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Arithmetic Coding with Dual Symbol
Sets and Its Performance Analysis

Bin Zhu, Member, IEEE,En-hui Yang,Member, IEEE,and Ahmed H. TewfikFellow, IEEE

Abstract—in this paper, we propose a novel adaptive arithmetic  tive. Adaptive arithmetic coding techniques yield very good
coding method that uses dual symbol sets: A primary symbol compression with a wide variety of source data. Adaptation

set that contains all the symbols that are likely to occur in the is particularly useful with sources, such as images, that are
near future and a secondary symbol set that contains all other . .
generally not statistically stationary.

symbols. The simplest implementation of our method assumes - 4 - .
that symbols that have appeared in the recent past are highly — Note that adaptive arithmetic coding is a one-pass proce-
likely to appear in the near future. It therefore fills the primary  dure: The coder builds up the statistical model while coding
set with symbols that have occurred in the recent past. Symbols the input data. Static entropy coders need two-passes or use
move dynamically between the two symbol sets to adapt to the g, oy giatistical models. Two-pass coding is not efficient for

local statistics of the symbol source. The proposed method works . 2.
well for sources, such as images, that are characterized by large coding large data. Furthermore, the statistical model has to be

alphabets and alphabet distributions that are skewed and highly transmitted to the decoder. This reduces the total compression

nonstationary. We analyze the performance of the proposed coding efficiency. Some coders use fixed statistical models

mEthO? arl]ld cor(?pare it to Ozhﬁr ai/r\i/thmhetic coding meihﬁdiﬁbﬁth and perform only one-pass over the data. However, their
eoretically and experimentally. VWwe show experimentally that in . . - . . g . .

certain contexts, e.g., with a wavelet-based image coding schemecompressmn efficiency can be significantly mfenor to coders

that has recently appeared in the literature, the compression Which use exact models. On the other hand, it has been proven

performance of the proposed method is better than that of the [5] that the compression efficiency of arithmetic coding with
conventional arithmetic coding method and the zero-frequency an adaptive model is never significantly inferior to arithmetic

escape arithmetic coding method. coding with the exact data model. For these reasons, we
Index Terms—Arithmetic coding, data compression, entropy concentrate on adaptive arithmetic coding in this paper.
coding, image compression, JPEG, wavelet. In arithmetic coding, no symbol can have a zero probability

of occurrence. Arithmetic coding uses an interval to represent
the probability of a sequence. In particular, it uses a number
) . . in the interval to differentiate the sequence from all other
A RITHMETIC coding [1]-{4] is a very efficient entropy oggible sequences. A zero probability implies zero interval.
\ coding technique. It is optimal in theory and nearly, s it cannot be represented by any number within the
optimal in practice, in that it encodes arbitrary data Witlyterya| In practice, arithmetic coding is usually implemented
_rmmmal average code length. It is widely used in text angy, incremental transmission and reception and with arith-
Image compression. , metic operations of fixed precision [1]-[3]. Fixed precision
Arithmetic coding has two major advantages over othefiinmetic coding simplifies implementation in software and

entr_opy co_d_ing me_thods, such as Huffman coding. First, fardware and reduces complexity. However, a fixed precision
coding efficiency is generally higher than those of oth

I. INTRODUCTION

; . . . . X triction can cause a problem when arithmetic coding is
an arithmetic coder can work in conjunction with any mod

. - lied to a source that has a lot of symbols with probabilities
that can provide a sequence of event probabilities. The Iatg%;e to zero. Since arithmetic coding must accommodate all

Egvc?t?tt;?zésof]llgTl'l:lfoanthbﬁ](:eauzi I(;’;\frgg Chqg?'i;etzzl?:o?jillgsté ! bols in the alphabet, we have to raise the probabilities
0 'delmore a?:/c ratl:eg robag'l'st'c dezc:' It'ons of the in the symbols that do not occur locally to the minimum
provi u probabilist criptio np obability value that can be represented with fixed precision.

data. The data model used with arithmetic coding can be adap- . . -
e resulting distorted source probability model reduces the

Manuscript received November 17, 1995; revised October 31, 1997. TﬁEflClency of arithmetic COdmg- ) )
associate editor coordinating the review of this manuscript and approving it There are several ways of addressing this problem. For

foerquAiCé_itiont\rA]/aCS Prt?f-_t'\/li:?hae!é\/_- Ma&cﬁ'gg-‘l 30 USA example, one can use higher precision arithmetic in the im-
. uis wi ognicity, Inc., na, . . . . . .. . .

