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Abstract— Voice over IP (VoIP) is already of commercial quality when
traversing corporate, or other high-quality networks. Nevertheless, to
make the final bridge to toll quality over standard internet connections,
a few problems remains to be solved. These include packet loss, jitter
control, and clock drift compensation. Previous research in adaptive
playout mechanisms has significantly contributed towards that end. In
this paper, we present a novel technique that enhances previous adaptive
playout mechanisms, and virtually eliminate late losses. Additionally,
enhanced stretching and loss concealment algorithms are also presented.
These work in harmony with the proposed technique to alleviate network
jitter and any clock drift.

I. INTRODUCTION

Transmitting real time digitized speech over a best-effort packet
networks (such as the Internet), is appealing for a number of reasons,
including the wide availability and low cost of such networks. For that
reason, Voice over IP (VoIP) has become very popular. Nevertheless,
to achieve the high quality standards users expect from commercial
solutions, a number of issues inherent to the network need to be
addressed. Three issues may particularly affect call quality: packet
loss, delay jitter, and clock drift.

Packet loss is inherent to the “best effort” characteristics of these
networks, and it becomes more pronounced in the Wifi [1] and other
lower quality connections. Traditional forward error correction (FEC)
techniques would introduce significant extra delay, and thus are not
appropriate for real-time communication. So, most VoIP systems use
none or simpler FEC techniques (e.g., packet repetition), and rely
aggressively on loss concealment techniques. Delay, and delay jitter
is another problem. If a packet has not been received by the time it
has to be played out, the decoder will have to interrupt the speech
stream. This is generally referred to as “late loss”. The old solution
was to buffer enough packets to make sure the probability of a late
loss is small, but this requires a large buffer, and therefore a long
delay. More recent solutions use an adaptive playout strategy [2],
to keep a small buffer size, while reducing late losses. But current
adaptive playout technology still incur in late losses [3]–[5]. One
of the key contributions of this paper is to propose a new buffer
management algorithm that essentially eliminates late losses. Finally,
a third problem afflicting VoIP is related to the clock mismatch
between the sender and receiver causing accumulation/exhaustion of
the receiver’s audio buffer.

The effect of packet losses can be mitigated by forward error
correction or error-resilient audio coding techniques. The occurrence
of late loss is traditionally minimized by introducing a jitter buffer,
which stores packets and provides them to a decoder at more regular
time intervals. If the size of the jitter buffer were at least as long
the difference between the smallest and largest possible delays, the
late loss would be eliminated entirely. On the other hand, the jitter
buffer also introduces an extra delay, which is undesirable for real-
time conversations. So, in practice, the buffer size is set to some
length which is a compromise between late loss and delay. In general,

the size of this buffer can only be adjusted during silence periods
(e.g., between talk spurts). The size of the buffer can be optimized
using, e.g., the algorithms in [6]. If the receiver clock is slower than
the sender’s, the accumulated receiver buffer is also adjusted during
silence periods. If the receiver clock is faster, playout gaps often have
to be introduced which degrade the speech quality.

By using speech time-scale modification techniques, the jitter
buffer length can be adapted during speech utterances, reducing the
average delay, without incurring in as many late losses. The technique
introduced by Liang et. al. [2] is the most widely employed of such
techniques (see, e.g., [3]–[5]). Their algorithm also handles the packet
loss concealment due to either network loss or late loss. The perceived
speech quality is significantly improved as a result.

In this paper, we describe a set of algorithms to conceal packet
losses, alleviate packet delay jitter (“de-jitter”), and handle clock
mismatch between sender and receiver in a unified framework.
Although our simulations are based on G722.1 [7], the algorithms
are audio codec independent and can be implemented on the receiver
alone. In some aspects, our algorithms are similar to those described
in [2], but they have two important improvements: 1) our playout
algorithm introduces a smaller buffer delay and completely eliminates
“late losses”, and 2) we utilize specialized stretching algorithms for
unvoiced and transitional speech which alleviates the metallic artifacts
often introduced when stretching speech.

