
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999 1667

Arithmetic Coding with Dual Symbol
Sets and Its Performance Analysis

Bin Zhu, Member, IEEE,En-hui Yang,Member, IEEE,and Ahmed H. Tewfik,Fellow, IEEE

Abstract—In this paper, we propose a novel adaptive arithmetic
coding method that uses dual symbol sets: A primary symbol
set that contains all the symbols that are likely to occur in the
near future and a secondary symbol set that contains all other
symbols. The simplest implementation of our method assumes
that symbols that have appeared in the recent past are highly
likely to appear in the near future. It therefore fills the primary
set with symbols that have occurred in the recent past. Symbols
move dynamically between the two symbol sets to adapt to the
local statistics of the symbol source. The proposed method works
well for sources, such as images, that are characterized by large
alphabets and alphabet distributions that are skewed and highly
nonstationary. We analyze the performance of the proposed
method and compare it to other arithmetic coding methods, both
theoretically and experimentally. We show experimentally that in
certain contexts, e.g., with a wavelet-based image coding scheme
that has recently appeared in the literature, the compression
performance of the proposed method is better than that of the
conventional arithmetic coding method and the zero-frequency
escape arithmetic coding method.

Index Terms—Arithmetic coding, data compression, entropy
coding, image compression, JPEG, wavelet.

I. INTRODUCTION

A RITHMETIC coding [1]–[4] is a very efficient entropy
coding technique. It is optimal in theory and nearly

optimal in practice, in that it encodes arbitrary data with
minimal average code length. It is widely used in text and
image compression.

Arithmetic coding has two major advantages over other
entropy coding methods, such as Huffman coding. First, its
coding efficiency is generally higher than those of other
entropy coding methods. This is particularly true when the
probability of a symbol is close to one. Second, in arithmetic
coding, coding and source modeling are separate. Therefore,
an arithmetic coder can work in conjunction with any model
that can provide a sequence of event probabilities. The latter
advantage is significant because large compression gains can
be obtained only through the use of sophisticated models that
provide more accurate probabilistic descriptions of the input
data. The data model used with arithmetic coding can be adap-

Manuscript received November 17, 1995; revised October 31, 1997. The
associate editor coordinating the review of this manuscript and approving it
for publication was Prof. Michael W. Marcellin.

B. Zhu is with Cognicity, Inc., Edina, MN 55439 USA.
E. Yang is with the Department of Electrical and Computer Engineer-

ing, University of Waterloo, Waterloo, Ont., N2L 3G1 Canada (e-mail:
ehyang@bbcr.uwaterloo.ca).

A. H. Tewfik is with the Department of Electrical Engineering, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: tewfik@ece.umn.edu).

Publisher Item Identifier S 1057-7149(99)09359-8.

tive. Adaptive arithmetic coding techniques yield very good
compression with a wide variety of source data. Adaptation
is particularly useful with sources, such as images, that are
generally not statistically stationary.

Note that adaptive arithmetic coding is a one-pass proce-
dure: The coder builds up the statistical model while coding
the input data. Static entropy coders need two-passes or use
fixed statistical models. Two-pass coding is not efficient for
coding large data. Furthermore, the statistical model has to be
transmitted to the decoder. This reduces the total compression
coding efficiency. Some coders use fixed statistical models
and perform only one-pass over the data. However, their
compression efficiency can be significantly inferior to coders
which use exact models. On the other hand, it has been proven
[5] that the compression efficiency of arithmetic coding with
an adaptive model is never significantly inferior to arithmetic
coding with the exact data model. For these reasons, we
concentrate on adaptive arithmetic coding in this paper.

