
Theory and Applications of b-Bit Minwise Hashing

Ping Li
Department of Statistical Science

Faculty of Computing and Information Science
Cornell University, Ithaca, NY 14853

Arnd Christian König
Microsoft Research

Microsoft Corporation
Redmond, WA 98052

ABSTRACT
Efficient (approximate) computation of set similarity in very
large datasets is a common task with many applications in
information retrieval and data management. One common
approach for this task is minwise hashing. This paper de-
scribes b-bit minwise hashing, which can provide an order of
magnitude improvements in storage requirements and com-
putational overhead over the original scheme in practice.

We give both theoretical characterizations of the perfor-
mance of the new algorithm as well as a practical evalua-
tion on large real-life datasets and show that these match
very closely. Moreover, we provide a detailed comparison
to other important alternative techniques proposed for esti-
mating set similarities. Our technique yields a very simple
algorithm and can be realized with only minor modifications
to the original minwise hashing scheme.

1. INTRODUCTION
With the advent of the Internet, many applications are

faced with very large and inherently high-dimensional datasets.
A common task on these is similarity search, i.e., given a
high-dimensional data point, the retrieval of data points that
are close under a given distance function. In many scenar-
ios, the storage and computational requirements for comput-
ing exact distances between all data points are prohibitive,
making data representations that allow compact storage and
efficient approximate distance computation necessary.

In this paper, we describe b-bit minwise hashing, which
leverages properties common to many application scenarios
to obtain order-of-magnitude improvements in the storage
space and computational overhead required for a given level
of accuracy over existing techniques. Moreover, while the
theoretical analysis of these gains is technically challenging,
the resulting algorithm is simple and easy to implement.

To describe our approach, we first consider the concrete
task of web page duplicate detection, which is of critical
importance in the context of web search and was one of
the motivations for the development of the original minwise
hashing algorithm by Broder et al [2, 4]. Here, the task
is to identify pairs of pages that are textually very simi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

lar. For this purpose, web pages are modeled as “a set of
shingles,” where a shingle corresponds to a string of w con-
tiguous words occurring on the page. Now, given two such
sets S1, S2 ⊆ Ω, |Ω| = D, the normalized similarity known
as resemblance or Jaccard similarity, denoted by R, is

R =
|S1 ∩ S2|
|S1 ∪ S2|

=
a

f1 + f2 − a
, where f1 = |S1|, f2 = |S2|.

Duplicate detection now becomes the task of detecting pairs
of pages for which R exceeds a threshold value. Here, w is a
tuning parameter and was set to be w = 5 in several stud-
ies [2, 4, 8]. Clearly, the total number of possible shingles is
huge. Considering 105 unique English words, the total num-
ber of possible 5-shingles should be D = (105)5 = O(1025).
A prior study used D = 264 [8] and even earlier studies used
D = 240 [2,4]. Due to the size of D and the number of pages
crawled as part of web search, computing the exact similari-
ties for all pairs of pages may require prohibitive storage and
computational overhead, leading to approximate techniques
based on more compact data structures.

1.1 Minwise Hashing
To address this issue, Broder and his colleagues developed

minwise hashing in their seminal work [2, 4]. Here, we give
a brief introduction to this algorithm. Suppose a random
permutation π is performed on Ω, i.e.,

π : Ω −→ Ω, where Ω = {0, 1, ..., D − 1}.
An elementary probability argument shows that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R. (1)

After k minwise independent permutations, π1, π2, ..., πk,
one can estimate R without bias, as a binomial probability:

R̂M =
1

k

k∑

j=1

1{min(πj(S1)) = min(πj(S2))}, (2)

Var
(
R̂M

)
=

1

k
R(1−R). (3)

We will frequently use the terms “sample” and “sample
size” (i.e., k). For minwise hashing, a sample is a hashed
value, min(πj(Si)), which may require e.g., 64 bits [8].

Since the original minwise hashing work [2, 4], there have
been considerable theoretical and methodological develop-
ments [3, 5, 13,15,17,18,22].
Applications: As a general technique for estimating set
similarity, minwise hashing has been applied to a wide range
of applications, for example, content matching for online
advertising [23], detection of redundancy in enterprise file

systems [9], syntactic similarity algorithms for enterprise in-
formation management [6], Web spam [25], etc.

Many of the applications of minwise hashing are targeted
at detecting duplicates or pairs of somewhat high similarity.
By proposing an estimator that is particularly accurate for
these scenarios, we can reduce the required storage and com-
putational overhead dramatically. Here, the computational
savings are a function of how the minwise hashes are used.
For any technique that does compute the pairwise similarity
for (a large subset of) all pairs, the computation is typically
bound by the speed at which the samples can be brought
into memory (as the computation itself is simple); hence,
the space-reduction our technique offers directly translates
into order-of-magnitude speed-up as well.

However, even with the data-size reduction, computing
all pairwise similarities is prohibitively expensive in many
scenarios. This has lead to a number of approaches that
avoid this computation by grouping (subsets of) the samples
into buckets and only computing the pairwise similarities for
items within the same (set of) buckets. This approach avoids
the quadratic number of comparisons, at the cost of some
loss in accuracy. Examples of such approaches are the super-
shingles [4] or techniques based on Locally Sensitive Hashing
(LSH) [1, 5, 14] (also see Chapter 3 of [24] for an excellent
detailed explanation of LSH and see [7] for nice applications
of LSH ideas in mining associations).

1.2 b-bit Minwise Hashing
In this paper, we establish a unified theoretical framework

for b-bit minwise hashing. In our scheme, a sample con-
sists of b bits only, as opposed to e.g., b = 64 bits [8] in
the original minwise hashing. Intuitively, using fewer bits
per sample will increase the estimation variance, compared
to (3), at the same sample size k. Thus, we will have to
increase k to maintain the same accuracy. Interestingly, our
theoretical results will demonstrate that, when resemblance
is not too small (which is the case in many applications, e.g.,
consider R ≥ 0.5, the threshold used in [2,4]), we do not have
to increase k much. This means our proposed b-bit minwise
hashing can be used to improve estimation accuracy and
significantly reduce storage requirements at the same time.