II. IMPROVED PLAYOUT ALGORITHM

In adaptive playout, the buffer size is minimized by allowing each
packet to be stretched and/or compressed. In existing techniques [2]–
[5], the past statistics of receiving time is used to assign each packet
a scheduled playout time. The current packet is then stretched or
compressed in order to allow the next packet to be played at the
scheduled time. A 1-packet delay is introduced, in order to wait for
a packet to be received (or declared lost), before deciding on how to
play the current packet (i.e., stretched or not). This is illustrated in
Figure 1.

One of the main differences between our solution and the one
proposed in [2] is that theirs is “packet-based”, while ours is “buffer-
based”. More precisely, we will not decide to stretch or compress
a packet when we receive it; instead, we simply append it to the
buffer. We decide to decode, stretch, and compress only when the
audio playout device needs a frame. Furthermore, the decision is
based only on the size of the jitter buffer.

The algorithm needs to set a minimum buffer size Bmin and a
maximum buffer size Bmax. We use a fixed value of 10 ms as
minimum size. The maximum size controls the tradeoff between the
probability of needing to stretch and the audio delay. It is set to
500 ms initially, and then adjusted depending on whether a stretch is
performed or not during the playout procedure. The audio buffer will
converge to a size that will cause around one stretch out of every 20



1 receive packet i;
2 estimate and set the playout time for packet i+ 1;
3 calculate the desired length of packet i, Li;
4 if Li − L0 ¿ expansion threshold
5 stretch packet i;
6 else if Li − L0 ¡ - compression threshold
7 compress packet;
8 else
9 keep packet i without modification;
10 end if
11 output packet i with actual length Li;
12 update the playout time of packet i+ 1;

Fig. 1. Adaptive playout algorithm proposed in [2]

1 if B + F < Bmin then
2 if undecoded list is not empty then
3 Decode a packet
4 S = 0
5 if there is gap (packet loss) then
6 Conceal Loss
7 endif
8 endif
9 if B + F < Bmin then
10 if S > Smax then
11 Output Comfort Noise
12 else
13 Stretch by Bmin − (B + F )
14 S+ = Bmin− (B + F )
15 endif
16 endif
17 else if B + F > Bmax then
18 Compress by 1 pitch period
19 endif
20 if there is stretch then
21 Bmax+ = F
22 else
23 Bmax− = F/20
24 endif

Fig. 2. Proposed playout algorithm, which is invoked when the audio device
needs an audio frame

frames pulled. If the jitter is big, so will the buffer. But the number
of stretches (hence the speech quality) should be roughly constant.
The buffer should converge to a smaller size if the jitter is reduced
later.

In particular, note that if, say, packet n arrives later than scheduled,
we would keep stretching the signal existing in the buffer until
that packet arrives, or it is declared “lost”. This is an important
improvement over [2], where the packet would be declared as “late
loss”. The algorithm proposed in [2] sets a time limit for receiving
packet n, as soon as the prior packet (i.e., n − 1) is received. If
packet n is not received by that time, a late loss is declared, and the
algorithm goes into “loss concealment” mode. Figure 2 presents our
algorithm for declaring a packet as lost. As it can be seen in that
figure, only after a subsequent packet is decoded, we would go into
a “loss concealment” mode. This essentially eliminates “late losses”.

III. IMPROVED SPEECH TIME-SCALE MODIFICATION

A core element of our algorithms is time-scale modification of
speech. The stretch/compress operation can be performed on a frame
basis, and small variations of compression ratio from the desired ratio
can be compensated at the next frame.

Suppose we have, 20ms of speech that has not yet being played,
and we have a target size of stretching that to 40 ms. The first step on
our stretching procedure is similar to most stretching algorithms in the
literature, and is based on SOLA [10]. We select a smaller segment
from the 20 ms (i.e., a template), and look for a similar segment in
the recent history of the signal (possibly in the part of the signal that
has already been played). This search is done by a normalized cross
correlation measure, and the range is limited to the range compatible
with pitch. For example, on a 16 KHz sampled speech, pitch period
is typically between 40 and 250 samples. Additionally, we further
limit the low end of the pitch period range to 80 samples instead
of 40. Thus, for pitch periods below 80, we will end up finding
the maximum autocorrelation at twice the pitch. The artifacts from
that are mostly null, while a half-pitch would produce much more
noticeable artifacts.

