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Abstract

A number of applications in acoustics, such as echo cancellation, require learning the acoustic impulse

response from each deployed loudspeaker to each microphone- the room transfer function. This has

conventionally been done separately at each microphone for each loudspeaker. However, the signals

arriving at the array share a common structure, which can be exploited to improve the impulse response

estimates. In this work, we propose an algorithm that takes advantage of the array structure, as well

as the sparsity of the reflections arriving at the array in order to form reliable estimates of the impulse

response between each loudspeaker and microphone. The algorithm is shown to improve performance

over the matched filter algorithm in echo cancellation applications, using both synthetic and real data.

Index Terms

Echo cancellers, Array signal processing, Sparse model

I. INTRODUCTION

Room transfer function (RTF) estimation, which is the problem of estimating the impulse response

from a loudspeaker to a microphone through a reverberant room, has been an important problem in

acoustic signal processing [1]. It is relevant in many applications, including in sound source localization

[2], [3], sound field reproduction [4] and perception of 3-d audio [5]. In this work, we consider the

application of initializing acoustic echo cancellation (AEC) algorithms.
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Fig. 1. System model for one loudspeaker

In AEC, filters are generally initialized with an estimate of the RTF, which is computed based on a

calibration tone. These initial estimates are often computed using a simple matched filter algorithm, and

then adapted using one of many techniques [6]–[9]. Modern applications of AEC like voice control

for home- and car-entertainment systems [10]–[12] generally have systems with multichannel audio

reproduction and microphone arrays, with unknown loudspeaker geometry and significant noise levels.

This has brought significant research attention to the problem of exploiting side information for echo

cancellation (e.g. [13]–[15]). In particular, the problem of array processing with AEC is dealt with in

[16]–[18] among others. Generally, these involve jointly adapting a number of channels. The number

of taps to adapt can be large if there are multiple loudspeakers, making this possibly computationally

complex.

In this paper we consider using the (known) microphone array geometry to improve the RTF estimate at

each microphone, and this is used to initialize the echo cancellation filters (as mentioned, it could be used

for other purposes also). Since the algorithm computes an initial estimate, it is only run once, following

which adaptation may be performed on each individual channel independently, with the knowledge that

the estimates already include the array information. While not optimal, we expect that this approach is

better in practice than treating each channel independently.

For the purposes of this paper, adaptation is not considered. We compare the initial estimates using

the matched filter and using the proposed algorithm with respect to their performance in initial echo

cancellation, with the understanding that low-complexity adaptation is to be performed afterward, which

can only improve performance.
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Fig. 2. Signals arriving at a 1-d Array

II. SYSTEM MODEL

Fig.1 represents the system model. A signal l[n] is played at the loudspeaker1. The RTF from the

loudspeaker to the kth microphone is denoted as h

k

[n]. Thus, the signal received at microphone k is:

x

k

[n] =

N�1X

m=0

h

k

[m]l[n�m] + d

k

[n] + �

k

[n], (1)

where d

k

[n] is the desired signal and �

k

[n] is the interfering noise. Note that d
k

[n] is assumed to be zero

during the calibration phase.

When only one microphone and one loudspeaker are present, the minimum mean square error estimate

of the RTF is known as the “matched filter” [19], which can be computed as:

h

MF
k

[n] =

P
m

˜

l[m]x̃

k

[n+m]

P
m

(

˜

l[m])

2
(2)

where the ˜

l[n] refers to the whitened version (see [20]) of l[n], and x̃

k

[n] refers to x

k

[n] after it is filtered

by the same filter used to whiten l[n].

The filter of (2) is the baseline initial estimate against which our algorithm is compared. It is shown

that the estimate of each RTF obtained by exploiting the multiple microphones can be better than the

above optimum.

A. Structure of the Received Signal

To understand the rationale behind our algorithm, we investigate the structure of the received signal.

In the following, continuous-time signals are represented using parentheses. For example, l(t) is the

continuous time version (i.e., the continuous time interpolation) of the loudspeaker signal l[n]. Conversely,

l[n] can be seen as the sampled version of l(t), i.e., l[n] = l(nT

s

), where T

s

is the sampling interval.

1For simplicity, only one loudspeaker is considered to compute the RTF, though more than one may be deployed in reality.

