

Appendix to

Assessing the Value of Branches

with What-if Analysis

March 16, 2011

Technical Report

MSR-TR-2012-33

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

Appendix to

Assessing the Value of Branches with What-if Analysis

Christian Bird

Microsoft Research
Redmond, WA, USA

cbird@microsoft.com

Thomas Zimmermann

Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

ABSTRACT
Our research paper, “Assessing the Value of Branches with What-

If Analysis” contained an intuitive description of our method of

creating alternative histories with branches removed and using

these alternative histories along with the original history to calcu-

late delay and provided isolation. This appendix contains a more

precise formal description of our technique and metrics for the

interested reader.

APPENDIX: FORMAL DEFINITIONS

A.1 Terminology
We first present definitions of the terms and ideas needed to de-

scribe branches within an SCM. We use definitions that have

been accepted by the software engineering community.

File – The basic entity within an SCM is a file. We denote the set

of all files tracked within the SCM as .

Checkin – A checkin is a modification to a file via either an edit,

an integration, or an anchor (all defined below). The SCM stores

the contents of a file that exist after each checkin. A checkin is

made on a branch, defined below. Our diagrams in this paper use

a circle of some type on a horizontal line to denote a checkin on a

branch. We denote the set of all checkins in an SCM as . We

also define two relations; maps a checkin to the file

that the checkin affects and maps a checkin to the

time that it was created.

Commit – A commit comprises a set of checkins to different files

that acts as an atomic operation. Developers typically make

changes to multiple files in the system to resolve an issue or im-

plement a feature. They then commit all of the checkins to the

SCM in batch.

Branch – A branch is a chronological ordering of subsequent

checkins to a file. Checkins to the same file on different branches

can be made in parallel and do not interfere with each other.

Formally, a branch is an ordered sequence of distinct checkins:
〈 〉. We denote the set of all branches in an SCM as

 . We also define a predecessor relation that maps

a checkin to its immediately preceding checkin on the branch and

 that maps a checkin to the branch that it occurs

on. Despite the fact that the checkins in a branch are ordered, we

use set notation for relationships between checkins and branches

to avoid unnecessary complexity in notation. In our notation, the

following statement holds:

 (()) .

Root – The main branch from which all other branches are direct-

ly or indirectly created is the root branch. The root represents a

special branch; we denote it formally as .

Parent – When one branch is created from another, the original

branch is the parent of the created branch. We define a relation

 that maps a branch to its parent and note that

 () is undefined.

Child – Likewise, branches which are created from an original

branch are called child branches. Checkins to files will typically

be integrated from child branches to parent branches until they

reach the root. We define a relation that maps

a branch to its children (a subset of) and a relation
 that maps a branch to all of its descendants.

Edit – Adding a file to the SCM, modifying the contents of a file,

or removing a file from SCM is an edit of that file. An edit is a

type of checkin and is denoted with a solid circle. We define a

predicate * + such that () is true if is an

edit checkin.

Integration – An integration merges or copies the contents of a

single file at a specific point in time on one branch into another

branch. Most of the time, integrations will occur between parent

and child branches, as shown in the diagram below. An integra-

tion is a type of checkin and is denoted with a large hollow circle.

We define a predicate * + such that

 () is true if is an integration checkin. In addi-

tion we define the relation such that ()
 iff () and is an integration from .

Anchor – An anchor is a “placeholder” on a branch that contains

no actual change to the file, but represents the state of the file at a

specific point in time. When an integration occurs in an SCM, an

anchor is created (see diagram below) and is the source of the

integration. Anchors are denoted with a small hollow circle. We

define a predicate * + such that () is

true if is an anchor checkin. We also define a relation

 that maps an anchor checkin to its matching inte-

gration checkin. Note that the anchor and matching integration

have the same time:

(() (()))

(() (() ()))

File History – A file history for some file, , is the set of all

branches that contain checkins for .

Path – A path between two checkins is a sequence of checkins

that are related via (subsequent checkins on the same

branch) or (integration checkins between branches) rela-

tions. Intuitively, one can think of a path as the flow of file modi-

fications along and between branches. Formally,
 .

 () 〈 〉:

() () ((()) (()))

A.2 Simulated Removal of a Single Branch
We define the set of checkins in the original history as and the

set of checkins in the alternative history as . Further, we define

a relation that maps checkins in the alternative

history to corresponding checkins in the original history.

First we identify all checkins that occur on the victim and move

these checkins to the parent branch, while keeping chronological

order. Formally, let be a victim branch in the original history,

 that we are simulating the removal of, and let be the

parent in the original history. We start with an alternative history

 that is a precise copy of . That is, each branch has a

corresponding branch and each commit has a

corresponding commit . Let be the victim branch that

we are simulating the removal of and be the parent branch in

the simulated history. For each edit checkin on the victim branch

 , we remove from and add it to while maintain-

ing chronological predecessor relationships such that

((()) (() ()).