E. Yang is with the Department of Electrical and Computer Engineep—lementatlon glver_1 in [3]. Howeve_r' high pre_c|S|or_1 arithmetic
ing, University of Waterloo, Waterloo, Ont., N2L 3G1 Canada (e-mailsSlows the adaptation of the algorithm described in [3] to the
ehyang@bbcr.uwaterloo.ca). source statistics. Another solution [6] to the problem is to

A. H. Tewfik is with the Department of Electrical Engineering, University

of Minnesota, Minneapolis, MN 55455 USA (e-mail: tewfik@ece.umn.edu).allocate prObab"'t'eS (mtervals) Only to Symb0|s that have

Publisher Item Identifier S 1057-7149(99)09359-8. occurred in the past (instead of to all possible symbols) and

1057-7149/99%$10.001 1999 IEEE



1668 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

reserve some space for escaping to a new symbol. If the currenthis paper is organized as follows. In Section I, we propose
symbol is new, a special escape symbol is first coded, followachovel method which adapts both the symbol set and symbol
by the new symbol itself. The new symbol is then put intprobabilities. In Section lll, we provide a theoretical perfor-
the list of symbols and allocated an interval to represent itsance analysis of the proposed arithmetic coding and compare
probability of occurrence. This technique has been extensivétiywith conventional arithmetic coding. Finally, experimental
used in the “prediction by partial match” (PPM) method [7]sesults are reported in Section IV in which the proposed
which uses Markov models of different orders to estimate timeethod is compared with WNCAC and ZFEAC in several
source statistics. Throughout the rest of the paper, this methothge coding applications.
will be referred to agzero-frequency escape arithmetic coding
(ZFEAC). We will refer to Wittenet al's implementation [3]
of arithmetic coding as WNCAC. Il. ARITHMETIC CODING WITH DUAL SETS

In image coding, the alphabet typically consists of quantized
transform coefficient values or processed pixel values. It may Arithmetic Coding with Dual Symbol Sets
also correspond to pixel values in some high bit rate wave-

. ) . DSAC uses a special symb&SC in the primary set to
form coders. The alphabet is usually large; a straightforward
. . ; ; . “escape to the secondary set. Many methods can be used to
enumeration of all symbols in it requires several bits per pixe

Many svmbols in the alohabet may have a zero or ver Sma'ﬁlaptively shift symbols from one set to the other. Here, we
y sy phe 1ay Ne /ey SMacus on a simple implementation, modeled after WNCAC.
probability of occurrence in a given image. In addition, th

SR : . s . Symbols that have appeared in the recent past are assumed to
symbol distribution changes with location within the |mag%g highly likely to ag))p?ear in the near futu?e. Further. if the

and is generally very skewed. For example, a smooth region . . .
: " current symbol is not in the primary symbol set, the symbol
may produce a small set of symbols while a textured region .
. iS moved from the secondary set to the primary. When the

may yield a large set of symbols.

Note that some image coding procedures use small al hargguency counts in the primary set are scaled, the symbols
. g 9p P exceptESQ with frequency counts less than a threshold are
sizes. For example, the embedded wavelet zero-tree im

. : . . Sved to the secondary symbol set.

coding (EZW) [8] uses a cle_ver iterative thresholding met.ho. The algorithm can beydeyscribed as follows.
to reduce the symbol set size to only four. Our emphasis in . ) o
this paper is on image coding algorithms that do use Iargel) Inmgl State Either one of two initial states can be u;ed;
alphabets. (A) is all symbols exceplEQF (end of file) are in

ZFEAC can partially address the problems that arise in the primary symbol set. (B) is all symbols exc_eEfE_C_
image coding by effectively reducing the size of the symbol are in the secpndary symb_ol s_et_. State (A) is similar
set. However, as we shall see later, the skewedness and spatial to WNCAC while state.(B) is similar 1o ZFEA.C'. .Th.e
variability of the symbol distributions in image coding reduce frequency counts asso_uated to 3” symbc_)ls are initialized
its coding efficiency. For example, it is not effective when used to one. The symbdESCis always n the primary symbol
in conjunction with wavelet-based image coding approaches. set W'th_ frequency count one, while the sy'm.lEdDF IS
In these schemes, some symbols can appear at the beginning of always in the secondary symbol set since it is used only
the symbol sequence to be coded and then never appear again, once. . .

In this paper, we introduce a novel adaptive arithmetic 2) &) If the current symbol s In the primary symbol set,
coding technique called the dual set arithmetic coding (DSAC). encod.e the sympol and increase the frequency count
The method adapts itsymbol setto the local statistics of associated with it by one. Then go to Step 3.

the symbol source. It can effectively deal with the above-  P) If the current symbol is not in the primary symbol
mentioned problems with a small increase in complexity. More set, encode the special symbBEC and use the
specifically, the method uses two symbol sets:pAmary secondary symbol set to encode the current symbol.
symbol sethat contains all the symbols that are likely to occur The symbol is then moved from the secondary
in the near future and secondary symbol séhat contains all symbol set to the primary set since it is likely to
other symbols. The primary set acts as the default symbol set. occur in the future.

