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1. INTRODUCTION
Modern operating systems are subject to a constant stream of

patches and updates: to fix bugs, improve performance, or add fea-
tures. Dynamic update offers significantly increased availability
for operating systems, and enables administrators to avoid a diffi-
cult choice between the cost of down time and the risk of remaining
unpatched. However, an operating system kernel is a unique envi-
ronment for dynamic update; it is generally event-driven, multi-
threaded, and involves a high degree of concurrency and asyn-
chrony. It also provides a very restricted runtime environment.
Existing dynamic update mechanisms are generally unsuited for
use with operating-system code, either because they do not sup-
port concurrency [11,13], require the system to be implemented in
a specific language [1, 7, 9], or rely on a higher level of runtime
support than is feasible within a traditional OS [5,6].

This work aims at developing a model supporting dynamic up-
date to operating systems code.

2. DYNAMIC UPDATE FOR OPERATING
SYSTEMS

In recent work [3], we have developed a dynamic update model
and prototype implementation. This model relies on the modular
nature of modern operating systems to define an updatable unit,
and requires a mechanism for achieving a safe point for applying
an update within such a unit, a system for tracking state maintained
by the unit and then transferring that state to the form required by
the updated unit, a mechanism to redirect all invocations from the
old unit to its update, and a form of version management to track
update dependencies.

A prototype of the model has been implemented in the K42 ex-
perimental operating system. This prototype makes use of K42’s
object-oriented design, as well as its hot-swapping feature, which
provides the mechanisms for achieving a safe point and redirecting
invocations. The implementation addsfactory objectsfor tracking
state information associated with the updated object classes, and for
coordinating the update process. It also makes use of a kernel mod-
ule loader, and thehot-swappingfeature [12] of K42. As described
in the previous work [3], a number of actual developer changes to
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the K42 kernel have successfully been applied as dynamic updates
to a running system. These include adding new kernel interfaces,
fixing a race condition in the kernel memory allocator, and a per-
formance optimisation in part of the memory management code.

3. CURRENT AND FUTURE WORK

3.1 Changes to interfaces
The current implementation does not support any updates which

change the interfaces of kernel objects. This includes adding and
removing methods, or changing their parameters, and has been the
biggest limitation to the applicability of our update system—in se-
lecting example updates to demonstrate the system, we found that
many had to be discarded because of this restriction. Interface
changes are problematic, because if an interface were to change,
all code using that interface would potentially need to be changed
at the same time. However in a running OS kernel, changing many
different objects at once leads to two potential problems. First, the
system could become unresponsive while many affected objects are
changed, because an object must be kept quiescent while its data is
converted. Second, deadlock could occur, if there are any interde-
pendencies between the updates.

To avoid these problems, an interface-changing update should
be staged, so that code which uses the old interface can continue
to function with the new interface before it is updated. By attach-
ing version information to the references used to invoke objects, it
becomes possible to detect when an older version of the interface
is expected. The call can then either be adjusted to conform to the
new interface (for example, by changing the method number, or
adding a default parameter). This should enable support for a large
proportion of all interface-changing updates.

This scheme supports dynamic updates which change interfaces
in such a way that old invocations can be rewritten to conform to
the new interface. For example, adding, renaming or reordering
methods, adding parameters with default values, or reordering pa-
rameters. The obvious updates which could not easily be supported
by this model are the removal of a method with no replacement
available, or the addition of a parameter with no default or easily-
computed value to a method. A recent survey of several large soft-
ware systems [10] has found that changes to and deletions of func-
tion prototypes and type definitions, are relatively infrequent. This
suggests that support for a restricted form of interface changes may
have value, however we need to confirm this by performing a simi-
lar study using the K42 revision history.

We are also planning to perform experiments to investigate the
feasibility of supporting arbitrary interface-changing updates, which
would require achieving system-wide quiescence, and changing
multiple affected objects at once. These experiments will involve



examining previous changes to determine which objects are af-
fected, simulating the system under various workloads to count
how many of those object instances would need to be concurrently
transformed, and thus estimating the total time for which the sys-
tem would be required to be blocked during an update.

3.2 Multiple-address-space updates
To date, we have only supported updates to kernel code. How-

ever, some updates to operating systems affect code that is part
of the system libraries and runs in an application’s address space.
These include changes to the system-call interface, as well as pure
library updates. To support such updates, a model is required for
coordinating updates across all protection domains, rather than just
within the kernel. As the first step in providing this support, we
plan to extend the factory model to cover multiple protection do-
mains.

3.3 Transfer to Linux
The K42 operating system offers a number of features for dy-

namic update, primarily the object-oriented nature of the system,
with all data encapsulated behind method interfaces, as well as the
support for hot-swapping [12], enabling run-time changes to ob-
ject implementations. However, the dynamic update model should
support all operating systems with a suitably modular structure. To
support claims regarding the model’s generality, initial investiga-
tions have been made into the requirements for a Linux implemen-
tation [4].

As with many other modern operating systems, Linux supports
the use of loadable modules for some parts of the kernel, such as file
systems and device drivers. Code within these modules is invoked
via pointer indirection, such as in the virtual file system layer. The
modularity, combined with the function pointer indirection, and the
availability of read-copy-update mechanisms to help detect quies-
cence, provide similar functionality to the basic mechanisms used
to implement dynamic update in K42. The main outstanding con-
ceptual problem is handling kernel threads blocked inside a module
that is being updated. In some cases, such as an interruptible sys-
tem call, these threads can be aborted. In the remaining cases, we
may have to resort to a wait and retry mechanism.

4. RELATED WORK
Although many dynamic update systems have been designed,

and some of these systems already include features such as sup-
port for interface changes, to our knowledge, no other work has
focused on dynamic update in the context of an operating system.
This has led to limitations in the applicability of existing dynamic
update models to operating systems code.

Some systems are language-based, or require specific runtime
language support. These include DYMOS [9], the work by Hicks
[7] which depends on a type-safe variant of C, and several other ex-
amples [1, 2] which make use of features available only in higher-
level languages. Dynamic C++ classes [8] could be used to sup-
port dynamic update, but do not address the important problem of
converting existing data. Other dynamic update systems, includ-
ing PODUS [11] and Proteus [13] require programs to be single-
threaded. Finally, some systems are domain specific, and rely upon
support which could not be provided within an operating system
environment, such as migrating message channels [6], or transac-
tion features of databases [5].

5. CONCLUSION
Full dynamic update support for mainstream operating systems

would offer many benefits, but is currently not available. This

work is heading towards that goal, by developing a dynamic up-
date model that has been shown to work for K42, improving it to
support interface changes and multiple-address-space updates, and
experimenting with similar dynamic update features in Linux.
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