In arithmetic coding, no symbol can have a zero probability
of occurrence. Arithmetic coding uses an interval to represent
the probability of a sequence. In particular, it uses a number
in the interval to differentiate the sequence from all other
possible sequences. A zero probability implies zero interval.
Thus, it cannot be represented by any number within the
interval. In practice, arithmetic coding is usually implemented
with incremental transmission and reception and with arith-
metic operations of fixed precision [1]–[3]. Fixed precision
arithmetic coding simplifies implementation in software and
hardware and reduces complexity. However, a fixed precision
implementation means that the probabilities of input symbols
must be larger than or equal to the smallest nonzero number
that can be represented with the given number of bits. This
restriction can cause a problem when arithmetic coding is
applied to a source that has a lot of symbols with probabilities
close to zero. Since arithmetic coding must accommodate all
symbols in the alphabet, we have to raise the probabilities
of the symbols that do not occur locally to the minimum
probability value that can be represented with fixed precision.
The resulting distorted source probability model reduces the
efficiency of arithmetic coding.

There are several ways of addressing this problem. For
example, one can use higher precision arithmetic in the im-
plementation given in [3]. However, high precision arithmetic
slows the adaptation of the algorithm described in [3] to the
source statistics. Another solution [6] to the problem is to
allocate probabilities (intervals) only to symbols that have
occurred in the past (instead of to all possible symbols) and

1057–7149/99$10.00 1999 IEEE

1668 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

reserve some space for escaping to a new symbol. If the current
symbol is new, a special escape symbol is first coded, followed
by the new symbol itself. The new symbol is then put into
the list of symbols and allocated an interval to represent its
probability of occurrence. This technique has been extensively
used in the “prediction by partial match” (PPM) method [7],
which uses Markov models of different orders to estimate the
source statistics. Throughout the rest of the paper, this method
will be referred to aszero-frequency escape arithmetic coding
(ZFEAC). We will refer to Wittenet al.’s implementation [3]
of arithmetic coding as WNCAC.

In image coding, the alphabet typically consists of quantized
transform coefficient values or processed pixel values. It may
also correspond to pixel values in some high bit rate wave-
form coders. The alphabet is usually large; a straightforward
enumeration of all symbols in it requires several bits per pixel.
Many symbols in the alphabet may have a zero or very small
probability of occurrence in a given image. In addition, the
symbol distribution changes with location within the image
and is generally very skewed. For example, a smooth region
may produce a small set of symbols while a textured region
may yield a large set of symbols.

Note that some image coding procedures use small alphabet
sizes. For example, the embedded wavelet zero-tree image
coding (EZW) [8] uses a clever iterative thresholding method
to reduce the symbol set size to only four. Our emphasis in
this paper is on image coding algorithms that do use large
alphabets.

ZFEAC can partially address the problems that arise in
image coding by effectively reducing the size of the symbol
set. However, as we shall see later, the skewedness and spatial
variability of the symbol distributions in image coding reduce
its coding efficiency. For example, it is not effective when used
in conjunction with wavelet-based image coding approaches.
In these schemes, some symbols can appear at the beginning of
the symbol sequence to be coded and then never appear again.

In this paper, we introduce a novel adaptive arithmetic
coding technique called the dual set arithmetic coding (DSAC).
The method adapts itssymbol setto the local statistics of
the symbol source. It can effectively deal with the above-
mentioned problems with a small increase in complexity. More
specifically, the method uses two symbol sets: Aprimary
symbol setthat contains all the symbols that are likely to occur
in the near future and asecondary symbol setthat contains all
other symbols. The primary set acts as the default symbol set.
The coding procedure escapes to the secondary symbol set
if the current symbol is not in the primary set. This step is
similar to ZFEAC except that the new symbol is also entropy-
coded in our method. Furthermore, the procedure also removes
from the primary set symbols with probabilities of occurrence
lower than a prespecified threshold. This allows the proposed
approach to better adapt to the local statistics of the symbol
source.

We note here that the technique of adapting the symbol set
is also used in a lossless image coding method called CALIC
[9]. But it is used in a very restricted manner: it lumps the tail
of the probability density function into a single escape symbol,
and expands and contracts this tail “on the fly.”