We look for the peak of the normalized cross correlation, and
classify the segment as voiced or unvoiced. We currently use a
hard threshold of .65. Each kind of segment: voiced or unvoiced,
is stretched (or compressed) with a different algorithm. Cross corre-
lation values between .40 and .95 may indicate a segment is partially
voiced. We experimented with a third mode (mixed), but the quality
gain did not seem to justify the additional computational complexity,
and we decided to drop the mixed mode.

A. Voiced Segments

For segments classified as voiced, a windowed overlap-add (SOLA)
approach is used. This is mostly as published in the literature, except
we introduce a few enhancements. First, we changed the location of
the segment to be used as reference, which we place at alternating
points, instead of always at the beginning or end of the window.
Second, we change the window size (which we may make similar to
last pitch period). And third, we change the position of the template,
which we place such that the mid-point of the transition window is
located at a low-energy point of the waveform. If more stretching is
desired, the process is repeated as needed.

We first estimate how many times we need to stretch the segment
(k), based on a pitch estimate p. Each iteration will compress or
stretch the signal by one pitch period, so a good estimate is k =
|M − N |/p. We then uniformly distribute the templates over the
segment to be stretched. If past history of the signal is available,
the match is searched for in the region before the template. If no
past history is available, we may look for a match before or after,
depending on which one has more data available.

B. Unvoiced Segments

This is one of our important contributions. For unvoiced segments,
we do not want to introduce any periodicity in the signal. Repeating
past signal (as in the voiced case) would introduce such periodicity,
and produce artifacts. Instead, we replace the signal with a different
signal with the same power spectrum. More precisely, we do that by
computing the Fourier transform of the recent past signal, introducing
a random rotation of the phase of the FFT coefficients, and computing
the inverse FFT. Additionally, to enhance the fit of the spectral
analysis, we use an asymmetric window [12], [13]. This produces
a signal with the same spectrum, but no correlation with the original
segment. Longer signals can be obtained by zero-padding the signal



before computing the FFT. We then take the beginning and end of the
original signal apart, and insert this new signal in the middle, with
windowing and overlapping to smooth the transitions. Note that by
doing this we kept the beginning and end of the segment the same, as
needed to avoid artifacts on the transition to the already played speech
and next frame, respectively. We also scale down the inserted noise
(reducing the energy by 36%) to minimize any artifacts. Another key
difference is the overlapping/smoothing window. Because the two
overlapping signals are supposedly independent (instead of correlated
as in the voiced case), the windows wa and wb should be such that
(wa[n])

2 + (wb[n])
2 = 1, instead of wa[n] + wb[n] = 1, as in the

voiced case. To satisfy this constraint, we use a sine window for
the overlap of unvoiced frames and a Hann window for the voiced
segments.

The method proposed above eliminates the artifacts produced by
periodization, since no periodic extension is introduced. Nevertheless,
it may spread the spectrum of a transient over a much longer period
of time, sometimes producing another kind of artifact (even if not
as objectionable as the periodic one). To solve this problem, we
modified the algorithm to produce a smaller FFT, with more localized
spectral information: We set the size of the FFT to a pre-defined
length (e.g., 128), and compute how many overlapping segments (v)
will be needed to obtain the desired final size (M ), not counting the
first and last half-segments (i.e., v = (M ∗ 2/FFT SIZE) − 1).
Then we spread the center of of these v segments over the available
speech segment. If we spread these uniformly, all segments are
stretched (or compressed) equally. But, ideally, some parts (e.g., lower
energy parts) should be stretched more, to help reduce artifacts. To
achieve that, we introduce a non-uniform selection of the stretching
points. First, we select initial points for the analysis windows, s[i],
as points spread FFT/2 samples apart, defining a number of signal
segments. Note that these would not imply in any stretching. Then we
recursively split one of the segment (adding new stretch points), until
achieving v points. Note that each additional point will imply extra
64 samples. In order to preserve more of the original signal, we want
as many starting points as possible to be FFT/2 samples apart. We
begin by placing these starting points FFT/2 samples apart. We then
insert as many new points in between existing points as needed, one
at a time. We insert the new points in the lowest energy segments.
For segments of different lengths, we weight the average energy of
the segment by the square root of the segment size, to favor splitting
longer segments. In the final distribution, many points will still be
FFT/2 apart. These segments (more likely the high energy segments),
do not need to be modified.