The coding procedure escapes to the secondary symbol s&) If the sum of all frequency counts in the primary symbol
if the current symbol is not in the primary set. This step is  Set reaches the maximum frequency count Ktaxhe
similar to ZFEAC except that the new symbol is also entropy- ~ frequency counts associated with all symbols in the pri-
coded in our method. Furthermore, the procedure also removes Mmary symbol set are halved and rounded up to integers.
from the primary set symbols with probabilities of occurrence  All symbols with a frequency count of one excefBC
lower than a prespecified threshold. This allows the proposed are moved to the secondary symbol set since they are
approach to better adapt to the local statistics of the symbol unlikely to occur in the future.

source. 4) Go back to Step 2 to code the next symbol.

We note here that the technique of adapting the symbol Séte decoding procedure proceeds similarly. Note that if only
is also used in a lossless image coding method called CAL&Esmall number of symbols occur in the recent past, most
[9]. But it is used in a very restricted manner: it lumps the tagymbols will be in the secondary symbol set. Therefore, we
of the probability density function into a single escape symbalan use a smaller Mak, low precision integer arithmetic,
and expands and contracts this tail “on the fly.” and thus improve adaptation.
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Initial state (B) offers some advantages over initial statan be moved from the primary symbol set to the secondary
(A) when there are many symbols with zero-frequency courdas any time without scaling frequency counts. For example,
and the length of the symbol sequence to be coded is sheré could move a symbol to the secondary symbol set if the
These advantages are essentially similar to those that ZFE#y@nbol does not occur over a certain number of input symbols.
has over WNCAC. However, these advantages are not Hss separation of the adaptation of the symbol probabilities
important in DSAC since the effect of the initial state in DSA@Gnd symbol sets could be advantageous.
disappears once a symbol is moved from the primary set toOther possible modifications include adapting Maxo the
the secondary set. size of the primary set, using better initial conditions derived

B. Comparison with Other Approaches from tr{?unlng or informatiora priori to reduce learning time,
and using more than two symbol sets.

DSAC adapts the symbol set to the local symbol statistics
of the source. A symbol can shifit and out of the primary Ill. PERFORMANCE ANALYSIS OF DSAC

Symbol set based on the estimated likelihood that it will occur To ana|yze the proposed method, we assume that the stream
in the near future by using recent observations. This is th¢ symbols to be coded is divided into blocks. A block is a
key difference between DSAC and other approaches propose@uence of symbols that is processed between two successive
in literature. For example, ZFEAC reduces the symbol setalings of frequency counts. Theth block consists therefore
by inserting into the symbol set only those symbols thaf all symbols that occur between theth and(m + 1)st fre-
have appeared in the past. No symbol is removed oncegifency scaling operations. Our analysis can be used regardless
is inserted. Normal arithmetic coding, e.g., WNCAC, uses & whether or not all blocks have the same size. When scaling
fixed symbol set. No symbol can either shift in or out. Ass performed in a periodic manner as in [3], all blocks, except
we shall see in Section IV, this simple difference can yield &8r the first one, have the same size. Otherwise, block sizes
appreciable coding advantage when used in conjunction Wil vary.
certain coding techniques. To simplify our analysis, we also assume that coding is per-
When the current symbol is not in the (primary) symbdbormed with exact rational arithmetic. Integer arithmetic with a
set, ZFEAC escapes to transmit the new symbol while DSAgrge fixed range will introduce roundoff errors. Fortunately, it
escapes to use the second symbol set to encode the symiakell known [5] that roundoff errors have very small effects
DSAC is more efficient in doing this: LeV be the size of the on compression performance and integer arithmetic yields
whole alphabet, andV, be the size of the secondary symbohearly the same coding efficiency as exact rational arithmetic.
set. Note thatV, < N. ZFEAC encodes a new symbol usingrhis is also confirmed by the results presented at the end of
[log, N bits while DSAC encodes it with amallernumber this section.
log, N, bits. As the number of symbols in the (primary) sym- e first introduce the following notation.

bol set increases, the difference between the number of bitsthat = snqs - Primary and secondary symbol sets, respec-
DSAC and ZFEAC use to encode a new symbol also increases. ti\T/t:‘Iy at ﬁ]e beginning of blocksn. ’

C. Variations of the Dual Set Arithmetic Coding » F,(4) and S,,(¢): Primary and secondary symbol sets,

Let us now discuss several variations of DSAC. First we respectivelybefore coding theith symbol in blockm.
can easily add Markov models to DSAC, in the same way NOt€ thatly, = I, (1), and Sy, = Sp(1).
as Markov models are used with normal arithmetic coding. ® "e,n: The frequency count associated with a symbol
In another variation, the frequency count associated to the @ € Fm at the beginning of blockn.
escape symbdESCcan be chosen to be larger than one. By * Im = ZaCFm Na,m: SUM of the freque.ncy counts cor-
associating a large frequency count ESG we reduce the responding to the symbols in the primary set at the
compression effect of coding the extra symii$C at the beginning of blockm. _
expense of distorting the probabilities of the symbols in the * Bm: Size of blockm. Note thatB,, is equal to Mayc —
primary set. The best choice of the frequency count associated T
to ESC depends on the source to be coded. Note that as’ Ca,m: Number of occurrences of a symbeke F;,, U S,
the frequency count associated ESCincreases, the coding ~ in block m. _ _
efficiency difference between DSAC and WNCAC decreases.® Vm: Subset ofSy, that consists of alk € S,, which
If we set the frequency count &SCto be equal to the size ~ @ppear in blockn.
of the secondary symbol set, DSAC uses exactly the sam¢ pi: Weighted probability used to encode tfta symbol
number of bits to encode a sequence of symbols as WNCAC. in block m. .