For example, when b = 1 and R = 0.5, the estimation
variance will increase at most by a factor of 3. In order not
to lose accuracy, we have to increase the sample size by a
factor of 3. If we originally stored each hashed value using
64 bits, the improvement by using b = 1 will be 64/3 = 21.3.

Algorithm 1 illustrates the procedure of b-bit minwise
hashing, based on the theoretical results in Section 2.

Algorithm 1 The b-bit minwise hashing algorithm, applied
to estimating pairwise resemblances in a collection of N sets.

Input: Sets Sn ⊆ Ω = {0, 1, ..., D − 1}, n = 1 to N .
Pre-processing:
1): Generate k random permutations πj : Ω → Ω, j = 1 to k.
2): For each set Sn and each permutation πj , store the lowest b
bits of min (πj (Sn)), denoted by en,i,πj , i = 1 to b.

Estimation: (Use two sets S1 and S2 as an example.)

1): Compute P̂b = 1
k

∑k
j=1

{∏b
i=1 1{e1,i,πj = e2,i,πj }

}
.

2): Estimate the resemblance by R̂b =
P̂b−C1,b

1−C2,b
, where C1,b and

C2,b are from Theorem 1 in Section 2.

1.3 Related Work

Locality Sensitive Hashing (LSH) [1,5,14] is a set of tech-
niques for performing approximate search in high dimen-
sions. In the context of estimating set intersections, there
exist LSH families for estimating the resemblance, the arcco-
sine and the hamming distance. Our b-bit minwise hashing
proposes a new construction of an LSH family (Section 7.4).

In [5,11], the authors describe hashing schemes that map
objects to {0, 1}. The algorithms for the construction, how-
ever, are problem specific. Three discovered 1-bit schemes
are (i) the simhash [5] based on sign random projection [12,
19]; (ii) the hamming distance algorithm based on simple
random sampling [14]; and (iii) the hamming distance algo-
rithm based on a variant of random projection [16].

Section 4 will compare our method with two hamming dis-
tance algorithms [14, 16]. We also wrote a report (http://
www.stat.cornell.edu/~li/b-bit-hashing/RP_minwise.pdf),
which demonstrated that, unless the similarity is very low,
b-bit minwise hashing outperforms sign random projections.

A related approach is Conditional Random Sampling (CRS) [17,
18] which uses only a single permutation and instead of a
single minimum retains as set of the smallest hashed values.
CRS provides more accurate (in some scenarios substantially
so) estimators for binary data and naturally extends to real-
value data and dynamic streaming data; moreover, the same
set of hashed values can be used to estimate a variety of sum-
mary statistics including histograms, lp distances (for any
p), number of distinct values, χ2 distances, entropies, etc.
However, we have not developed a b-bit scheme for CRS,
which appears to be a challenging task.

2. THE FUNDAMENTAL RESULTS
Consider two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1}, f1 =

|S1|, f2 = |S2|, a = |S1∩S2|. Apply a random permutation
π on S1 and S2, where π : Ω −→ Ω. Define the minimum
values under π to be z1 and z2:

z1 = min (π (S1)) , z2 = min (π (S2)) . (4)

Define e1,i = ith lowest bit of z1, and e2,i = ith lowest
bit of z2. Theorem 1 derives the main probability formula.
Its proof assumes that D is large, which is virtually always
satisfied in practice. This result is a good example of ap-
proaching a difficult problem by reasonable approximations.

Theorem 1. Assume D is large.

Pb = Pr

(
b∏

i=1

1 {e1,i = e2,i}
)

= C1,b +
(
1− C2,b

)
R (5)

r1 =
f1

D
, r2 =

f2

D
,

C1,b = A1,b
r2

r1 + r2
+ A2,b

r1

r1 + r2
, (6)

C2,b = A1,b
r1

r1 + r2
+ A2,b

r2

r1 + r2
, (7)

A1,b =
r1 [1− r1]2

b−1

1− [1− r1]2
b

, A2,b =
r2 [1− r2]2

b−1

1− [1− r2]2
b

.2 (8)

The intuition for the difference between (5) and the equiv-
alent equation for minwise hashing (1) is that even when
R = 0, the collision probability Pb (i.e., the probability that
two minima agree on their last b bits) is not zero, but rather
C1,b. Having to account for this type of “false positives”

makes the derivation more difficult, resulting in the addi-
tional terms in (5). Of course, as expected, if R = 1, then
Pb = 1 (because in this case r1 = r2 and C1,b = C2,b).

Note that the only assumption needed in the proof of The-
orem 1 is that D is large, which is virtually always satisfied
in practice. Interestingly, (5) is remarkably accurate even for
very small D. Figure 1 shows that when D = 20 (D = 500),
the absolute error caused by using (5) is < 0.01 (< 0.0004).

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

f
2
 = 2

f
2
 = 4

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 20, f
1
 = 4, b = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4

D = 500, f
1
 = 50, b = 1

f
2
 = 2

f
2
 = 25

f
2
 = 50

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

f
2
 = 2

f
2
 = 5

f
2
 = 10

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 20, f
1
 = 10, b = 1

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 500, f
1
 = 250, b = 1

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

f
2
 = 2

f
2
 = 16

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 20, f
1
 = 16, b = 4

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−4

a / f
2

A
pp

ro
xi

m
at

io
n

E
rr

or

D = 500, f
1
 = 450, b = 4

Figure 1: The absolute errors (approximate - exact)
by using (5) are very small even for D = 20 (left pan-
els) or D = 500 (right panels). The exact probability
can be numerically computed for small D (from a
probability matrix of size D × D). For each D, we
selected three f1 values. We always let f2 = 2, 3, ..., f1

and a = 0, 1, 2, ..., f2.

