
Improving Operating System Availability With Dynamic Update

Andrew Baumann
University of New South Wales & National ICT Australia

andrewb@cse.unsw.edu.au

Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Robert W. Wisniewski
IBM T. J. Watson Research Center

{jappavoo,dilma,okrieg,bob}@watson.ibm.com

Abstract

Dynamic update is a mechanism that allows software up-
dates and patches to be applied without loss of service or
down-time. Dynamic update of an operating system en-
ables administrators to defer rebooting or restarting ser-
vices and the resultant disruption, without trading off the
ability to apply important security fixes or improve func-
tionality and performance through software updates.

We have considered the problem of building a dy-
namically updatable operating system, and have designed
and implemented a prototype update mechanism for the
K42 research operating system. Although the prototype
utilises the hot-swapping features of K42, many aspects
of the design would be relevant for other operating sys-
tems.

In this paper we categorise and discuss these issues, and
where possible propose solutions. We also describe our
current prototype.

1 Introduction

To support on-demand computing, where workloads are
unpredictable, high system availability is crucial. Un-
planned down-time has long been a problem for com-
puting infrastructure, but in an on-demand environment

Appears inProc. 1st Workshop on Operating System and Ar-
chitectural Support for the On-Demand IT Infrastructure (OA-
SIS), Oct 2004. This work is supported by DARPA under con-
tract NBCH30390004.

the cost even of scheduled down-time is increasingly pro-
hibitive. For example, Visa’s transaction processing sys-
tem is routinely updated as many as 20,000 times per year,
yet tolerates less than 0.5% down-time [15].

Dynamic update [16] is used to minimise such down-
time. It involves the application of software updates to a
running system without loss of service. Whereas the nor-
mal process for applying an update might be to install an
updated version of a program and then restart that pro-
gram, losing service while the restart takes place, in a dy-
namically updatable system the new code is loaded into
the running program without the need to restart.

A stable and reliable operating system has been im-
portant for high-availability computing systems, however
modern operating systems are subject to a constant stream
of updates and patches. These updates are issued to fix
bugs, correct security holes, improve performance, or add
features, and they require either restarting system ser-
vices, or worse, rebooting the entire machine, to take
effect. Although these restarts can be planned for and
scheduled, it forces administrators to trade off the cost of
down-time against the risk of remaining vulnerable to a
known security flaw.

A solution to these problems is to make the operat-
ing system dynamically updatable, enabling patches to
be applied to the running code, and improving the sys-
tem’s availability. We have examined a number of issues
involved in designing a dynamically updatable operating
system, and implemented a prototype within the K42 op-
erating system.

The remainder of this paper is organised as follows:

1



Section 2 presents and classifies the issues unique to dy-
namic update in an operating system, Section 3 covers
our prototype implementation in K42, Section 4 describes
the limitations of the prototype and our plans for future
work, Section 5 discusses related work, and Section 6
concludes.

2 Designing a dynamically updat-
able operating system

In order to design an operating system that can be dynam-
ically updated, a number of issues that affect the applica-
tion of dynamic update techniques to an operating system
need to be addressed.

An operating system places special constraints upon a
dynamic update implementation, because it plays a cru-
cial role in maintaining the security and integrity of a sys-
tem, and the update mechanism must be designed with
this in mind. Additionally, the basic performance and
scalability of the system should not be affected.

To update a system, we must identify the fundamental
updatable unit of the system. In an operating system these
units may be procedures, modules, subsystems, servers,
or some other abstraction. The structure of the system dic-
tates what is feasible, for example in a monolithic kernel it
might be sensible to perform an update at the procedure or
kernel module boundary, whereas in a microkernel-based
system one could choose to dynamically update user-level
server processes.

Having identified the updatable unit, a dynamic updat-
ing system has to deal with fundamentally the same is-
sues. These are:

1. Performing the update at a safe point: in the
same way that concurrent systems suffer from race
conditions, if a dynamic update is performed in a
critical period the system could fail. For example,
while the system’s state is being modified, an update
should not occur. It is therefore important to deter-
mine when an update may safely be applied, how-
ever since this is, in general, undecidable [10], sys-
tem support is required. Common solutions involve
requiring the system to be programmed with update
points, or detecting when the relevant part of the sys-
tem is idle, or quiescent.

An operating system is fundamentally event-driven,
responding to application requests and hardware
events, unlike most applications, which are struc-
tured as one or more threads of execution. Be-
cause it is event-driven, an operating system often
enters quiescent points when no events are being
handled, which can be used to avoid relying on pre-
programmed update points.