IV. IMPROVED LOSS CONCEALMENT

As mentioned before, packet losses may occur. Figure 2 shows the
procedure we use to declare a packet as lost (i.e., to stop waiting for
the packet). Once a packet is declared lost, it can trigger either “loss
concealment” or a “comfort noise” mode.

A. Comfort Noise Mode

A comfort noise mode is entered when a packet is not received for
a length of time superior to a pre-set threshold Smax (in our case
200 ms). This is interpreted as either the end of a talk spurt or a loss
of connection. In either case, the receiver will (gradually) mute the
current signal and go to a comfort noise mode. This comfort noise
is a common feature in many communications systems, and has the
objective of trying to simulate the same noise level present when the
connection was active, but there was no speech.

We keep a number (e.g., 3) of “silence frames”. Whenever a new
frame is received, we compute the overall energy of the frame E,
and compare to the stored energy of the current silence frames, E1,
E2, and E3. If the current frame has lower energy than any of the
three, we then replace the highest energy of the three with the current
frame. Besides the energy of the frame, we also store the magnitude
of the FFT coefficients of the frames, to be used in synthesizing a
“comfort noise” frame (to be described next paragraph). Finally, to
force a periodic renewal of the silence frames, and also avoid an
atypical low energy frame to stay there forever, we include a time-
out mechanism. If a particular frame is in the buffer for over 15
seconds, we increase its nominal energy Ei (but not the magnitude
of the stored FFT coefficients). This will increase the likelihood that
the frame will eventually be replaced. The Ei is doubled every 15
seconds, and a small amount of an energy (equals 1% of the current
frame) is added, to handle the cases where Ei = 0.

Finally, when a comfort noise frame is needed, we use the
information in the silence frames to generate one. More precisely, we
compute the average magnitude of the three stored silence frames,
add a random phase, and compute the inverse FFT. This signal is
then overlapped / added to the signal in the buffer, by the transition
(sine) window.

B. Loss Concealment Mode

As described in connection with Figure 2, if a subsequent frame
is received, and one or more intermediate frames are still missing,
we may declare a packet as lost, and enter into a “loss concealment
mode”. Loss concealment may be generic or specific to a codec.
Many codecs already have loss concealment algorithms specified as
part of the codec, and in that case one may simply do the concealment
by using those. In other cases, the prescribed loss concealment may
not exist or be sub-optimal and other methods are used. This is often
the case, since most loss concealment algorithms have the constraint
of preserving the (fixed) length of the frame, which, in our case, is
irrelevant.

We will first describe a loss concealment mode designed for G.711
(PCM) coded speech, but which may also be appropriate for use
with many other codecs. First, we note that the concealment mode
will only be entered when we have received at least one subsequent
frame. For that reason, besides the signal still remaining in the
“current buffer”, we have also some (non-contiguous) segment of the
signal, which we call “future buffer”. The lost segment corresponds
to the missing samples between theses two buffers, which were never
received.

We start by deciding the number of samples we want to insert (K).
In principle, K could be simply the number of samples corresponding
to the lost frame(s), but we do a slightly more elaborate computation.
First, due to our approach to buffer stretching (as opposed to frame-
based, as in [2]), we may have already stretched the last frame
received. In that case, we will subtract that from the lost samples.
Also, to allow enough space for the appropriate transition window,
we need to stretch an additional Ov samples. Finally, if too many
frames were lost, the (synthetic) transition is not likely to be a natural-
sounding one. For that reason, and to reduce the artifacts, we limit
the number of frames to be replaced to two frames. Note that, if
necessary, the signal may later be further stretched at some other
point by the jitter control algorithm.