2.1 The Unbiased Estimator
Theorem 1 suggests an unbiased estimator R̂b for R:

R̂b =
P̂b − C1,b

1− C2,b
, (9)

P̂b =
1

k

k∑

j=1

{
b∏

i=1

1{e1,i,πj = e2,i,πj }
}

, (10)

where e1,i,πj (e2,i,πj) denotes the ith lowest bit of z1 (z2),
under the permutation πj . The variance is,

Var
(
R̂b

)
=

Var
(
P̂b

)

[
1− C2,b

]2 =
1

k

Pb(1− Pb)[
1− C2,b

]2

=
1

k

[
C1,b + (1− C2,b)R

] [
1− C1,b − (1− C2,b)R

]
[
1− C2,b

]2 (11)

For large b, Var
(
R̂b

)
converges to the variance of R̂M , the

estimator for the original minwise hashing:

lim
b→∞

Var
(
R̂b

)
=

R(1−R)

k
= Var

(
R̂M

)
.

In fact, when b = 64, Var
(
R̂b

)
and Var

(
R̂M

)
are numeri-

cally indistinguishable for practical purposes.

2.2 The Variance-Space Trade-off
As we decrease b, the space needed for storing each “sam-

ple”will be smaller; the estimation variance (11) at the same
sample size k, however, will increase. This variance-space
trade-off can be precisely quantified by B(b; R, r1, r2):

B(b; R, r1, r2) = b×Var
(
R̂b

)
× k

=
b
[
C1,b + (1− C2,b)R

] [
1− C1,b − (1− C2,b)R

]
[
1− C2,b

]2 . (12)

Lower B(b) is better. The ratio, B(b1;R,r1,r2)
B(b2;R,r1,r2)

, measures the

improvement of using b = b2 (e.g., b2 = 1) over using b = b1

(e.g., b1 = 64). Some algebra yields the following Lemma.

Lemma 1. If r1 = r2 and b1 > b2, then

B(b1; R, r1, r2)

B(b2; R, r1, r2)
=

b1

b2

A1,b1(1−R) + R

A1,b2(1−R) + R

1−A1,b2

1−A1,b1

, (13)

is a monotonically increasing function of R ∈ [0, 1].
If R → 1 (which implies r1, r2 → 1), then

B(b1; R, r1, r2)

B(b2; R, r1, r2)
→ b1

b2
. (14)

If r1 = r2, b2 = 1, b1 = 64 (hence we treat A1,b = 0), then

B(b1; R, r1, r2)

B(1; R, r1, r2)
= 64

R

1 + R− r1
. 2 (15)

Suppose the original minwise hashing used b = 64, then
the maximum improvement of b-bit minwise hashing would
be 64-fold, attained when r1 = r2 = 1 and R = 1. In the
least favorable situation, i.e., r1, r2 → 0, the improvement
will still be 64 0.5

1+0.5
= 64

3
= 21.3-fold when R = 0.5.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 10−10 b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.1

b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.5

b = 1

b = 2

b = 3

b = 4

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Resemblance (R)

Im
pr

ov
em

en
t

r
1
 = r

2
 = 0.9

b = 1

b = 2

b = 3

b = 4

Figure 2: B(64)
B(b)

, the relative storage improvement

of using b = 1, 2, 3, 4 bits, compared to using 64 bits.
B(b) is defined in (12).

Figure 2 plots B(64)
B(b)

, to directly visualize the relative im-

provements, which are consistent with what Lemma 1 pre-
dicts. The plots show that, when R is very large (which is
the case in many practical applications), it is always good to
use b = 1. However, when R is small, using larger b may be
better. The cut-off point depends on r1, r2, R. For example,
when r1 = r2 and both are small, it would be better to use
b = 2 than b = 1 if R < 0.4, as shown in Figure 2.

3. EXPERIMENTS
In the following, we evaluate the accuracy of the theoreti-

cal derivation and the practical performance of our approach
using two sets of experiments. Experiment 1 is a sanity
check, to verify: (i) our proposed estimator R̂b in (9) is un-
biased; (ii) its variance follows the prediction by our formula
in (11). Experiment 2 is a duplicate detection task using
a Microsoft proprietary collection of 1,000,000 news articles.

3.1 Experiment 1
The data, extracted from Microsoft Web crawls, consists

of 6 pairs of sets. Each set consists of the document IDs
which contain the word at least once. We now use b-bit
minwise hashing to estimate the similarities of these sets
(i.e., we estimate the strength of the word associations).

Table 1: Six word pairs for Experiment 1. For example,

“KONG” and “HONG” correspond to two sets of document

IDs which contained “KONG” and “HONG” respectively.

Word 1 Word 2 r1 r2 R
B(64)
B(1)

KONG HONG 0.0145 0.0143 0.925 31.0
OF AND 0.570 0.554 0.771 40.8
GAMBIA KIRIBATI 0.0031 0.0028 0.712 26.6
UNITED STATES 0.062 0.061 0.591 24.8
LOW PAY 0.045 0.043 0.112 6.8
A TEST 0.596 0.035 0.052 6.2

Table 1 summarizes the data and provides the theoretical

improvements B(64)
B(1)

. The words were selected to include

highly frequent pairs (e.g., “OF-AND”), highly rare pairs
(e.g., “GAMBIA-KIRIBATI”), highly unbalanced pairs (e.g.,
“A-Test”), highly similar pairs (e.g., “KONG-HONG”), as
well as pairs that are not quite similar (e.g., “LOW-PAY”).

We estimate the resemblance using the original minwise
hashing estimator R̂M and the b-bit estimator R̂b (b = 1, 2, 3).

Figure 3 plots the empirical mean square errors (MSE =
variance + bias2) in solid lines, and the theoretical variances
(11) in dashed lines, for all word pairs. All dashed lines are
invisible because they overlap with the corresponding solid
curves. Thus, this experiment validates that the variance
formula (11) is accurate and R̂b is indeed unbiased (other-
wise, the MSE will differ from the variance).

3.2 Experiment 2: Microsoft News Data
To illustrate the improvements by the use of b-bit minwise

hashing on a real-life application, we conducted a duplicate
detection experiment using a corpus of 106 news documents.
The dataset was crawled as part of the BLEWS project at
Microsoft [10]. We computed pairwise resemblances for all
documents and retrieved documents pairs with resemblance
R larger than a threshold R0. We estimate the resemblances
using R̂b with b = 1, 2, 4 bits, and the original minwise
hashing. Figure 4 presents the precision & recall curves.
The recall values (bottom two panels in Figure 4) are all
very high and do not differentiate the estimators.