This is compatible with the calibration phase, where each speaker is played separately.
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Fig. 3. Modeling reflections in a room

Consider a plane wave impinging upon the linear array in Fig.2. If the continuous time signal at the

origin is s(t), then the signal at microphone k is s(t � ⌧(z

k

, ✓)), where ⌧(z

k

, ✓) = �z

k

cos ✓/c, and c

is the speed of sound. In other words, the signal produced at each microphone by the plane wave is the

same, except for a delay which depends only on the array geometry and the direction of arrival.

Now consider a room as in Fig.3. The loudspeaker signal l(t) is reflected off a number of surfaces

or objects and all of these reflections are received at the microphone array. Each reflection corresponds

to a “image source” [21] as shown. Now, further assume that: 1) the dimensions of the array are small

enough and the sources are far enough away from the array that the wavefronts can be approximated as

planar (farfield approximation); 2) every reflector is flat-fading 2, and; 3) P sources (real or image) are

enough to provide a good approximation of the arriving signal.

Under these assumptions, the signal received at sensor k can be written as:

x

k

[n] =

PX

p=1

↵

p

l (nT

s

� T

p

� ⌧(z

k

, ✓

p

)) + �̃

k

[n] (3)

where T

p

and ↵

p

are, respectively, the delay and attenuation suffered by wavefront p (including propaga-

tion loss and microphone and loudspeaker directivities), and �̃

k

[n] includes both the actual noise �

k

[n]

and possibly any unmodeled signal components. The corresponding channel is:

h

k

[n] =

PX

p=1

↵

p

sinc
✓
n� T

p

+ ⌧(z

k

, ✓

p

)

T

s

◆
(4)

where the function sinc (x) = sin(⇡x)/(⇡x) arises as a result of sampling an impulse. In other words,

the RTF of each microphone can be obtained by writing the received signal as a combination of planar

wave copies of the loudspeaker signal. This is the principle that we use to develop our algorithm.

2See, however, Section III-B
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III. THE PROPOSED ALGORITHM

Using the model of the previous subsection, we develop an algorithm that takes advantage of the array

information to compute the filters ˆ

h

k

[n]. Let L
x

denote the length of the received calibration signal at

each sensor, i.e, the length of x
k

[n] during the calibration period. Define the received signal vector x of

dimension KL

x

⇥ 1 as:

x = [x1[0], . . . , x1[Lx

� 1], . . . , x

K

[0], . . . , x

K

[L

x

� 1]]

T (5)

That is, stack up the received signals during the calibration period at all the sensors into one tall vector.

Similarly, define a basis vector b
T,✓

, also of dimension KL

x

⇥ 1, as:

b
T,✓

=

2

666666666666666666664

l (0� T � ⌧(z1, ✓))

...

l ((L

x

� 1)T

s

� T � ⌧(z1, ✓))

...

l (0� T � ⌧(z

K

, ✓))

...

l ((L

x

� 1)T

s

� T � ⌧(z

K

, ✓))

3

777777777777777777775

. (6)

In other words, b
T,✓

represents the set of signals that would be received by the K array elements from

an (unattenuated) source, either real or image, located at an angle ✓ from the array axis, and at a distance

such that the propagation delay from the source to the center of the array is T .

Equation (3) implies that the vector x of (5) can be written as a linear combination of the basis vectors

(6), except for the noise and unmodeled components �̃[n]. Thus, the problem posed is recovering the

basis vectors and corresponding weights which will result in the best representation of the observed

vector x. We begin by discretizing the space of ✓ and T , and forming a basis3 B for the desired echo

space B = [b
T1,✓1

, b
T2,✓1

, . . . ].

It may appear as though we have made the problem more complex by adding nearly every possible basis

vector to the optimization (as opposed to, for example, trying to somehow detect the useful basis vectors).