2. Transferring state information : unless the unit of
the system being updated maintains no state, there
must be a mechanism for transferring this state infor-
mation, so that the updated unit can continue trans-
parently from the unit it replaced. Furthermore, if the
replacement unit stores its state in a different struc-
ture, there must be a mechanism for transforming the
state information to the new structure.

3. Redirecting invocations: after the new unit has been
installed and the state information transferred, the
system must ensure that all future invocations are
serviced by the new unit rather than its predecessor.

Limitations of the update system

Ideally any released update could be dynamically applied,
that is, any change that can be made to the source code for
a system should be supported by our mechanism. How-
ever, there are many problems in structuring arbitrary
changes as dynamic updates, therefore in practice systems
supporting dynamic update have a more restricted defini-
tion of what constitutes an update.

Important questions to answer are:

1. What can be changed by an update?There is an
important trade off between the complexity and flex-
ibility of a dynamic update system, when choosing
what kinds of update can be supported. It is simpler
to support only changing code, but not data struc-
tures. It is also simpler to keep the interfaces to mod-
ules fixed, and to only allow changing the code be-
hind an interface.

These questions directly affect the kind of system
changes that can be packaged as a dynamic update,
and the complexity of the dynamic update system.
For example, if module interfaces can be changed by

2



an update, either the entire update must be applied
atomically, or the system must be able to cope with
multiple versions of interfaces existing concurrently.

2. How critical is the timeliness of an update? For
some updates, such as security fixes, it is important
to know when an update has completed, and to be
able to guarantee that an update will complete within
a certain time frame. For other updates, such as per-
formance enhancements that do not affect correct-
ness, timeliness may be less of a concern.

These differing requirements are one of the key fac-
tors to consider in an operating system. It may
be that different approaches are required for differ-
ent updates, in the case of security updates they
must be applied either immediately or lazily when
the relevant service is accessed, whereas in other
situations they could be applied by a background
task. Lazy or background application of updates
minimises the performance perturbation experienced
during update, but raises other issues in change man-
agement, and the ability to know what code is actu-
ally executing on the machine.

3. Are updates to middleware or system libraries
supported? Increasingly, important functionality
is implemented in middleware and system libraries,
both of which are also the target of updates and
patches. Dynamically updating these involves per-
forming an update in the address space of each run-
ning process, which implies an additional level of
complexity between the operating system and the ap-
plications. However, without such a feature, updates
which change or extend the interface to the operat-
ing system are not useful until each application is
restarted.

4. Are updates trustworthy? Because a misbehaved
or malicious update could easily compromise the
security and integrity of the system, some mecha-
nism should be used to ensure that only trusted up-
dates can be loaded. Classic approaches here in-
clude trusted administrators, and code signing. Al-
ternatively, if the system (and its updates) are coded
in a type-safe language, proof-carrying code can be
used to verify the safety of updates [12], however

re-implementing an operating system in such a lan-
guage is very difficult.

3 Dynamic update in K42

K42 is an experimental operating system being developed
at IBM Research. It is designed to be highly scalable,
and features a modular, object-oriented structure, to sup-
port rapid prototyping of experimental features (such as
dynamic update).

Object orientation is pervasive in K42’s
implementation—each resource or entity is managed by
an object instance [4]. For example, there is an instance
of the Processobject in the kernel for each process in
the system (this is analogous to the process control block
present in other operating systems). There are presently
two implementations of the process object interface,
ProcessReplicated, the default, andProcessShared,
which is optimised for the case when a process is present
on a single CPU [1]. A running K42 system could have
a combination of replicated and shared process objects
present.

To support adaptability, K42 includes hot-swappable
objects. Hot-swapping allows an object’s implementation
to be transparently changed while the system is running.
It works by temporarily suspending incoming calls to an
object, detecting when the object is quiescent, transfer-
ring state to the replacement object, updating a global
reference so that future invocations use the new object,
and then forwarding the suspended calls to the new ob-
ject [3]. To date, this mechanism has been used only to
support reconfiguration and adaptation on a per-object or
per-resource basis [2,17], however as we will show it can
also be used to support dynamic update.

Dynamic update

A good choice for the dynamically updatable unit in K42
is the same as for hot-swapping: the object instance. Hot-
swapping transparently changes the implementation of a
specific object instance. To extend hot-swapping to dy-
namic update, the infrastructure must be able to both lo-
cate and hot-swap all instances of an object, and direct
any new instantiations to the updated object.