The procedure used to shift symbols between the two* |G|: Cardinality of a finite setz. B
symbol sets in the proposed method can be replaced by A” = A(A+1)---(A+ B —1), with A° = 1.
more sophisticated mechanisms. For example, we can use A5 = A(A—1)---(A— B+1), with A= = 1.
a threshold larger than one, or an adaptive threshold, toLet us begin by noting that exact arithmetic coding uses the
move symbols from the primary symbol set to the secondaggtimated weighted probabilfty, of a symbola to codea.
symbol set or vice versa. In the simple implementation gfhe estimated weighted probabilipy, of symbola in a setG
DSAC described in Section II-A, symbols are shifted from | . . . .

In the remainder of this paper, we shall use the term “probability of a

the primary set to the _Selcon.dary occurs only when freque%bol" by abuse of terminology to denote the conditional probability of the
counts are scaled. This is simple but not necessary. Symbsabol given the image or source sequence to be coded.
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is shown in (1) at the bottom of the page. We neetbg, p, we find thatL/ is given by (7), shown at the bottom of the

bits to codep, with exact arithmetic coding. next page. Note that the denominator in the above equation
Let the ith symbol in blockm be a;. To determine the starts with7Z,, + |S,,| — 1 rather thanZ,, + |S,,|. This is

probability p; that the proposed arithmetic coding procedurdue to the fact that the special symld®ECis not used in

uses to encode;, we need to distinguish three casesal) conventional arithmetic coding.

L 2) a; € S,,(4); and 3)a; € F,, (i) anda; ¢ F,. Therefore, the total saving in bits that results from using the
Consider first the case wherg ¢ F,,. The sum of the proposed procedure to encode blaekis

frequency counts for all symbols if,,(¢) is T,,, + ¢ — 1.

Since no symbol is moved from the primary symbol set to the ~ Li, — L,

secondary symbol set inside a bloek, € F,,,(¢). Hence, the =1ogy {(Tim + |Sm| — V(T + |Sm)
frequency count corresponding & is 74, m + ka,,m, Where e (T + S| + B —2)}
ka, m is the number of occurrences af before timei in m m m
block m. Thus, in case 1), the probabilipy that the proposed — logo {Ton(Tn +1) - (T + B = 1) }
arithmetic coding procedure uses to encaglés — log, H Ca,m — 108 {|Sm|(|Sm| — 1)
1 a€V,,
Pi= o (et Rem). @) s (1Sm] = [V + 1) }- (8)

) In summary, we have established the following result.
If a; € S,,(¢), the proposed procedure encodes two symbols:Thegrem 1: The total saving in bits that results from using
ESCand ;. SinceESCis in the primary set, the probability i nroposed procedure, rather than the conventional arithmetic

associated to it i9/(7,, + ¢ — 1). On the other hand, since c,4ing WNCAC [3], to encode a stream of symbols is given by
a; is in the secondary symbol set the probability associated to

itis 1/|S,,(¢)|. Therefore, the probability; that the proposed 7 _  _ Z (L' — L)
arithmetic coding procedure uses to encaglés given by — "

1 1 = 3" logy (T +|Sm| = 1)P | —log, |15
;= . . 3 082 ( m T+ | 7"| ) 02 m
s R T 6] ® 2 | ) 7]
The symbola; is then moved to the primary symbol set. —logy J[ cam —logs |:|Sm|_|VM|:| )
Case 3) ¢; € F,,(¢) anda; ¢ F,,) implies thata; was a€Vim

moved from the secondary symbol set to the primary symbol o
set at an earlier time during the coding of bloek The Where itis assumed that the last two terws, [ [.cy,, ca,m

weighted probabilityp; of a; is therefore given by andlog, [|Sm|*m] are zero ifV,, is null.
1 If (9) is positive, the proposed algorithm is more efficient
pi = TEr— ko, m- (4) than WNCAC. Otherwise, it is less efficient. The first and