This paper is organized as follows. In Section II, we propose
a novel method which adapts both the symbol set and symbol
probabilities. In Section III, we provide a theoretical perfor-
mance analysis of the proposed arithmetic coding and compare
it with conventional arithmetic coding. Finally, experimental
results are reported in Section IV in which the proposed
method is compared with WNCAC and ZFEAC in several
image coding applications.

II. A RITHMETIC CODING WITH DUAL SETS

A. Arithmetic Coding with Dual Symbol Sets

DSAC uses a special symbolESC in the primary set to
escape to the secondary set. Many methods can be used to
adaptively shift symbols from one set to the other. Here, we
focus on a simple implementation, modeled after WNCAC.
Symbols that have appeared in the recent past are assumed to
be highly likely to appear in the near future. Further, if the
current symbol is not in the primary symbol set, the symbol
is moved from the secondary set to the primary. When the
frequency counts in the primary set are scaled, the symbols
(exceptESC) with frequency counts less than a threshold are
moved to the secondary symbol set.

The algorithm can be described as follows.

1) Initial State: Either one of two initial states can be used;
(A) is all symbols exceptEOF (end of file) are in
the primary symbol set. (B) is all symbols exceptESC
are in the secondary symbol set. State (A) is similar
to WNCAC while state (B) is similar to ZFEAC. The
frequency counts associated to all symbols are initialized
to one. The symbolESCis always in the primary symbol
set with frequency count one, while the symbolEOF is
always in the secondary symbol set since it is used only
once.

2) a) If the current symbol is in the primary symbol set,
encode the symbol and increase the frequency count
associated with it by one. Then go to Step 3.

b) If the current symbol is not in the primary symbol
set, encode the special symbolESC, and use the
secondary symbol set to encode the current symbol.
The symbol is then moved from the secondary
symbol set to the primary set since it is likely to
occur in the future.

3) If the sum of all frequency counts in the primary symbol
set reaches the maximum frequency count Max, the
frequency counts associated with all symbols in the pri-
mary symbol set are halved and rounded up to integers.
All symbols with a frequency count of one exceptESC
are moved to the secondary symbol set since they are
unlikely to occur in the future.

4) Go back to Step 2 to code the next symbol.

The decoding procedure proceeds similarly. Note that if only
a small number of symbols occur in the recent past, most
symbols will be in the secondary symbol set. Therefore, we
can use a smaller Max, low precision integer arithmetic,
and thus improve adaptation.

ZHU et al.: ARITHMETIC CODING 1669

Initial state (B) offers some advantages over initial state
(A) when there are many symbols with zero-frequency counts
and the length of the symbol sequence to be coded is short.
These advantages are essentially similar to those that ZFEAC
has over WNCAC. However, these advantages are not as
important in DSAC since the effect of the initial state in DSAC
disappears once a symbol is moved from the primary set to
the secondary set.

B. Comparison with Other Approaches

DSAC adapts the symbol set to the local symbol statistics
of the source. A symbol can shiftin and out of the primary
symbol set based on the estimated likelihood that it will occur
in the near future by using recent observations. This is the
key difference between DSAC and other approaches proposed
in literature. For example, ZFEAC reduces the symbol set
by inserting into the symbol set only those symbols that
have appeared in the past. No symbol is removed once it
is inserted. Normal arithmetic coding, e.g., WNCAC, uses a
fixed symbol set. No symbol can either shift in or out. As
we shall see in Section IV, this simple difference can yield an
appreciable coding advantage when used in conjunction with
certain coding techniques.

When the current symbol is not in the (primary) symbol
set, ZFEAC escapes to transmit the new symbol while DSAC
escapes to use the second symbol set to encode the symbol.
DSAC is more efficient in doing this: Let be the size of the
whole alphabet, and be the size of the secondary symbol
set. Note that . ZFEAC encodes a new symbol using

bits while DSAC encodes it with asmallernumber
bits. As the number of symbols in the (primary) sym-

bol set increases, the difference between the number of bits that
DSAC and ZFEAC use to encode a new symbol also increases.