The precision curves for R̂4 (using 4 bits per sample) and

R̂M (assuming 64 bits per sample) are almost indistinguish-
able, suggesting a 16-fold improvement in space using b = 4.

When using b = 1 or 2, the space improvements are nor-
mally around 20-fold to 40-fold, compared to R̂M (assuming
64 bits per sample), especially for achieving high precision.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

KONG − HONG

b=1

M

23

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

OF − AND

b=1

M

2

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

GAMBIA − KIRIBATI

b=1

M

2

3

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

UNITED − STATES

b=1

M

2

3

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

LOW − PAY

b=1

M

b=2

3

b = 1
b = 2
b = 3
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

A − TEST

b=1

M

b=2

b=3

b = 1
b = 2
b = 3
M
Theor.

Figure 3: Mean square errors (MSEs). “M” denotes
the original minwise hashing. “Theor.” denotes the
theoretical variances Var(R̂b)(11) and Var(R̂M)(3).
The dashed curves, however, are invisible because
the empirical MSEs overlap the theoretical vari-
ances. At the same k, Var(R̂1) > Var(R̂2) > Var(R̂3) >

Var(R̂M). However, R̂1/R̂2/R̂3 only requires 1/2/3

bits per sample, while R̂M may require 64 bits.

4. COMPARISONS WITH HAMMING DIS-
TANCE ALGORITHMS

Closely related to the resemblance, the hamming distance
H is another important similarity measure. In the context of
hamming distance, a set Si ⊆ Ω = {0, 1, ..., D−1} is mapped
to a D-dimensional binary vector Yi: Yit = 1, if t ∈ Si and
0 otherwise. The hamming distance between Y1 and Y2 is

H =

D−1∑

i=0

[Y1i 6= Y2i] = |S1 ∪ S2| − |S1 ∩ S2| = f1 + f2 − 2a,

i.e., H/D = r1 + r2 − 2s.

Thus, one can apply b-bit minwise hashing to estimate H,
by converting the estimated resemblance R̂b (9) to Ĥb:

Ĥb = f1 + f2 − 2
R̂b

1 + R̂b

(f1 + f2) =
1− R̂b

1 + R̂b

(f1 + f2). (16)

The variance of Ĥb can be computed from Var
(
R̂b

)
(11) by

the “delta method” (i.e., V ar(g(x)) ≈ V ar(x) [g′ (E(x))]
2
):

Var
(
Ĥb

)
=Var

(
R̂b

) 4(r1 + r2)2

(1 + R)4
D2 + O

(
1

k2

)
. (17)

We will first compare Ĥb with an algorithm based on sim-
ple random sampling [14] and then with another algorithm
based on a variant of random projection [16].

4.1 Simple Random Sampling Algorithm
To reduce the storage, we can randomly sample k coor-

dinates from the original data Y1 and Y2 in D-dimensions.

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.3

Sample size (k)

P
re

ci
si

on

b=1b=2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.4

Sample size (k)

P
re

ci
si

on

2

b=1

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.5

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.7

Sample size (k)

P
re

ci
si

on

b=1

2

b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

R
0
 = 0.3

Sample size (k)

R
ec

al
l

Recall
b=1
b=2
b=4
M

0 100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sample size (k)

R
ec

al
l

Recall

R
0
 = 0.8

b=1
b=2
b=4
M

Figure 4: The task is to retrieve news article pairs
with resemblance R ≥ R0. The recall curves can
not differentiate estimators. The precision curves
are more interesting. When R0 = 0.4, to achieve a
precision = 0.80, the estimators R̂M , R̂4, R̂2, and
R̂1 require k = 50, 50, 75, 145, respectively, indicating
R̂4, R̂2, and R̂1 respectively improve R̂M (assuming
64 bits per sample) by 16-, 21.4-, and 22-fold. The
improvement becomes larger as R0 increases.

The samples, denoted by h1 and h2, are k-dimensional bit
vectors, from which we can estimate H:

Ĥs =
D

k

k∑

j=1

[h1j 6= h2j] , (18)

whose variance would be (assuming k ¿ D)

Var
(
Ĥs

)
=

D2

k

[
H

D
− H2

D2

]
. (19)

Comparing the two variances, (17) and (19), we find the

variance of using simple random sampling, i.e., V ar
(
Ĥs

)
, is

substantially larger than the variance of using b-bit minwise

hashing, i.e., V ar
(
Ĥb

)
, especially when the data are sparse.

We consider in practice one will most likely implement the
random sampling algorithm by storing only the original lo-
cations (coordinates) of the non-zeros in the samples. If we
do so, the total bits on average will be r1+r2

2
64k (per set).

This motivates us to define the following ratio:

Gs,b =
Var

(
Ĥs

)
× r1+r2

2
64k

Var
(
Ĥb

)
× bk

. (20)

to compare the storage costs. Recall each sample of b-bit
minwise hashing requires b bits (i.e., bk bits per set). The
following Lemma may help characterize the improvement:

Lemma 2. If r1, r2 → 0, then Gs,b as defined in (20)

Gs,b →
8

b

(2b − 1)(1 + R)3

1 + (2b − 1)R
. 2 (21)

In other words, for small r1, r2, Gs,b ≈ 8
b

(
2b − 1

)
if R ≈ 0;

and Gs,b ≈ 64
b

2b−1
2b , if R ≈ 1. Figure 5 plots Gs,b=1, verifying

the substantial improvement of b-bit minwise hashing over
simple random sampling (often 10 to 30-fold).