second terms in (9) represent the saving that is due to the more
Note that (4) is identical to (2) with,, ., = 0 sincea; ¢ F,,. accurate probability model used by the proposed algorithm.
Note also that in all three cases, the denominatgs, ebntains The last two terms in (9) correspond to the overhead associated
the factor(7,,, +¢ — 1). with using dual symbol sets. When the size of the secondary
Now note that DSAC and WNCAC assume that the sourset is large and few symbols are moved to the primary set, i.e.,
is memoryless. Therefore, the probability, associated to the when |S,,| is large and|V,,,| and [[,cy. ca,» are small for
sequence of symbols in blogk is the product of alp; in that all m, L’ — L is always positive, and the proposed algorithm
block. Note thatF,, is independent of the order in which theprovides better compression than WNCAC. This is often the
symbols appear. In particular, by reordering the tepmsn case in lossy image coding, and has been confirmed by the
P,., we can writeF,, as in (5), shown at the bottom of thesimulations that we shall present in Section IV.
page. Theorem 1 implies that the performance margin that DSAC
Let L,, denote the total number of bits used to code thenjoys over WNCAC increases when the ratio of the size of
symbols in blockm with DSAC with exact arithmetic, then the alphabet to thievcal symbol set increases. This is because
L,, = —log, P, or asin (6), shown at the bottom of the nexthe difference between the first term and the second term
page. Letl!, be the total number of bits used by WNCAC tan (9) increases whenS,,| increases. In other words, the
encode the symbols in block. By using a similar approach, performance advantage of DSAC over WNCAC increases as

B frequency count of the symbal
~ sum of the frequency counts of all the symbols in Get

Pa 1)

— . — !
[HaEFm—{ESC}na’rn(na’nl + 1) (na,rn + Ca,m 1):| Haevm(c(z,nz 1)
Trn,(Trn, + 1) Tt (Trn, + Brn, - 1) N |Srn,|(|Srn| - 1) T (|Srn| - |Vrn,| + 1)

P, = %)
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the symbol distribution is more skewed and nonstationary, i.and

as more symbols in the alphabet do not appear locally.
Theorem 1 also implies that the performance difference
|L” — L| increases when Mgk decreases. This is due to

the fact that rescaling must be done more often and thus e

Ht = >

1671

_p:—, m 1Og2 p:zt m*
a€(F,,—{ESC}HUV,,

now invoke an inequality from information theory [10],

number of blocks increases. Note that (9) does not depend¥Ach states that ife = my +my + - - - 4-my., wherem; > 1

the statistical properties of the symbolsp, for block m. It
implies that, among all sources that differ from one another
in the probabilities of the symbols i#,, for some blockm,

the relative saving is higher for sources that can be encoded

with less bits.

Finally, Theorem 1 allows us to easily predict when DSAC
is more efficient in compression than WNCAC. To illustrate
this, we use the following artificial example. Suppose that we

need to encode 30000 symbols in a 26@56 image coding Since
application. We assume that the alphabet size is 500, and the

local symbol set from an image is kept at a size of 50 for
simplicity. This is not true in general in real applications, since

the local symbol set usually changes with position within tr&"d
image. Suppose that five symbols are in the secondary symbol
set for each block, and 10 b are used for frequency counts.

fori=1,2,--., k&, then

IR SV (VIO RN U2
n+k—1
k-1
n!
< gnH ((ma/n), - (my/n)) (12)

Z (na—i—ca)—i—an:T—i—B—l

acF—{ESC} acV

Z ng =1 —1,

a€F—{ESC}

Then, Theorem 1 tells us that the savings that result frc\gfb obtain by applying (11) to (10)

using DSAC amount to about 0.64 b/symbol, or 0.30 b/pix
for the image. This translates into 20% saving if the bit rate
with conventional arithmetic coding is 1.5 b/pixel.

Let us now develop lower and upper bounds for the number
of bits L,,, that DSAC uses to encode bloek. To this end,
we rewrite L,,, as shown in (10) at the bottom of the next page
(all subscriptsm are omitted). Let

n
o = F, —{ESC
pa,m Tm_lvae { }

and

Na, m~+Ca, m

+ — T+ Bm—17
pa,rn - Ca, m
T+By—17

if a € F,, — {ESC}
if a €V,

Note thatp, ,, and pf ,, are the weighted probabilities of
symbol ¢ at the beginning and end of bloek, respectively.
Denote byH,, and H;} the empirical Shannon entropies of
the primary symbol set (excludingSQ at the beginning and
at the end of blockn, respectively. We have

H. = >

a€F,,—{ESC}

_p; m 1Og2 p; m?

L, <(T+B-1)H} - (T-1)H,,

T+|\F| -3
“%<w“2>

+ log, H (ng + ¢a) H Ca

lacF-{ESC} eV
—log, H ng | +log, |:|S|7|V|:|
lacF-{ESC}
<(T+B-1H!-(T-1H,,
T+ |F|-3
e (7057
T+B-1
+ (|F]+ V] = 1)log, FL V=1
+log, [|S|—|V|] (12)

The last inequality follows from the concavity of the logarith-
mic function (log(-)").