However, observe that while the number of basis functions is fairly large, the number of reflections we

actually expect to receive is relatively small, due to the sparseness of the RTF (which has been used in

3Rigorously, sampling the T space finely enough does produce a basis, but sampling ✓ does not.
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literature- for example, to interpolate RTF between two source locations [22], to estimate room geometry

[23] and even in echo cancellation [24]). Thus, we impose a sparsity constraint on the solution. Basis

Pursuit Denoise (BPDN) with a convex relaxation is a well-known method to solve the problem of

approximate representation with sparse constraints [25]. This method solves the following optimization

problem:

ˆw = argmin

w
kwk1, s.t. kBw � xk2  �. (7)

where � is a reconstruction error, which should ideally be slightly larger than the standard deviation of

�̃[n]. That would ensure a reconstruction error close to the modeling error plus noise. In practice, we

have access only to the noise �[n] since we do not know the modeling error. So, we set � = ��

�

for

some � > 1, where �

�

is the noise standard deviation.

It still remains to be said how to estimate the channel from the weights. With N denoting the channel

length, define the KN ⇥ 1 vector:

h
T,✓

=

2

66666666666666666664

sinc
⇣
0� T+⌧(z1,✓)

T

s

⌘

...

sinc
⇣
N � 1� T+⌧(z1,✓)

T

s

⌘

...

sinc
⇣
0� T+⌧(z

K

,✓)
T

s

⌘

...

sinc
⇣
N � 1� T+⌧(z

K

,✓)
T

s

⌘

3

77777777777777777775

(8)

Note that h
T,✓

is the equivalent of b
T,✓

for the impulse response, i.e., it is a basis vector for the impulse

response corresponding to the basis vector b
T,✓

of (4). Let the matrix H = [h
T1,✓1

,h
T2,✓1

, . . . ] be the

corresponding basis matrix. Then the vector H ˆw contains the K impulse response estimates stacked up

in order. These impulse responses are the final estimates produced by our sparse, array-based method.

A. Practical Considerations: Using FFTs for Computation

The matrix B which is needed to solve (7) is very large—the number of rows is K times the length

of the received calibration signal and the number of columns is the number of basis functions. For a

typical set of parameters, the matrix has dimension 70000⇥ 110000. This may be too large to represent

in memory and for computation.
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However, in order to solve (7) using a solver such as the one described in [26], we need only implement

Bu and BTv for arbitrary vectors u and v of appropriate dimension. Now, the first element of the product

Bu, denoted (Bu)(0) is given by (Bu)(0) =
P

✓

P
T

u

T,✓

b
T,✓

(0), where u

T,✓

is the component of u

which multiplies b
T,✓

in the matrix product. Then, (Bu)(0) =

P
✓

P
T

u

T,✓

l(0 � T � ⌧(z1, ✓)). Note

that the inner sum is the first element of a convolution, where u and l(·) are treated as series in T .

Following this line of reasoning, we can compute all the elements of the inner sum over T by computing

a single convolution. It is thus possible to efficiently implement the matrix multiplication operation Bu

with one FFT per ✓ (we can pre-compute the FFT of the basis function, so only one is needed). A similar

formula can be derived for BTv which also needs only one FFT per ✓.

B. Reflectors with Frequency-Dependent Fading

In general, the attenuation coefficient of a reflector is frequency dependent. Nonetheless, the modeling

error as a result of the flat fading assumption is expected to be relatively small. To understand this, note

that a reflection that arrives with frequency distortion is, in the time-domain, equivalent to the signal

passed through some filter. The impulse response of that filter may be decomposed into the sum of a

number of impulses. Hence, the received signal can still be represented by the sum of the basis functions

b
T,✓

in our framework.

Physically speaking, this is equivalent to modeling each single reflection as a group of plane waves

arriving at the array, rather than a single plane wave. In the basis framework, a single reflection is a

collection of multiple basis functions rather than a single basis function. While this makes the solution

less sparse, in practice, the matrix B over-represents the received signal so much that sparsity is still a

meaningful constraint.

IV. RESULTS

In this section, we compare the performances of the sparse array-based echo canceller and of the

matched filter, with both synthetic and real data. The measure of performance is the average echo return

loss enhancement (ERLE) over all the microphones, estimated using:

ERLE = 10 log10

 
1

KL

x

P
K

k=1

P
L

x

n=1|xk[n]|2 � �

2
�

1
KL

x

P
K

k=1

P
L

x

n=1|yk[n]|2 � �

2
�

!
(9)

where �

2
�

is the variance of the noise. For synthetic data the noise is known, and we subtract it out from

x

k

[n] and y

k

[n] before computing the ERLE. For actual data, a noise-only segment (i.e., in which the

loudspeakers are not played) is used to compute �

2
�

.
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Fig. 4. Results with Synthetic Data