3



To track object instances and control object instanti-
ations required a change in K42’s programming model.
Previously, object instances were tracked in a class-
specific manner, and objects were usually created through
calls to statically boundCreatemethods. For example,
to create an instance of theProcessReplicatedobject (the
implementation used by default forProcessobjects), the
call used was:

static SysStatus Create(ProcessRef &,
HATRef, PMRef, ProcessRef, char *);

This leads to problems for dynamic update, because the
Createcall is bound at compile-time, and cannot easily
be redirected to an updated implementation of thePro-
cessReplicatedobject, and also because we rely on the
caller of this method to track the newly created instance.

To address these problems factory objects [8] were
added to K42. The responsibility for creating and tracking
objects is now placed with the factory for that class, and
the class has a static member that references the default
factory. The majority of these implementation details are
hidden behind class inheritance and preprocessor macros.
It is worthwhile to note that performance and scalability
influenced our implementation of the factories. For ex-
ample, object instances are tracked for dynamic update in
a distributed fashion using per-CPU instance lists. Nev-
ertheless, there is work to be done in benchmarking and
optimising our implementation.

We used the factories to implement dynamic update in
K42. To perform a dynamic update of a class, the follow-
ing steps are taken:

1. A factory for the updated class is instantiated.

2. The old factory object is hot-swapped to the new fac-
tory object, during this process the new factory re-
ceives the list of instances that was being maintained
by the old factory.

3. Once the hot-swap has completed, all new object in-
stantiations are being handled by the new updated
factory, and therefore go to the updated class.

4. To update the old instances, the new factory traverses
the list it received from the old factory, creating a

new object instance and performing a hot-swap be-
tween the old and the new instances. This step pro-
ceeds in parallel across all CPUs where the old fac-
tory was in use.

5. Finally, the update is complete and the old factory is
destroyed.

We found that adding factories to K42 was a natural exten-
sion of the object model, and led to other advantages be-
sides dynamic update. As an example, in order to choose
betweenProcessReplicatedandProcessShared, K42 had
been using a configuration flag that was consulted by the
code that creates process objects to determine which im-
plementation to use. Using the factory model, we could
remove this flag and allow the scheme to support an arbi-
trary number of implementations, by changing the default
process factory reference to the appropriate factory object.

Initial experiments

To test and validate our prototype implementation, we
constructed an updated version of theProcessReplicated
class, namedProcessReplicatedV2. This class inherits
from, and is functionally equivalent to,ProcessRepli-
cated, aside from some minor changes to allow us to de-
tect which version is being used. We then performed a
dynamic update, replacing all instances ofProcessRepli-
cated with ProcessReplicatedV2objects, while the op-
erating system was running its regular set of regression
tests, which involves the creation and destruction of a
large number of processes.

4 Future work

Our prototype suffers from several limitations. Due to
a limitation of the current hot-swapping implementation,
and because we only swap a single object at a time, we
cannot dynamically apply updates that require changes to
object interfaces, nor can we update code that isn’t part
of a hot-swappable object such as low-level kernel code.
We could potentially extend the design of hot-swapping
to support changing object interfaces—this would require
atomically hot-swapping multiple objects, including the
object whose interface is to be changed and all objects

4



possibly using that interface. We have not yet fully con-
sidered the requirements of such a feature, nor its ramifi-
cations for our quiescence detection algorithm. The sever-
ity of the the limitation to only update hot-swappable ob-
jects also remains to be seen1.

State transfer between the old and new versions of an
object is performed by the hot-swap mechanism using
state transfer methods: the old object provides a method
to export its state in a standard format, which can be
read by the new object’s import method. This works well
enough, but it requires the tedious implementation of the
transfer code, even though most updates only make minor
changes, if any, to the instance data (for example, adding
a new data member). It should be possible to automate
the creation of state transfer methods in such cases, as has
been done in other dynamic update systems [12,14].

In our initial experiment, the code forProcessReplicat-
edV2was compiled into the kernel ready for use by the
update. Clearly this is inadequate for a proper system,
however it was sufficient to verify the prototype. We are
presently working on a mechanism to load the updated
object code into a running kernel or system server, based
on a simplified version of the scheme used for loadable
modules in the Linux kernel [5].

We need a mechanism to automate the preparation of
updates from source code modifications. This could pos-
sibly be driven bymake, using a rebuild of the system and
a comparison of changed object files to determine what
must be updated. However, it would be extremely diffi-
cult, if not impossible, to build a completely generic up-
date preparation tool, because changes to the source code
of an operating system can have far-reaching and unpre-
dictable consequences.

Our update system does not yet support updates to sys-
tem libraries or middleware. At present it is possible to
perform an update in an application’s address space, how-
ever there is no central service to apply an update to all
processes which require it. We intend to develop operat-
ing system support for dynamically updating libraries in a
coordinated fashion.