... _ . R
|:H”'&Fm—{FJSC}na’nl(na’nl + 1) (na,rn + Ca,m 1):| HO,EVm(ca’nl 1)

L,, = —log,

+logy [[Sm|(|Sm| = 1) - (1Sm| = [Vin| + 1]

Trn(Trn + 1) e (Trn + Brn - 1)

(6)

L;n, = 1Og2

|:HO«CFM[ESC} na:"l(n%"l + 1) e (na,rn + Ca,m — 1):| . HaCVmCu”nl!

(Trn + |Srn| - 1)(Trn + |Srn|) e (Trn + |Srn| + Brn - 2)

(7)
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Similarly, we have

o, (FHBHIEI+V]=3
&2 |F|+ V] -2

)

(ng + cq) H Ca

acV

+ log,

II

e F—{ESC}
|acF—{ESC}
>(T+B-1)H - (T-1)H,,

e, (THBHIF|+V]=3
52 B+ V] -2

—log, N | + log, [IS |—W}

) +log, [|S|_m]
(13)

Therefore, the following bounds characterize the code Iengﬁh

that corresponds to the proposed algorithm:
Theorem 2: The code length. of the proposed DSAC for
a stream of symbols is bounded by

Z H. —loe Trn+Brn+|Frn|+|Vrn|_3
m gQ |Frn|+|vrn|_2

m

+log, [|sm|—m]}
<L

Trn,+ Frn, -3
<32 {t o (" 7

)

Trn, + Brn, -1
+ (|[Fm| + V| — 1 logy ——F—F+——
(| | | | ) 0go |Fnl|+|an|_1
+log, [|Sm|_|Vm|}} (14)
where H,,, = (T, + By — VHY — (T, — 1)H,,,.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

airplane Barbara

mandrill Zelda

peppers

Fig. 1. Images used in the experiments.

Note that expressions (9) and (14) in Theorems 1 and
can be further simplified with Sterling’s formula!
V2rn(n/e)® for n > 1.

Similar results can be derived to compare DSAC and
ZFEAC, and for the variations of DSAC discussed in
Section II-C.

We conclude this section by comparing the predictions
of Theorems 1 and 2 to experimental results. Consider the
problem of entropy-coding the symbols corresponding to the
DCT ac coefficients in JPEG coding [11]. JPEG uses 176 dif-
ferent entropy-coding symbols for the DCT ac coefficients. To
perform our experiment, we used the seven standardSa 12
gray-scale (8 b/pixel ) shown as thumbnails in Fig. 1 and listed
in Table Il. Each image was coded at four different quality
levels. Further, we set the number of bits for frequency counts
f = 10. A typical symbol distribution is shown in Fig. 2. Note
that the primary symbol set is much smaller than the alphabet.
Fig. 3 shows the relative errors between the predictions of
Theorem 1 and actual results. The relative error is defined as

~
~

Theorem 2 enables us to estimate the code length without

actually applying DSAC to code the sequence of symbols
It is especially useful when we want to find quickly the
optimal parameters, such as block sizes, scaling method, etc,_—

for DSAC.

relative error
actual saving bits- Theorem 1’s saving bits

- - x 100%.
actual saving bits ¢

— log,

[Ha,tF—{ESC}na(na +1)--(ng + ca — 1)} : Haev(ca - !

I(T+1)(T+B-1)

Ha,eF—{ESC}(n“+c“ 1)'H,,EV(Ca 1)!

+ log, [|S|_m}

1\
ac F—{ESC}(na D

— log
82 (T +B—1)!

+ log, [|S|_m}
HG«EF—{ESC}(TL”’ + ca)!Hacha!

— log,

+ log,

+ log, T—-1)

11 !
€ F—{ESC}

(T'+B-1)! (T —1)!
+log, H (ne + ¢a) H ¢o — logs H ng + logs [|S|_m} (10)
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(15), at the bottom of the next page. Once more, we used
Fig. 3. Comparison between the actual number of saving bits and Theorghie seven standard 512 512 gray-scale (8 b/pixel) shown
I's prediction. as thumbnails in Fig. 1 and listed in Table Il. We used the
] ) same parameters with DSAC, WNCAC, and ZFEAC. Our
The horizontal axis denotes the case number. Each c@g@lementation of DSAC chooses the number of litssed to
corresponds to a given image coded at a given quality level @present frequency counts automatically given a user selected
shown in Table I. The corresponding bounds computed frofgnge forf and a desired minimum number of blocks. The user
Theorem 2 are compared to the actual number of coding bilSiected range fof is chosen such that Max = 2/~ is
used by DSAC in Fig. 4. much larger than the size of alphabet. Such a choice provides
Note that the predictions of Theorem 1 are very accuraige proposed method with enough opportunities to potentially
Similarly, the bounds given by Theorem 2 are excellent. It ig;f symbols from the primary symbol set to the secondary
interesting to note that the coding improvements predicted _Qymbol set for most of the images that we have tested. (Recall
Theorem 1 are always lower than the actual observed codifig; in the simplest implementation of the proposed method

improvement values. (Section 11-B), shifting of symbols from the primary set to the
secondary occurs only at scaling time when the total frequency
IV.  EXPERIMENTAL RESULTS count reaches its maximum value of M&}. Further we did