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

s / r
2

G
s,

b

r
2
 = 0.1 × r

1

0.20.3

0.40.5

0.60.7

0.8

r
2
 = 0.9 × r

1G
s,b=1

, r
1
 = 10−4

0 0.2 0.4 0.6 0.8 1
5

10

15

20

25

30

s / r
2

G
s,

b

r
2
 = 0.9 × r

1

r
2
 = 0.1 × r

1

G
s,b=1

, r
1
 = 0.1

0 0.2 0.4 0.6 0.8 1
1

10

20

30

40

s / r
2

G
s,

b

G
s,b=1

, r
1
 = 0.5

r
2
 = 0.9 × r

1

r
2
 = 0.1 × r

1

0 0.2 0.4 0.6 0.8 1
1

10

20

30

40

50

s / r
2

G
s,

b

0.4

0.6

0.8

0.9
G

s,b=1
, r

1
 = 0.9

r
2
 = 0.9 × r

1

r
2
 = 0.1 × r

1

Figure 5: Gs,b=1 as defined in (20) for illustrating the
improvement of b-bit minwise hashing over simple
random sampling. We consider r1 = 10−4, 0.1, 0.5, 0.9,
r2 ranging from 0.1r1 to 0.9r1, and s from 0 to r2.
Note that r1 + r2 − s ≤ 1 has to be satisfied.

4.2 Random Projection + Modular Arithmetic
An interesting 1-bit scheme was developed in [16] using

random projection followed by modular arithmetic. A ran-
dom matrix U ∈ RD×k is generated with entries being i.i.d.
samples uij from a binomial distribution: uij = 1 with prob-
ability β

2
and uij = 0 with probability 1− β

2
. Let v1 = Y1×U

(mod 2) and v2 = Y2 × U (mod 2). [16] showed that

Eβ = Pr (v1,j 6= v2,j) =
1

2

(
1− [1− β]H

)
(22)

which allows us to estimate the hamming distance H by

Ĥrp,β =
log(1− 2Êβ)

log(1− β)
(23)

We calculate the variance of Ĥrp,β to be

V ar
(
Ĥrp,β

)
=

1

k

4Eβ(1− Eβ)

(1− 2Eβ)2 log2(1− β)
+ O

(
1

k2

)
(24)

which suggests that the performance of this 1-bit scheme
might be sensitive to β, which must be pre-determined for
all sets at the processing time (i.e., it can not be modified
in the estimation phrase for a particular pair). Figure 6
provides the“optimal”β (denoted by β∗) values (as function
of H) by numerically minimizing the variance (24).

It is interesting to compare this random projection-based
1-bit scheme with our b-bit minwise hashing using the fol-
lowing ratio of their variances:

Grp,b,β =
Var

(
Ĥrp,β

)
× k

Var
(
Ĥb

)
× bk

. (25)

10
−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

H / D

β* ×
 D

Optimal β*

10
−4

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

10
2

H / D

V
ar

 /
D

2

Optimal Variance

Figure 6: Left panel: the β∗ values at which the
smallest variances (24) are attained. Right panel:
the corresponding optimal variances.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

s / r
2

G
rp

,b
,β

G
rp,b=1, β*, r

1
 = 10−4

Optimum β*
r
2
 = 0.1 × r

1

0.9

0.2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

s / r
2

G
rp

,b
,β

G
rp,b=1,β*, r

1
 = 0.1

Optimum β*

0.3

r
2
 = 0.1 × r

1

0.2

0.4

0.5

0.90.8

0.70.6

0 0.2 0.4 0.6 0.8 1
0

1

2

3

s / r
2

G
rp

,b
,β

0.8 0.9

G
rp,b=1,β*, r

1
 = 0.5

Optimum β*

r
2
 = 0.1 × r

1

0.2

0.3

0.4

0.5
0.6 0.7

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

s / r
2

G
rp

,b
,β 0.2

0.3
0.4
0.5 0.6

0.7
G

rp,b=1,β*, r
1
 = 0.9

r
2
 = 0.9 × r

1

r
2
 = 0.1 × r

1

Optimum β*

Figure 7: Grp,b=1,β∗ as defined in (25) for comparing

Ĥb with Ĥrp,β∗ . For each combination of r1, r2, s, we
computed and used the optimal β∗ for the variance.

Figure 7 shows that if it is possible to choose the optimal β∗

for random projection, one can achieve good performance,
similar to (or even better than) b-bit minwise hashing.

The problem is that we must choose the same β for all sets.
Figure 8 presents a typical example, which uses H∗/D =
10−4 to compute the“optimal”β for a wide range of (r1, r2, s)
values. The left bottom panel illustrates that when r1 =
10−4 using this particular choice of β results in fairly good
performance compared to b-bit minwise hashing. (Recall
H/D = r1 + r2 − 2s.) As soon as the true H substantially

deviates from the guessed H∗, the performance of Ĥrp,β us-
ing random projection degrades dramatically.

There is one more issue. At the optimal β∗(H), our calcu-
lations show that the probability (22) Eβ∗ ≈ 0.2746. How-
ever, if the chosen β > β∗(H), then Eβ may approach 1/2.

As Êβ is random, it is likely that the observed Êβ > 1/2,

i.e., log
(
1− 2Êβ

)
becomes undefined in (23). Thus, it is

safer to “over-estimate” H when choosing β. When we have
a large collection of sets, this basically means the chosen β
will be very different from its optimal value for most pairs.

Finally, Figure 9 provides an empirical study as a san-
ity check that the variance formula (24) is indeed accurate
and that, if the guessed H for selecting β deviates from the
true H, then the random projection estimator Ĥrp,β exhibits

much larger errors than the b-bit hashing estimator Ĥb.

5. IMPROVEMENT BY COMBINING BITS
Our theoretical and empirical results have confirmed that,

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

120

s / r
2

G
rp

,b
,β

G
rp,b=1, β, r

1
 = 10−6

r
2
 = 0.1 × r

1

r
2
 = 0.9 × r

1

H*/D = 10−4

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12

s / r
2

G
rp

,b
,β

G
rp,b=1, β, r

1
 = 10−5

r
2
 = 0.1 × r

1

r
2
 = 0.9 × r

1
H*/D = 10−4

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

s / r
2

G
rp

,b
,β

r
2
 = 0.1 × r

1

r
2
 = 0.9 × r

1

G
rp,b=1, β, r

1
 = 10−4

H*/D = 10−4

0 0.2 0.4 0.6 0.8 1

10
0

10
5

10
10

s / r
2

G
rp

,b
,β r

2
 = 0.1 × r

1

r
2
 = 0.9 × r

1

G
rp,b=1, β, r

1
 = 10−3

H*/D = 10−4

Figure 8: Grp,b=1,β (25) computed by using the fixed
β which is the optimal β when H = H∗ = 10−4D.

