. 4. Precalculated scale weights (see text for detail) used to speed up the
estimation of � ���.

In (36), is a fixed value for the
same Mel-frequency filter bank, and hence it can be precal-
culated and stored for saving the computational cost. Fig. 4
illustrates the values used for the Mel-frequency filter bank
in our experiments. In this figure, the -axis indicates the
Mel-frequency filter bank channel ID and the -axis indicates
the precalculated

V. PERFORMANCE EVALUATION

We have conducted extensive speech recognition experiments
on the standard Aurora-3 task [6], [10], [14] to evaluate the per-
formance of the nonlinear MMSE noise reduction algorithm on
MFCC described in Sections II–IV.

A. Experimental Setup

The Aurora-3 task consists of noisy digit recognition sub-
tasks under realistic automobile environments [10], [15]. In
the Aurora-3 corpus, each utterance is labeled as coming from
either a high, low, or quiet noise environment, and as being
recorded using a close-talk microphone or a hands-free, far-
field microphone.

Based on the languages, the task can be classified into
Finnish, Spanish, German, and Danish digit recognition sub-
tasks. For each language, three standard experimental settings
are defined for the evaluation.

Well-matched—Both the training and the testing set con-
tain all combinations of noise environments and micro-
phones.
Mid-mismatch—The training set contains quiet and low
noise data recorded using the far-field microphone, and the
testing set contains the high noisy data recorded using the
far-field microphone. The mismatch is mainly caused by
the noise.
High-mismatch—The training set contains close-talk data
from all noise classes, and the testing set contains high-
noise and low-noise far-field data for testing. The mis-
match is mainly caused by the channel distortion.

To better understand the performance of our algorithm when
evaluated using clean speech data, we have also constructed a
test set that consists of only the utterances recorded under the
quiet conditions. This test set is evaluated against all three set-
tings mentioned above.

All speech recognition results reported in this section use the
HMMs trained in the manner prescribed by the scripts included
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Fig. 5. Feature extraction pipeline for the ICSLP02 baseline system.

Fig. 6. Feature extraction pipeline for the CMN baseline system.

with the Aurora-3 task. The HMMs used consist of 16-state
whole-word models for each digit in addition to the “sil” and
“sp” models. The 39-dimension features used in our experi-
ments contain the 13-dimension (with energy and without C0)
static MFCC features and their delta and delta-delta features.
The parameters (such as smoothing factors and the size of the
minimum tracking windows) used for noise tracking are similar
to those described in [1] and have not been tuned in the exper-
iments reported in this section. More specifically, the threshold

was set to 5, the noise tracking window was set to 100 frames
(or 1 s), and the noise power smooth parameter was set to 0.9.
The smooth parameter used in the decision-directed approach to
estimate the clean-speech variance and the a priori SNR
was set to 0.8.

B. Experimental Results

The purpose of our experiments is to examine to what extent
our new algorithm is effective for its designed purpose: noise
robustness under the additive noise environment. With this goal
in mind, we have conducted a series of experiments to compare
our algorithm with other noise-robust algorithms such as the
conventional E&M log-MMSE magnitude spectral suppressor
(operates on the DFT domain), the ETSI AFE, and the SPLICE.

In all the five sets of the results reported in this section, the
ICSLP02 baseline refers to the baseline system using the stan-
dard WI007 front-end [10], [15], whose feature extraction in-
formation flow is shown in Fig. 5. The CMN baseline is the
system with the WI007 front-end and a standard active gain
normalization [12] and cepstral mean normalization algorithm
(Fig. 6). In the FB Output Magnitude technique, we show the
results of applying the E&M log-MMSE noise suppressor di-
rectly to the magnitude spectrum of the Mel-frequency filter
bank output (the information flow was shown in Fig. 1). In both
the MFCC-MMSE and the E&M log-MMSE systems, we apply
the noise suppression algorithms on top of the CMN baseline
system (Figs. 7 and 8).

Tables I and II summarize the average absolute recognition
word error rate (WER) results and the relative improvements
on the standard test sets for five different experimental system
settings, respectively. We observe that our proposed approach

Fig. 7. Feature extraction pipeline for the E&M log-MMSE system [8], where
the suppressor is applied to the DFT bins.

TABLE I
SUMMARY OF ABSOLUTE WER ON THE STANDARD TEST SETS IN THE

AURORA-3 TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

TABLE II
SUMMARY OF RELATIVE WER REDUCTION ON THE STANDARD TEST SETS IN

THE AURORA-3 TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

TABLE III
DETAILED AURORA-3 ABSOLUTE WER RESULTS ON THE STANDARD TEST

SETS UNDER THE MFCC-MMSE EXPERIMENTAL SETTING

TABLE IV
DETAILED AURORA-3 WER REDUCTION RESULTS ON THE STANDARD TEST

SETS AGAINST THE ICSLP02 BASELINE UNDER THE MFCC-MMSE

has achieved 48.33% WER reduction relative to the ICSLP02
baseline system, 25.59% WER reduction over the CMN base-
line system, and 13.41% WER reduction over the conventional
E&M log-MMSE algorithm yet with significantly less com-
putation (23 versus 256 vector-component estimates). We can
also see that directly applying the E&M log-MMSE noise sup-
pressor to the amplitude spectrum of the Mel-frequency filter
bank output (the FB Output Magnitude setting) gives us only
slight gain over the CMN baseline. Detailed results on each sub-
tasks of our MFCC-MMSE noise suppressor on the standard test
sets are reported in Tables III and IV.