To gain some insight into the performance of the proposedt use the special EOF (end of file) symbol since image sizes
DSAC, we have applied it to several image coding schemage known to arithmetic coders.
and compared its performance with that of WNCAC [3] and We first applied the three procedures to the wavelet-based
ZFEAC [6]. We measure the coding performance enhandeiage coding scheme reported in [12]. We used the 9-7
ment that results from using the proposed approach witiorthogonal wavelet filters given in [13] to implement the
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TABLE I
COMPARISON FOR WAVELET-BASED CODER
WNCAC DSAC ZFEAC
. Performance . . Performance
Images Bitrate Q-coder | Overall Bitrate || Bitrate Q-coder | Overall PSNR
(bpp) (%) (%) (bpp) | (bpp) (%) (%) (dB)
Airplane 0.509 | 16.41 1007 || 0458 [ 0.480 7.36 446 [ 3491
0.355 | 21.95 | 13.27 | 0.308 | 0.326 9.73 5.65 | 32.67
Barbara || 0-856 | 25.76 [ 1507 | 0744 | 0.783 8.77 5.25 | 33.47
0.609 | 29.71 1862 || 0495 | 0.536 | 12.89 7.52 || 30.89
Boat 0.657 | 36.24 | 1941 | 0550 || 0574 8.01 443 || 33.80
0.393 | 17.47 9.54 0.356 | 0.369 6.52 3.51 31.55
Lona 0.438 | 3060 | 16.34 | 0.376 [ 0.398 | 10.41 5.72 | 34.87
0.311 | 31.85 | 19.38 | 0.250 | 0.267 | 11.12 6.17 | 33.00
Mandzill L1515 | 13.27 7.61 1.408 || 1.459 6.06 3.62 ]| 30.43
0.978 | 16.71 9.24 0.887 || 0.934 9.07 4.97 | 27.59
Peppers 0.441 | 2625 | 13.79 [ 0.387 | 0.408 9.92 535 [ 34.12
0.318 | 2829 | 16.74 | 0.265 | 0.282 | 11.15 6.14 | 32.64
Zelda 0.235 | 19.26 | 10.63 | 0.213 [ 0.225 | 10.24 5.83 | 36.10
0.160 | 21.33 | 12.63 | 0.140 [ 0.150 | 11.87 6.91 34.55
approach of [12]. The run-length and nonzero quantized TABLE Il
wavelet coefficient values were coded separately with CompARISON FORJPEG @DEC
arithmetic coding. The maximum run-length was set to 15 WNCAC | Dsac | Performance [ o (T Derformance
to balance the requirements of the small subimages that areages B Entropy | Overall Eufropy | Overall
(bpp) | (bpp) | (%) (%) | (pp) | (%) (%)

produced by the coarse low frequency stages of the wavelet — . - o -
. . 197 1.147 6.45 22 1.1 0.0 0.0
transform and the large subimages produced by the fmggrp]ane oo o 65 VTR 2 T 005

high frequency stages of the wavelet transform. As a result, 0588 | 0559 | 7.07 489 || 0559 | -0.04 | -0.03
the run-length coder uses a total of 18 symbols (run-lengths 1173 | 1122 | 645 4.28 1121 | -032 | 012
f 0-15 d f b b | d t. Lena 0.739 0.704 6.86 4.66 0.703 -0.27 -0.14
rom U-15, an end-of-subimage symbol and a repeaung-run- 0543 | 0517 | 7.06 188 || 0516 | -0.21 | 014
length symbol for run-length larger than 15). The symbol set 2474 | 2.363 | 6.97 | 450 || 2362 | 008 | -0.05

corresponding to the nonzero quantized wavelet coefficieftndrill ig? };‘)i ;gg égf i?ﬁg 8§Z g;;’
values was designed to be as tight as possible in a continuoss = = ‘ ' = . —

- . X 0973 ] 0928 | 696 461 0927 | 021 | -0.14
range. The symbols with minimum and maximum value arezeida 0602 | 0571 | 758 515 | 0571 | -0.04 | -0.03
transmitted to the decoder. The experimental results for the 0436 | 0413 | 794 | 547 | 0412 | 010 | -0.06

three arithmetic coding procedures are reported in Table II.