10
1

10
2

10
3

10
−5

10
−4

10
−3

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

UNITED − STATES

rp

b = 1

H*/D = 0.1

Empircal
Theoretical

10
1

10
2

10
3

10
−5

10
−4

10
−3

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

UNITED − STATES

rp

b = 1

H*/D = 0.5

Empircal
Theoretical

Figure 9: The exact H for this pair of sets is 0.0316.
We use the optimal β at H∗/D = 0.1 (left panel) and

H∗/D = 0.5 (right panel). Compared to Ĥb=1, the

MSEs of Ĥrp,β (labeled by “rp”) are substantially
larger. The theoretical variances (dashed lines) (24)
and (17), essentially overlap the empirical MSEs.

when the resemblance R is reasonably high, even a single bit
per sample may contain sufficient information for accurately
estimating the similarity. This naturally leads to the conjec-
ture that, when R is close to 1, one might further improve
the performance by looking at a combination of multiple bits
(i.e., “b < 1”). One simple approach is to combine two bits
from two permutations using XOR (⊕) operations.

Recall e1,1,π denotes the lowest bit of the hashed value
under π. Theorem 1 has proved that

P1 = Pr (e1,1,π = e2,1,π) = C1,1 + (1− C2,1) R

Consider two permutations π1 and π2. We store

x1 = e1,1,π1 ⊕ e1,1,π2 , x2 = e2,1,π1 ⊕ e2,1,π2

Then x1 = x2 either when e1,1,π1 = e2,1,π1 and e1,1,π2 =
e2,1,π2 , or, when e1,1,π1 6= e2,1,π1 and e1,1,π2 6= e2,1,π2 . Thus

T = Pr (x1 = x2) = P 2
1 + (1− P1)

2, (26)

which is a quadratic equation with a solution:

R̂1/2 =

√
max{2T̂ − 1, 0}+ 1− 2C1,1

2− 2C2,1
. (27)

This estimator is slightly biased at small sample size k. We
use R̂1/2 to indicate that two bits are combined into one
(but each sample is still stored using 1 bit). The asymptotic

variance of R̂1/2 can be derived to be

Var
(
R̂1/2

)
=

1

k

T (1− T)

4(1− C2,1)2(2T − 1)
+ O

(
1

k2

)
. (28)

Interestingly, as R → 1, R̂1/2 does twice as well as R̂1:

lim
R→1

Var
(
R̂1

)

Var
(
R̂1/2

) = lim
R→1

2(1− 2P1)2

(1− P1)2 + P 2
1

= 2. (29)

On the other hand, R̂1/2 may not be good when R is not
too large. For example, one can numerically show that

Var
(
R̂1

)
< Var

(
R̂1/2

)
, if R < 0.5774, r1, r2 → 0

Figure 10 plots the empirical MSEs for two word pairs
in Experiment 1, for R̂1/2, R̂1, and R̂M . For the highly

similar pair, “KONG-HONG,” R̂1/2 exhibits superior per-

formance compared to R̂1. For “UNITED-STATES,” whose
R = 0.591, R̂1/2 performs similarly to R̂1.

10
1

10
2

10
3

10
−4

10
−3

10
−2

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

KONG − HONG

b=1
M

1/2

b = 1
b = 1/2
M
Theor.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

Sample size k

M
ea

n
sq

ua
re

 e
rr

or
 (

M
S

E
)

UNITED − STATES

M

b = 1/2

b=1

b = 1
b = 1/2
M
Theor.

Figure 10: MSEs for comparing R̂1/2 (27) with R̂1

and R̂M . Due to the bias of R̂1/2, the theoretical

variances Var
(
R̂1/2

)
, i.e., (28), deviate from the em-

pirical MSEs when k is small.

In summary, for applications which care about very high
similarities, combining bits can reduce storage even further.

6. COMPUTATIONAL IMPROVEMENTS
When computing set similarity for large sets of samples,

the key operation is determining the number of identical
b-bit samples. While samples for values of b that are multi-
ples of 16 bits can easily be compared using a single machine
instruction, efficiently computing the overlap between b-bit
samples for small b is less straightforward. In the follow-
ing, we will describe techniques for computing the number
of identical b-bit samples when these are packed into arrays
Al[1, . . . , k·b

w
], l = 1, 2 of w-bit words. To compute the num-

ber of identical b-bit samples, we iterate through the arrays;
for each offset h, we first compute v = A1[h]⊕ A2[h]. Now,
the number of b-bit blocks in v that contain only 0s corre-
sponds to the number of identical b-bit samples.

The case of b = 1 corresponds to the problem of count-
ing the number of 0-bits in a word. We tested a number
of different methods and found the fastest approach to be
pre-computing an array bits[1, . . . , 216] such that bits[t] cor-
responds to the number of 0-bits in the binary representation
of t and using lookups into this array. This approach extends
to b > 1 as well.

To evaluate this approach we timed a tight loop comput-
ing the number of identical samples in two arrays of b-bit
hashes covering a total of 1.8 billion 32-bit words (using a
64-bit Intel 6600 Processor). Here, the 1-bit hashing re-
quires 1.67x the time that the 32-bit minwise hashing re-
quires (1.73x when comparing to 64-bit minwise hashing).
The results were essentially identical for b = 2, 4, 8. Given

that, when R > 0.5, we can gain a storage reduction of 21.3-
fold, we expect the resulting improvement in computational
efficiency to be 21.3/1.67 = 12.8-fold in the above setup.