Authorized licensed use limited to: MICROSOFT. Downloaded on December 21, 2008 at 19:06 from IEEE Xplore.  Restrictions apply.



1068 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 16, NO. 5, JULY 2008

TABLE V
SUMMARY OF ABSOLUTE WER ON THE QUIET TEST SET IN THE AURORA-3

TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

TABLE VI
SUMMARY OF RELATIVE WER REDUCTION ON THE QUIET TEST SET IN THE

AURORA-3 TASK UNDER DIFFERENT EXPERIMENTAL SETTINGS

TABLE VII
COMPARISON BETWEEN THE MFCC-MMSE SYSTEM

AND THE ETSI’S AFE ON THE AURORA-3 TASK

Tables V and VI summarize the average absolute recognition
word error rate (WER) results and the relative improvements on
the “quiet” portion of the full test sets. It can be seen that our
proposed approach has achieved 21.72% WER reduction over
the CMN baseline system, and is slightly better than the E&M
log-MMSE algorithm with significantly less computation.

To further understand the effectiveness of the new algorithm,
we have evaluated its performance against ETSI AFE [14] and
SPLICE [2], [6].

The ETSI AFE is the standard advanced front end adopted
by the ETSI. It is a package that includes signal preprocessing,
noise estimation, two-pass Wiener filter-based noise suppres-
sion, and blind feature equalization. Table VII shows that our
proposed approach has comparable performance compared
to the ETSI AFE on the well-matched and mid-mismatched
settings where noise distortion is the dominant cause of the
mismatch. In fact, if we only count errors under these two
conditions, the MFCC-MMSE achieved 8.43% WER, which is
slightly better than that achieved by the ETSI AFE (which is
8.67% WER). Our approach, however, performs worse than the
ETSI AFE system under the high-mismatched setting. This is
attributed mainly to the fact that the distortion in the high-mis-
matched setting is largely caused by channel distortion, which
is only handled in our system by the simple CMN method but
which was much more carefully handled by the ETSI AFE [14].

SPLICE is a general framework used to model and remove the
effect of any consistent degradation of speech cepstra. SPLICE
learns a joint probability distribution of noisy and clean cep-
stra, and uses this distribution to infer clean speech estimates
from noisy inputs. SPLICE does not include any assumptions
about how noisy cepstra are produced from clean cepstra, and
can model any combination of noise and channel distortions.
Prior to the work presented in this paper, SPLICE was a stan-
dard noise-robust technique in our ASR system [2], [6].

Fig. 8. Feature extraction pipeline for the MFCC-MMSE system.

Fig. 9. Feature extraction pipeline for the SPLICE systems.

TABLE VIII
COMPARISON BETWEEN THE MFCC-MMSE SYSTEM AND THE SPLICE
ON AURORA-3 WHERE THE SPLICE CODE BOOK WAS TRAINED USING

ADDITIONAL INFORMATION TO MAKE A MATCHING CONDITION

The results in Table VIII compare the performance of our new
approach with SPLICE on the Aurora-3 task. To make a fair
comparison, the SPLICE noise reduction algorithm is applied
upon the same CMN baseline system as depicted in Figs. 6 and
9. In this way, the only difference between the MFCC MMSE
feature extraction pipeline and the SPLICE feature extraction
pipeline lies in the noise robustness techniques used. Note that
in this experiment the SPLICE codebook is trained using all
combinations of the noise environments and microphones as re-
ported in [6]. That is, the codebook was trained using additional
information so that the matched condition is established. This
gives an upper bound performance of the SPLICE system.

Table VIII shows that our proposed approach outperforms the
SPLICE system by 7.56% and 9.57% on the well-matched and
mid-mismatched settings, respectively, where noise distortion
is the dominant cause of the mismatch, even though additional
information has been used by SPLICE to train the code book
in the mid-mismatched setting. Again, our approach performs
worse than the SPLICE system under the high-mismatched set-
ting. This is attributed mainly to the fact that the distortion in the
high-mismatched setting is largely caused by channel distortion,
which is handled by the SPLICE automatically by design if the
matched training data are available (which is the case in our set-
ting since SPLICE has seen the far-field microphone data when
building the codebook).

VI. SUMMARY AND CONCLUSION

In this paper, we have described a new nonlinear noise reduc-
tion algorithm motivated by the MMSE criterion in the MFCC
domain for environment-robustness ASR. We have described
the algorithm and the parameter estimation methods, showed the
differences between our algorithm and the conventional E&M
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log-MMSE noise suppressor, and demonstrated its effectiveness
in the standard Aurora-3 task.

Our new approach has several key attributes. First, it does not
require a codebook to be constructed using training data; hence,
it is highly robust to general unseen acoustic environments and
it is easy to deploy. Second, it is computationally efficient com-
pared with the conventional E&M log-MMSE noise suppressor
since the number of the channels in the Mel-frequency filter
bank is usually much smaller (23 in our case) than the number
of bins in the FFT domain (256). It introduces no additional
look-ahead frame delay. Third, it is designed to apply to filter
bank’s outputs and hence can be easily plugged into the feature
extraction pipeline of many commonly used ASR systems. The
proposed approach as developed so far, however, only deals with
additive noises and has not been developed to handle channel
distortions. Our current work involves expanding on this capa-
bility. We are also investigating the combination of the current
algorithm, which does not rely on any data, with the data-driven
approach (as exploited in SPLICE) to take advantage of the mu-
tual strengths.
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