All three arithmetic coding procedures yield similar coding

results for run-length coding because the size of the symis¥| zero-frequency symbols from the symbol set contribute
set associated with run-length coding is small. Therefor®, the performance advantage of DSAC over WNCAC and
we reported the performance enhancement in Table 11 in tWdEAC. The PSNR of the compressed images are also listed
forms. The first column is labeled as “Q-coder.” It compare8 the table.

the performance of the three coders when used to encodédf we compare the DSAC results with the next-generation
the nonzero quantized wavelet coefficient values only. Théavelet-based image codec, the EZW [8], we find that their
second column compares the overall coding performance Rgirformances are very close: For Lena at 0.250 b/pixel, the
the three coders, i.e., it includes the results correspondiR§NR corresponding to DSAC is 0.17 dB worse than that
to the Q-coderand the run-length coder. As we can segorresponding to EZW, while for Barbara at 0.50 b/pixel, it
from Table Il, the proposed DSAC has a significant coding 0.46 dB better.

advantage over conventional arithmetic coding (WNCAC). Next we applied the three arithmetic coding methods to the
This coding advantage is in the range of 7% to over 199°EG image coding standard. Specifically, we implemented
in overall coding performance (Q-coder run-length coder) the baseline JPEG procedure [11] and replaced the Huffman
and 13% to over 30% for the “Q-coder” only. The codingntropy coding step by adaptive arithmetic coding. The results
advantage of DSAC over ZFEAC is smaller but is stilbf our experiments are shown in Table Ill. Note that the JPEG
nonnegligible. Both the adaptation of symbol sets and remowagorithm uses a two-step coding procedure to encode each

coding length with coder A- coding length with DSAC
fi - - 1009
performance= coding length with coder A % % (15)
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TABLE IV
CoMmPARISON FORJPEGtIKE CODEC

wavelet coding procedure of [12] (cf. Tables Il and Ill). This
is due to the fact that the wavelet transform yields a better
compaction of the signal energy. DSAC is able to better exploit

Tmages WNCAC | DSAC | Performance || ZFEAC | Performance ' > - Ve )
(bpp) | (bpp) (%) (bpp) (%) the resulting localized and skewed symbol distribution. In
1138 1.053 743 1051 0.19 JPEG, the image is divided into 8 8 blocks. These image
Airplane || 0.741 | 0.680 8.29 0.679 0.15 blocks are independent of each other. The raster scan of the
0.570 | 0.508 10.89 0.509 0.20 8 x 8 image blocks in JPEG and JPEG-like coders reduces
L1z | 1.029 748 1.027 -0.19 the ability of DSAC to efficiently exploit the localization of
Lena 8.201 0.643 8.22 0.641 -0.31 symbols in the image.
532 0475 1061 0'474 '0"2} We can conclude from the experimental results that the
2.333 | 2.123 8.99 2.130 0.33 .
Mandill I 1535 13533 .80 1388 036 performance gain of DSAC over WNCAC comes fror_n re-
1.160 1.017 19.97 1024 0.68 moval of zero-frequency symbols for both DCT based image
0.934 | 0.847 9.96 0.846 2012 coding methods. For the wavelet-based coder, the performance
Zelda 0.581 | 0.522 10.15 0.520 -0.38 gain comes from removal of zero-frequency symtzaisl the
0437 | 0.379 13.23 0.378 -0.26 adaptation of the symbol set to the local statistics of the source.

guantized DCT coefficient: The first step encodes the number
of bits used to represent the coefficient. The second step simpl

. , . )(Ne have proposed a novel arithmetic coding which works
represents the coefficient as a variable-length integer (VLI
. S . . ell for sources that produce locally a small subset of all pos-
whose length is specified in the first step. Entropy coding

I . : .
used only to encode the number of bits used to represent ﬁi%le source outputs. We provided theoretical and experimental

coefficients. All three arithmetic coding techniques were useq pansons between the proposed algorithm, the conventional

to encode these entropy coding values. We used the same Eiaptlve arithmetic c odmg proc.edure of [3] and the zero-
requency escape arithmetic coding of [6]. We showed exper-

number representation in all three implementations. Columnsentally that the proposed procedure outperforms the other

4 and 7 in Table 11l show the performance advantage of DS & . . : . : . .
wo arithmetic coding techniques when used in conjunction

over WNCAC and ZFEAC when the entropy coding part Onl%ith wavelet-based image coding. This coding advantage is

is considered. Columns 5 and 8 show the overall relatiy Ue to the fact that the proposed scheme is better able to exploit

coding performances of the three methods. This includes Eh% skewedness and variability of the symbol distributions

ﬁ:{g;frgf both the coded entropy values and the variable Ien%tshsociated with wavelet based image coders. For DCT-based

image coding schemes, its performance is still better than that
To better compare the three methods, we replaced t [3] and comparable to that of [6].

JPEG symbol coding scheme with direct entropy coding o
all quantized dc and ac DCT coefficients and run-lengths of
zeros. We encoded each type of information with a different
adaptive modpl. The sizes of the rgsulting alphabets dEpend ﬂﬁ‘ G. G. Langdon, Jr., and J. Rissanen, “Compression of black-white
the quantization table and the quality scale. Each alphabet was images with arithmetic codingJEEE Trans. Communvol. COMM-29,
i i i i i pp. 858-867, 1981.

deSIQned to mCIUde,iny the _pos&ble SymbOIS in-a COhtIﬂUOUﬁ] C. B. Jones, “An efficient coding system for long source sequences,”
range for the specific quantized table and the quality scale
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