7. EXTENSIONS AND APPLICATIONS

7.1 Three-Way Resemblance
Many applications in data mining or data cleaning re-

quire not only estimates of 2-way, but also of multi-way
similarities. The original minwise hashing naturally extends
to multi-way resemblance. In [21], we extended b-bit min-
wise hashing to estimate 3-way resemblance. We developed
a highly accurate, but complicated estimator, as well as a
much simplified estimator suitable for sparse data. Inter-
estingly, at least b ≥ 2 bits are needed in order to estimate
3-way resemblance. Similar to the 2-way case, b-bit minwise
hashing can result in an order-of-magnitude reduction in the
storage space required for a given estimation accuracy when
testing for moderate to high similarity.

7.2 Large-Scale Machine Learning
A different category of applications for b-bit minwise hash-

ing is machine learning on very large datasets. For example,
one of our projects [20] focuses on linear Support Vector Ma-
chines (SVM). We were able to show that the resemblance
matrix, the minwise hashing matrix, and the b-bit minwise
hashing matrix are all positive definite matrices (kernels);
and we integrated b-bit minwise hashing with linear SVM.
This allows us to significantly speed up training and testing
times with almost no loss in classification accuracy for many
practical scenarios. In addition, this provides an elegant so-
lution to the problem of SVM training in scenarios where
the training data cannot fit in memory.

Interestingly, the technique we used for linear SVM es-
sentially provides a universal strategy for integrating b-bit
minwise hashing with many other learning algorithms, for
example, logistic regression.

7.3 Improving Estimates by Maximum Like-
lihood Estimators (MLE)

While b-bit minwise hashing is particularly effective in
applications which mainly concern sets of high similarities
(e.g., R > 0.5), there are other important applications in
which not just pairs of high similarities matter. For ex-
ample, many learning algorithms require all pairwise sim-
ilarities and it is expected that only a small fraction of
the pairs are similar. Furthermore, many applications care
more about containment (e.g., which fraction of one set is
contained in another set) than the resemblance. In a re-
cent technical report (http://www.stat.cornell.edu/~li/
b-bit-hashing/AccurateHashing.pdf), we showed that the
estimators for minwise hashing and b-bit minwise hashing
used in the current practice can be systematically improved
and the improvements are most significant for set pairs of
low resemblance and high containment.

For minwise hashing, instead of only using Pr(z1 = z2),
where z1 and z2 are two hashed values, we can combine it
with Pr(z1 < z2) and Pr(z1 > z2) to form a 3-cell multi-
nomial estimation problem, whose maximum likelihood es-
timator (MLE) is the solution to a cubic equation. For b-
bit minwise hashing, we formulate a 2b×2b-cell multinomial
problem, whose MLE requires a simple numerical procedure.

7.4 The New LSH Family
Applications such as near neighbor search, similarity clus-

tering, and data mining will significantly benefit from b-
bit minwise hashing. It is clear that b-bit minwise hash-
ing will significantly improve the efficiency of simple linear
algorithms (for near neighbor search) or simple quadratic al-
gorithms (for similarity clustering), when the key bottleneck
is main-memory throughput.

Techniques based on Locality Sensitive Hashing (LSH) [1,
5, 14] have been successfully used to achieve sub-linear (for
near neighbor search) or sub-quadratic (for similarity clus-
tering) performance. It is interesting that b-bit minwise
hashing is a new family of LSH and hence in this section
we would like to provide more theoretical properties in the
context of LSH and approximate near neighbor search.

Consider a set S1. Suppose there exists another set S2

whose resemblance distance (1 − R) from S1 is at most d0,
i.e., 1−R ≤ d0. The goal of c-approximate d0-near neighbor
algorithms is to return sets (with high probability) whose
resemblance distances from S1 are at most c×d0 with c > 1.

Recall z1 and z2 denote the minwise hashed values for sets
S1 and S2, respectively. The performance of the LSH algo-
rithm depends on the difference (gap) between the following

P (1) and P (2) (respectively corresponding to d0 and cd0):

If 1−R ≤ d0, then R = Pr (z1 = z2) ≥ 1− d0 = P (1).

If 1−R ≥ cd0, then R = Pr (z1 = z2) ≥ 1− cd0 = P (2).

A larger gap between P (1) and P (2) implies a more efficient
LSH algorithm. The following “ρ” value (ρM for minwise
hashing) characterizes the gap:

ρM =
log 1/P (1)

log 1/P (2)
=

log(1− d0)

log(1− cd0)
(30)

A smaller ρ (i.e., larger difference between P (1) and P (2))
leads to a more efficient LSH algorithm and ρ < 1

c
is partic-

ularly desirable [1, 14]. The general LSH theoretical result
tells us that the query time for c-approximate d0-near neigh-
bor is dominated by O(Nρ) distance evaluations, where N
is the total number of sets in the collection.

Recall Pb, as defined in (5), denotes the collision probabil-
ity for b-bit minwise hashing. The ρb value for c-approximate
d0-near neighbor search can be computed as follows.

1−R ≤ d0 =⇒ Pb ≥ C1,b + (1− C2,b)(1− d0)

1−R ≥ cd0 =⇒ Pb ≤ C1,b + (1− C2,b)(1− cd0)

ρb =
log

(
C1,b + (1− C2,b)(1− d0)

)

log
(
C1,b + (1− C2,b)(1− cd0)

) (31)

Figure 11 suggests that b-bit minwise hashing can poten-
tially achieve very similar ρ values compared to the original
minwise hashing, when the applications care mostly about
highly similar sets (e.g., d0 = 0.1, the top panels of Fig-
ure 11), even using merely b = 1. If the applications concern
sets which are not necessarily highly similar (e.g., d0 = 0.5,
the bottom panels), using b = 3 or 4 will still have similar ρ
values as using the original minwise hashing.

We expect that these theoretical properties regarding the
ρ values will potentially be useful in future work. We are
currently developing new variants of LSH algorithms for near
neighbor search based on b-bit minwise hashing.

Subsequent documents will be made available at www.

stat.cornell.edu/~li/b-bit-hashing, which is a reposi-
tory for maintaining the papers and technical reports related
to b-bit minwise hashing.