The ERLE is computed at a number of received Echo-to-Noise Ratios (ENR). The ENR represents

the total power of the received echo signal during the calibration period (referenced to the power of

interfering signals present with the loudspeakers silent). The filters computed during the calibration

period are then used to cancel the loudspeaker signals during a testing period (in which all loudspeakers

are simultaneously played) to compute the ERLE. For both synthetic and real data, the length of signals

in the calibration period are 1 second per loudspeaker, and the testing period is 15 seconds long. The

sampling frequency is 16kHz.

We emphasize that the results are comparing two different initial estimates using the test signal, so they

are not comparable to those obtained with adaptive filters. Moreover, the testing periods are relatively

short compared to conventionally chosen times, which may also affect the results.

A. Synthetic Data

To generate the synthetic signals, a rectangular room with attenuating but flat-fading walls was assumed.

A single loudspeaker (assumed to be a point source) whose signal was to be canceled was placed at an

arbitrarily chosen location in the room. Interference was generated by another point source placed at a

different arbitrarily chosen location. The output of the interfering source was white Gaussian noise whose

level was scaled to the required ENR.

The reverberation time of the simulated room was 50ms, for a filter length of N = 800 samples. A

4-element linear microphone array was simulated. The vectors b
✓,T

were computed for ✓ and T spaced

at 5o and 1 sample time, respectively.

The ERLE with the synthetic data is shown in Fig.4. The results demonstrate that the ERLE is markedly
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Fig. 5. Results with Experimental Data

higher when the filters are computed with the array-based method than with the matched filter. A few

points are worth mentioning:

1) When the noise is small (high ENR), the performance of the matched filter saturates. This happens

because the autocorrelation of a (finite) white signal is not a perfect impulse, and this residual

autocorrelation acts as noise. The array-based method is not subject to this effect and its performance

keeps improving.

2) For low ENR, the array-based method does a better job of rejecting the noise. In this case, the

limiting factor with the matched filter is the cross-correlation between the signal l[n] and the noise.

3) The least improvement seems to occur in the regime where the noise and the residual cross-

correlation are at similar levels. Although the reasons for this effect are not clear, we conjecture

the algorithm used to solve (7) uses the provided slack � to reduce the coefficient estimates rather

than allocating it to reject the noise.

B. Experimental Data

The experimental data was collected in a room with a 5.1 loudspeaker system and a Microsoft Kinect

device, which has a 4-microphone array [27]. The calibration tones were the ones used on the original

Kinect. The sound track of a game was played at the loudspeakers during the testing period. The ENR of

the collected signals was about 20dB, and lower ENRs were achieved by corrupting these signals with

the collected noise.

The results with an assumed impulse response length N = 1600 samples are shown in Fig.5. Results

for both longer and shorter lengths were collected, but they follow the same trends and are thus omitted
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here. The figure shows that, again, there is an advantage to using the array-based method to compute

the filters. The performance does not improve as much as for the case of synthetic data, but this is to be

expected as the synthetic data exactly fits the assumed model. Nonetheless, the array-based echo canceller

outperforms the matched filter. At very low ENRs, the matched filter actually adds echo (ERLE < 0dB).

While the matched filter would not be operated in such a regime, it is encouraging that the array-based

method still cancels some of the echo.

V. CONCLUSIONS

In this paper, we proposed an algorithm that used array information to compute the RTFs with which

to initialize AEC filters, using a generic reflection model to exploit the structure in the signals received

at the array. We pose the problem of computing RTFs as a least squares optimization with a sparsity

constraint. The results clearly indicate the value of utilizing array information in the computation of the

initial filters.

A number of questions remain. The premise of the paper was to incorporate the array information into

the initial estimate and perform adaptation on each filter individually. It would be interesting to compare

this to jointly adapting all the channels. It may be possible to simplify the adaptation by utilizing the fact

that the initial estimates are highly structured. Finally, other means to exploit structure may be relevant.

For instance, it may be possible to localize the reflectors in the room and utilize this information to further

improve performance. Indeed, further exploiting the signal structure induced by the array geometry is a

fertile area of research.
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