Second, we remove all integrations between the parent and victim

since they would no longer be needed. We remove all checkins

 such that

(() ((())))

(() ((())))

Third, all integrations from and to the victim are redirected from

the victim to the parent branch. That is, all checkins such

that () () are changed to () .

A.2 Measuring Delay & Isolation
We now present the formal definitions of delay and provided iso-

lation that we use to measure branches.

Delay. We have already presented transit time, the time that it

takes for a file change to reach the root. Since the branches within

the SCM form a tree, the only way for a file modification in a

checkin made on a branch to reach the rest of the system is for the

modification to reach via a series of edit, integration, and anchor

checkins. Formally, the transit time for a checkin is defined as:

 () (() ())

(()) (()).

The delay for some branch is the average difference in transit

time between the original history and the simulated history with

removed for edits that are affected by b. An edit is affected by

if the edit occurs on or any child branches (recursively) of .

These comprise the edits whose transit time could be modified by

the removal of . Our formal definition of a checkin being affect-

ed by a branch is.

 () * () ()+

To calculate the delay of , we compute the transit time for each

of these checkins in the original history and in the simulated histo-

ry with removed. To compute delay, we calculate the decrease

in transit time for each of these checkins in the simulated history.

 () ∑ (()) ()

 ()

Isolation. One value of a branch is the isolation that it provides,

which we quantify by determining the number of conflicts avoid-

ed. If there was concurrent activity on the same file in a branch

and its parent or in a branch and its children, then the branch pro-

vided a level of development isolation and was useful. However,

if development in a file on a branch had no potential conflicting

changes in its children or parent, then this isolation was likely not

needed. We calculate this by examining the order of the checkins

on the parent in the simulated history and counting the number of

conflicts. A conflict is a pair of subsequent edit checkins on a

branch in a simulated file history that occurred on different

branches in the original file history. These are be indicative of

checkins that may be syntactically or semantically incompatible;

even if the algorithm used by the SCM to merge textual changes

runs without error, a developer must still validate that the result-

ing file contents does not contain problems. In our survey of

Windows developers, they indicated that this often included per-

forming a build of the system followed by running test suites of

varying levels. Thus, each conflict introduced by the removal of a

branch represents a non-trivial amount of additional work for a

developer. We define a relation that maps a

commit to the closest preceding edit checkin. Formally we

define conflict as a predicate:

 ()

(()) () (() ())

((()) (()))

We therefore operationalize isolation by counting the number of

conflicts that occur as a result of removing a branch. Note that

conflicts are computed on a per file basis. That is, when removing

a branch, we simulate the file history and count conflicts separate-

ly for each file that occurs in the branch; a checkin for foo.c

cannot be in conflict with a checkin for bar.h. For space, we

provide only our formal definition for isolation in the single

branch removal case, the definition for other simulation types

differ only in the set of branches from which the conflict checkins

are drawn (() in addition to):

 () |{ () ()}|

While we cannot know what exactly would have actually hap-

pened had a branch not existed, our simulation effectively quanti-

fies the isolation provided and delay introduced by a given

branch. Even if developers would coordinate their changes to

avoid conflicts, this is additional effort.

A.3 Normalizing
Some branches have an order of magnitude more changes than

others. Thus total delay and total isolation may be misleading,

especially when comparing different branches. As an example,

branches with many edits will have more influence on total delay

just because of the high number of edits. Therefore, depending on

the question that we are interested in answering, delay and isola-

tion may need to be normalized: For scenarios related to compar-

isons and decisions on individual branches (or subtrees), we nor-

malize the delay and isolation measures. For scenarios related

branch structure as a whole, we do not normalize. More specifi-

cally, for the scenarios presented in this paper, we normalize in

the following ways.

Normalized delay. The removal of branches can only affect the

transit time of edits on the victim branches and on their children

(recursively). We call the edits on these branches the affected

edits (regardless of if their transit time is changed). Therefore,

when normalizing delay, we divide the sum of the differences in

transit time by the number of affected edits:

 ()
∑ (()) () ()

| ()|

Normalized isolation. Here we normalize by the maximum num-

ber of possible conflicts that can be introduced. All edit checkins

on the removed branches end up in the victims’ parent branches

(there may be multiple victims if multiple branch removal steps

are taken from H0 to create H1). Thus, the maximum number of

conflicts occurs when there is perfect interleaving of edits that

were created on different branches in H0, which is the number of

edits on the parent plus the number of edits on the victim minus 1:

We normalize isolation by dividing the number of conflicts that

the branch avoids by the maximum number of possible conflicts.

 ()
|{ () ()}|

|* () ()+|

Intuitively, the normalized isolation indicates how many conflicts

per edit checkin a branch prevents.