C. Variations of the Dual Set Arithmetic Coding

Let us now discuss several variations of DSAC. First we
can easily add Markov models to DSAC, in the same way
as Markov models are used with normal arithmetic coding.
In another variation, the frequency count associated to the
escape symbolESCcan be chosen to be larger than one. By
associating a large frequency count toESC, we reduce the
compression effect of coding the extra symbolESC at the
expense of distorting the probabilities of the symbols in the
primary set. The best choice of the frequency count associated
to ESC depends on the source to be coded. Note that as
the frequency count associated toESC increases, the coding
efficiency difference between DSAC and WNCAC decreases.
If we set the frequency count ofESC to be equal to the size
of the secondary symbol set, DSAC uses exactly the same
number of bits to encode a sequence of symbols as WNCAC.

The procedure used to shift symbols between the two
symbol sets in the proposed method can be replaced by
more sophisticated mechanisms. For example, we can use
a threshold larger than one, or an adaptive threshold, to
move symbols from the primary symbol set to the secondary
symbol set or vice versa. In the simple implementation of
DSAC described in Section II-A, symbols are shifted from
the primary set to the secondary occurs only when frequency
counts are scaled. This is simple but not necessary. Symbols

can be moved from the primary symbol set to the secondary
at any time without scaling frequency counts. For example,
we could move a symbol to the secondary symbol set if the
symbol does not occur over a certain number of input symbols.
This separation of the adaptation of the symbol probabilities
and symbol sets could be advantageous.

Other possible modifications include adapting Maxto the
size of the primary set, using better initial conditions derived
from training or informationa priori to reduce learning time,
and using more than two symbol sets.

III. PERFORMANCE ANALYSIS OF DSAC

To analyze the proposed method, we assume that the stream
of symbols to be coded is divided into blocks. A block is a
sequence of symbols that is processed between two successive
scalings of frequency counts. Theth block consists therefore
of all symbols that occur between theth and st fre-
quency scaling operations. Our analysis can be used regardless
of whether or not all blocks have the same size. When scaling
is performed in a periodic manner as in [3], all blocks, except
for the first one, have the same size. Otherwise, block sizes
will vary.

To simplify our analysis, we also assume that coding is per-
formed with exact rational arithmetic. Integer arithmetic with a
large fixed range will introduce roundoff errors. Fortunately, it
is well known [5] that roundoff errors have very small effects
on compression performance and integer arithmetic yields
nearly the same coding efficiency as exact rational arithmetic.
This is also confirmed by the results presented at the end of
this section.

We first introduce the following notation.

• and : Primary and secondary symbol sets, respec-
tively, at the beginning of block .

• and : Primary and secondary symbol sets,
respectivelybefore coding the th symbol in block .
Note that , and .

• : The frequency count associated with a symbol
at the beginning of block .

• : Sum of the frequency counts cor-
responding to the symbols in the primary set at the
beginning of block .

• : Size of block . Note that is equal to Max
.

• : Number of occurrences of a symbol
in block .

• : Subset of that consists of all which
appear in block .

• : Weighted probability used to encode theth symbol
in block .

• : Cardinality of a finite set .
• , with .
• , with .

Let us begin by noting that exact arithmetic coding uses the
estimated weighted probability1 of a symbol to code .
The estimated weighted probability of symbol in a set

1In the remainder of this paper, we shall use the term “probability of a
symbol” by abuse of terminology to denote the conditional probability of the
symbol given the image or source sequence to be coded.

1670 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

is shown in (1) at the bottom of the page. We need
bits to code with exact arithmetic coding.