One largely unsolved problem that must be addressed
for dynamic update systems is the problem of configu-
ration management. In order to package and apply an

1We are considering performing an analysis of our revision control
system’s modification history, to determine the proportion of changes
that could have been applied using our dynamic update mechanism.

update, or in order to debug or understand the running
system, it it necessary to know what code is actually exe-
cuting. In the presence of dynamic updates, or even with
traditional patches, this is not easily determined. Most
dynamic update systems that have automated the update
preparation and application process assume a linear model
of update [12,14], that is each update depends on all pre-
vious updates having been applied before it. In this case it
is important to know when an update has completed, and
to be able to track which updates have been applied. We
will need to consider these issues once we start automat-
ing the update preparation process.

We may require a scheme for attaching special-case
code to be used in applying certain updates. For example,
if an update is designed to correct buggy or misbehaving
code, it may first be necessary to forcibly terminate and
clean up after the offending code without using the usual
update routines. Such a mechanism could also be used to
support updates to the update system itself.

Applicability to other operating systems

Our work relies on several features of K42, the object-
oriented nature, and the hot-swapping mechanism, how-
ever we anticipate that it could be applied to other sys-
tems using similar techniques. As long as the system
has a modular structure, and uses a unified mechanism
for invoking modules (which allows interposition and hot-
swapping), it should be possible to add a factory mecha-
nism and perform dynamic updates.

As an example, if adding dynamic update to a system
such as Linux, which is structured with kernel modules,
one could choose to add a factory-like concept to the mod-
ule interface, making modules responsible for tracking
any “instances” of state that they create. The advantage
that K42 offers over mainstream systems such as Linux
when it comes to dynamic update is that the system is
already decomposed into finer-grained updatable units,
and that a larger portion of the system can be updated
(in Linux, much core kernel functionality is not modu-
larised).

5



5 Related work

To our knowledge, no previous work has focused on dy-
namic update in the context of an operating system. Many
systems for dynamic updating have been designed, and a
comprehensive overview of the field is given by Segal and
Frieder [16]. These existing systems are generally either
domain-specific [7, 11], or rely on specialised program-
ming languages [12, 14], making them unsuitable for use
in an operating system implemented in C or C++.

Dynamic C++ classes [13] may be applicable to an up-
datable operating system. In this work, automatically-
generated proxy classes are used to allow the update of
code in a running system. However, when an update oc-
curs it only affects new object instantiations, there is no
support for updating existing object instances, which is
important in situations such as security fixes. Our system
also updates existing instances, using the hot-swapping
mechanism to transfer their data to a new object.

Commercial operating systems commonly offer fea-
tures such as Solaris’ Live Upgrade [18], which allows
changes to be made and tested without affecting the run-
ning system. However, a reboot is required for any
changes to take effect.

Component- and microkernel-based operating systems,
where services may be updated and restarted without a
reboot, also offer improved availability. However, while a
service is being restarted it is unavailable to clients, unlike
our system where requests can continue to be handled.
Going a step further, DAS [9] supported dynamic update
through special kernel primitives, although the kernel was
itself not updatable. It remains to be seen precisely which
classes of updates can be supported by our system, but as
we have demonstrated, there is no restriction on updating
the kernel.

Dunaganet al. have developed an online analyser [6],
which continually traces accesses made by applications
to files (and the Windows registry) in order to produce li-
brary dependency information. This simplifies the test-
ing of patches, since it is possible to determine in ad-
vance which applications might be affected. Online anal-
ysis might be useful in our system for determining which
objects are affected by an update, however in a develop-
ment environment where full source code is available, it is
most likely cheaper and simpler to track such dependen-
cies statically using the source code.

6 Conclusion

Our goal is to improve the availability of operating sys-
tems through dynamic updating. We have presented our
prototype of a dynamically updatable operating system
based on K42, and discussed the issues encountered in its
design that are generally applicable to operating systems.

This paper has raised more questions than it has an-
swered, and there is much research to be done, however
we have provided a framework and a prototype for per-
forming that research. We are continuing to develop our
implementation, and are using it to explore some of the
research issues that we have raised.

Acknowledgements

We wish to thank the other members of the K42 team
at IBM Research for their input: Marc Auslander, Maria
Butrico, Mark Mergen, Michal Ostrowski, Bryan Rosen-
burg, and Jimi Xenidis. We also thank Raymond Fingas,
Kevin Hui, and Craig Soules for their contributions to the
underlying hot-swapping and interposition mechanisms.

Availability

K42 is released as open source and is available from a
public CVS repository, for details refer to the K42 web
site: http://www.research.ibm.com/K42/.