The next step is to compute a desired (target) size for the current
and future buffers, DC and DF , based on the current size of the
buffers, EC and EF . The simplest method again would be to split the
K+Ov samples to be created equally between the two, i.e., to make:



DF = EF+(K+Ov)/2. We then proceed to stretch the future buffer
by the desired amount. Since the stretching process may produce
slightly more (or less) than the desired samples, we then proceed to
estimate the necessary length of the current buffer as DC = EF +
EC +Ov+K −AF , i.e., the desired total length, plus the required
overlap (for the overlap/add process), minus the actual size of the
future buffer after stretching, AF . We then proceed to stretch the
current buffer by the desired amount, and finally, do the overlap/add to
mix (fade) the current and future buffers. A few minor enhancements
on choosing the target (desired) size for stretching the future buffer.
As we mentioned before, a simple decision would be to distributed the
required samples equally between the buffers. Instead, we introduce
three main modifications. First, if the future segment is too small
(e.g., do not contain at least two pitch periods), we do not stretch it
at all. This is because stretching a voiced segment without having at
least two pitch periods would almost certainly introduce noticeable
artifacts. Second, the way we split the stretching between the current
and future frames is a function of the energy of each frame. More
specifically, we stretch each buffer in direct inverse proportion to its
energy. We do that because in general, stretching a low energy signal
close to a high-energy signal will mask the artifacts. Finally, we set
lower and upper thresholds for stretching. If one of the buffer signals
would be stretched by less than 10% of the desired new samples, we
stretch only the other buffer, and leave that one as is.

Finally, we now present the details of the final overlap/add between
(stretched) current and future buffers. The overlap/add procedure is
similar to others in the literature, with two important differences:
first, we only align the buffers before overlap if both are voiced.
And, second, we use different windows in that case then for the
standard overlap. For the same reasons described in Section III-B,
if both frames are voiced, we use a Hann window, and align the
segments before the overlap/add. If not (i.e., at least one of the frames
is unvoiced), we use a Sine window, and do not align the segments.

V. IMPLEMENTATION AND RESULTS

The proposed algorithm was implemented, and compared to [2],
and to a few commercial solutions. Initial tests involved 7 subjects.
The packet loss and delay were simulated based on 10 traces
obtained from real VoIP sessions. For traces with low packet loss rate
(e.g., below 1%), performance of all algorithms was similar. As the
packet loss rate increases, the performance differences become more
significant, with clear advantage of the proposed algorithm. A second
pairwise test compared the proposed algorithm to the alternative that
best performed on the first test. For the second test, a total of 11
subjects rated a total of 299 sentence pairs. In 126 instances, the
user indicated no preference. From the remaining 173 pairs, users
preferred the proposed algorithm 62% of the time. For traces with
error rates above 10%, the preference rate was 100%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new algorithm for adaptive addressing
the three main problems inherent to VoIP. The proposed algorithm
is based on stretching/compressing the contents of the buffer, thus
essentially eliminating “late losses”. This is a significant improvement
over the existing frame or packet based technologies, which still
incur in late losses. Furthermore, we introduced enhancements to the
traditional techniques used to stretch/compress speech, which sig-
nificantly reduced artifacts. A recent empirical study [11] compared
several VoIP solutions (Skype, Google Talk, and MSN Messenger),
concluding that MSN messenger buffer management performs better.

Although that paper independently corroborate the quality results, it
seems to ignore the fact that efficient buffer management is dynamic.

We are currently doing further quality evaluation on the algorithm
based on CrowdMOS [18], [19]. Of particular interest, is the case
where the speech signal is of poor quality, e.g., when acquired with a
far field microphone, as well as cases where spatial sound information
is acquired through sound source localization [14], [15], and conveyed
on the remote side by use of spatialization techniques [20].
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