1 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

c

ρ

d
0
 = 0.1, r

1
 = r

2
 = 10−4

1/c

M
1 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

c

ρ

1/c

M

d
0
 = 0.1, r

1
 = r

2
 = 0.5

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

c

ρ

1/c

d
0
 = 0.5, r

1
 = r

2
 = 10−4 M

4

3
2

b=1

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

c

ρ

1/c

M

b=1

2
3 4

d
0
 = 0.5, r

1
 = r

2
 = 0.5

Figure 11: ρM and ρb defined in (30) and (31) for
measuring the potential performance of LSH algo-
rithms. “M” denotes the original minwise hashing.

8. CONCLUSION
Minwise hashing is a standard technique for efficiently

estimating set similarity in massive datasets. In this paper,
we gave an overview of b-bit minwise hashing, which mod-
ifies the original scheme by storing the lowest b bits of each
hashed value. We proved that, when the similarity is rea-
sonably high (e.g., resemblance ≥ 0.5), using b = 1 bit per
hashed value can, even in the worst case, gain a 21.3-fold
improvement in storage space (at similar estimation accu-
racy), compared to storing each hashed value using 64 bits.
As many applications are primarily interested in identifying
duplicates of reasonably similar sets, these improvements
can result in substantial reduction in storage (and conse-
quently computational) overhead in practice.

We also compared our scheme to other approaches that
map the hashed objects to single bits, both in theory as well
as experimentally.

Our proposed method is simple and requires only mini-
mal modification to the original minwise hashing algorithm.
It can be used in the context of a number of different ap-
plications, such as duplicate detection, clustering, similarity
search and machine learning and we expect that it will be
adopted in practice.

ACKNOWLEDGEMENT
This work is supported by NSF (DMS-0808864), ONR (YIP-
N000140910911), and a grant from Microsoft. We thank the
Board Members for suggesting a direct comparison with [16].

9. REFERENCES
[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. In Commun. ACM, volume 51, pages 117–122,
2008.

[2] Andrei Z. Broder. On the resemblance and containment of
documents. In the Compression and Complexity of
Sequences, pages 21–29, Positano, Italy, 1997.

[3] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and
Michael Mitzenmacher. Min-wise independent
permutations. Journal of Computer Systems and Sciences,
60(3):630–659, 2000.

[4] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse,
and Geoffrey Zweig. Syntactic clustering of the web. In
WWW, pages 1157 – 1166, Santa Clara, CA, 1997.

[5] Moses S. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, pages 380–388, Montreal,
Quebec, Canada, 2002.

[6] Ludmila Cherkasova, Kave Eshghi, Charles B. Morrey III,
Joseph Tucek, and Alistair C. Veitch. Applying syntactic
similarity algorithms for enterprise information
management. In KDD, pages 1087–1096, Paris, France,
2009.

[7] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides
Gionis, Piotr Indyk, Rajeev Motwani, Jeffrey D. Ullman,
and Cheng Yang. Finding interesting associations without
support pruning. IEEE Trans. on Knowl. and Data Eng.,
13(1), 2001.

[8] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L.
Wiener. A large-scale study of the evolution of web pages.
In WWW, pages 669–678, Budapest, Hungary, 2003.

[9] George Forman, Kave Eshghi, and Jaap Suermondt.
Efficient detection of large-scale redundancy in enterprise
file systems. SIGOPS Oper. Syst. Rev., 43(1):84–91, 2009.

[10] Michael Gamon, Sumit Basu, Dmitriy Belenko, Danyel
Fisher, Matthew Hurst, and Arnd Christian König. Blews:
Using blogs to provide context for news articles. In AAAI
Conference on Weblogs and Social Media, 2008.

[11] Aristides Gionis, Dimitrios Gunopulos, and Nick Koudas.
Efficient and tunable similar set retrieval. In SIGMOD,
pages 247–258, Santa Barbara, CA, 2001.

[12] Michel X. Goemans and David P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.
Journal of ACM, 42(6):1115–1145, 1995.

[13] Piotr Indyk. A small approximately min-wise independent
family of hash functions. Journal of Algorithms,
38(1):84–90, 2001.

[14] Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In STOC, pages 604–613, Dallas, TX, 1998.

[15] Toshiya Itoh, Yoshinori Takei, and Jun Tarui. On the
sample size of k-restricted min-wise independent
permutations and other k-wise distributions. In STOC,
pages 710–718, San Diego, CA, 2003.

[16] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani.
Efficient search for approximate nearest neighbor in high
dimensional spaces. In STOC, pages 614–623, Dallas, TX,
1998.

[17] Ping Li and Kenneth W. Church. A sketch algorithm for
estimating two-way and multi-way associations.
Computational Linguistics (Preliminary results appeared in
HLT/EMNLP 2005), 33(3):305–354, 2007.

[18] Ping Li, Kenneth W. Church, and Trevor J. Hastie. One
sketch for all: Theory and applications of conditional
random sampling. In NIPS (Preliminary results appeared
in NIPS 2006), Vancouver, BC, Canada, 2008.

[19] Ping Li, Trevor J. Hastie, and Kenneth W. Church.
Improving random projections using marginal information.
In COLT, pages 635–649, Pittsburgh, PA, 2006.

[20] Ping Li, Joshua Moore, and Arnd Christian König. b-bit
minwise hashing for large-scale linear SVM. Technical
report.

[21] Ping Li, Arnd Christian König, and Wenhao Gui. b-bit
minwise hashing for estimating three-way similarities. In
NIPS, Vancouver, BC, 2010.

[22] Mark Manasse, Frank McSherry, and Kunal Talwar.
Consistent weighted sampling. Technical Report
MSR-TR-2010-73, Microsoft Research, 2010.

[23] Sandeep Pandey, Andrei Broder, Flavio Chierichetti, Vanja
Josifovski, Ravi Kumar, and Sergei Vassilvitskii.
Nearest-neighbor caching for content-match applications. In
WWW, pages 441–450, Madrid, Spain, 2009.

[24] Anand Rajaraman and Jeffrey Ullman. Mining of Massive
Datasets. http://i.stanford.edu/ ullman/mmds.html.

[25] Tanguy Urvoy, Emmanuel Chauveau, Pascal Filoche, and

Thomas Lavergne. Tracking web spam with html style
similarities. ACM Trans. Web, 2(1):1–28, 2008.