References

[1] Jonathan Appavoo, Marc Auslander, Dilma Da
Silva, Orran Krieger, Michal Ostrowski, Bryan
Rosenburg, Robert W. Wisniewski, Jimi Xenidis,
Michael Stumm, Ben Gamsa, Reza Azimi, Ray-
mond Fingas, Adrian Tam, and David Tam. En-
abling scalable performance for general purpose
workloads on shared memory multiprocessors. IBM
Research Report RC22863, IBM Research, July
2003.

[2] Jonathan Appavoo, Kevin Hui, Craig A. N. Soules,
Robert W. Wisniewski, Dilma Da Silva, Orran
Krieger, Marc Auslander, David Edelsohn, Ben

6



Gamsa, Gregory R. Ganger, Paul McKenney, Michal
Ostrowski, Bryan Rosenburg, Michael Stumm, and
Jimi Xenidis. Enabling autonomic system software
with hot-swapping.IBM Systems Journal, 42(1):60–
76, 2003.

[3] Jonathan Appavoo, Kevin Hui, Michael Stumm,
Robert W. Wisniewski, Dilma Da Silva, Orran
Krieger, and Craig A. N. Soules. An infrastruc-
ture for multiprocessor run-time adaptation. InPro-
ceedings of the ACM SIGSOFT Workshop on Self-
Healing Systems, pages 3–8, Charleston, SC, USA,
November 2002.

[4] Marc Auslander, Hubertus Franke, Ben Gamsa, Or-
ran Krieger, and Michael Stumm. Customization
lite. In Proceedings of the 6th Workshop on Hot Top-
ics in Operating Systems (HotOS), May 1997.

[5] Daniel P. Bovet and Marco Cesati.Understanding
the Linux Kernel. O’Reilly, 2nd edition, 2002.

[6] John Dunagan, Roussi Roussev, Brad Daniels,
Aaron Johnson, Chad Verbowski, and Yi-Min Wang.
Towards a self-managing software patching process
using black-box persistent-state manifests. InPro-
ceedings of the IEEE International Conference on
Autonomic Computing (ICAC), May 2004. Also
as Microsoft Research Technical Report MSR-TR-
2004-23.

[7] R. S. Fabry. How to design a system in which mod-
ules can be changed on the fly. InProceedings of
the 2nd ICSE, pages 470–476, San Francisco, CA,
USA, 1976.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides.Design Patterns. Addison-Wesley,
1995.

[9] Hannes Goullon, Rainer Isle, and Klaus-Peter Löhr.
Dynamic restructuring in an experimental operating
system. InProceedings of the 3rd ICSE, pages 295–
304, Atlanta, GA, USA, 1978.

[10] Deepak Gupta, Pankaj Jalote, and Gautam Barua.
A formal framework for on-line software version
change. IEEE Transactions on Software Engineer-
ing, 22(2):120–131, February 1996.

[11] Steffen Hauptmann and Josef Wasel. On-line main-
tenance with on-the-fly software replacement. In
Proceedings of the 3rd International Conference on
Configurable Distributed Systems, pages 70–80, An-
napolis, MD, USA, May 1996. IEEE Computer So-
ciety Press.

[12] Michael Hicks, Jonathan T. Moore, and Scott Net-
tles. Dynamic software updating. InProceed-
ings of the ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 13–23. ACM, June 2001.

[13] Gísli Hjálmtýsson and Robert Gray. Dynamic C++
classes—a lightweight mechanism to update code
in a running program. InProceedings of the 1998
USENIX Technical Conference, pages 65–76, June
1998.

[14] Insup Lee. DYMOS: A Dynamic Modification Sys-
tem. PhD thesis, University of Wisconsin, Madison,
1983.

[15] David Pescovitz. Monsters in a box.Wired,
8(12):341–347, December 2000.

[16] Mark E. Segal and Ophir Frieder. On-the-fly pro-
gram modification: Systems for dynamic updating.
IEEE Software, 10(2):53–65, March 1993.

[17] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui,
Robert W. Wisniewski, Dilma Da Silva, Gregory R.
Ganger, Orran Krieger, Michael Stumm, Marc Aus-
lander, Michal Ostrowski, Bryan Rosenburg, and
Jimi Xenidis. System support for online reconfig-
uration. InProceedings of the 2003 USENIX Tech-
nical Conference, pages 141–154, San Antonio, TX,
USA, 2003.

[18] Sun Microsystems Inc.Solaris Live Upgrade 2.0
Guide, October 2001. Available fromhttp://wwws.
sun.com/software/solaris/liveupgrade/.

7