Let the th symbol in block be . To determine the
probability that the proposed arithmetic coding procedure
uses to encode , we need to distinguish three cases: 1)

; 2) ; and 3) and .
Consider first the case where . The sum of the

frequency counts for all symbols in is .
Since no symbol is moved from the primary symbol set to the
secondary symbol set inside a block, . Hence, the
frequency count corresponding to is , where

is the number of occurrences of before time in
block . Thus, in case 1), the probability that the proposed
arithmetic coding procedure uses to encodeis

(2)

If , the proposed procedure encodes two symbols:
ESCand . SinceESC is in the primary set, the probability
associated to it is . On the other hand, since

is in the secondary symbol set the probability associated to
it is . Therefore, the probability that the proposed
arithmetic coding procedure uses to encodeis given by

(3)

The symbol is then moved to the primary symbol set.
Case 3) (and) implies that was

moved from the secondary symbol set to the primary symbol
set at an earlier time during the coding of block. The
weighted probability of is therefore given by

(4)

Note that (4) is identical to (2) with since .
Note also that in all three cases, the denominator ofcontains
the factor .

Now note that DSAC and WNCAC assume that the source
is memoryless. Therefore, the probability associated to the
sequence of symbols in block is the product of all in that
block. Note that is independent of the order in which the
symbols appear. In particular, by reordering the termsin

, we can write as in (5), shown at the bottom of the
page.

Let denote the total number of bits used to code the
symbols in block with DSAC with exact arithmetic, then

, or as in (6), shown at the bottom of the next
page. Let be the total number of bits used by WNCAC to
encode the symbols in block . By using a similar approach,

we find that is given by (7), shown at the bottom of the
next page. Note that the denominator in the above equation
starts with rather than . This is
due to the fact that the special symbolESC is not used in
conventional arithmetic coding.

Therefore, the total saving in bits that results from using the
proposed procedure to encode blockis

(8)

In summary, we have established the following result.
Theorem 1: The total saving in bits that results from using

the proposed procedure, rather than the conventional arithmetic
coding WNCAC [3], to encode a stream of symbols is given by

(9)

where it is assumed that the last two terms

and are zero if is null.
If (9) is positive, the proposed algorithm is more efficient

than WNCAC. Otherwise, it is less efficient. The first and
second terms in (9) represent the saving that is due to the more
accurate probability model used by the proposed algorithm.
The last two terms in (9) correspond to the overhead associated
with using dual symbol sets. When the size of the secondary
set is large and few symbols are moved to the primary set, i.e.,
when is large and and are small for
all , is always positive, and the proposed algorithm
provides better compression than WNCAC. This is often the
case in lossy image coding, and has been confirmed by the
simulations that we shall present in Section IV.

Theorem 1 implies that the performance margin that DSAC
enjoys over WNCAC increases when the ratio of the size of
the alphabet to thelocal symbol set increases. This is because
the difference between the first term and the second term
in (9) increases when increases. In other words, the
performance advantage of DSAC over WNCAC increases as

frequency count of the symbol
sum of the frequency counts of all the symbols in set

(1)

(5)

ZHU et al.: ARITHMETIC CODING 1671

the symbol distribution is more skewed and nonstationary, i.e.,
as more symbols in the alphabet do not appear locally.

Theorem 1 also implies that the performance difference
increases when Max decreases. This is due to

the fact that rescaling must be done more often and thus the
number of blocks increases. Note that (9) does not depend on
the statistical properties of the symbols in for block . It
implies that, among all sources that differ from one another
in the probabilities of the symbols in for some block ,
the relative saving is higher for sources that can be encoded
with less bits.

Finally, Theorem 1 allows us to easily predict when DSAC
is more efficient in compression than WNCAC. To illustrate
this, we use the following artificial example. Suppose that we
need to encode 30 000 symbols in a 256256 image coding
application. We assume that the alphabet size is 500, and the
local symbol set from an image is kept at a size of 50 for
simplicity. This is not true in general in real applications, since
the local symbol set usually changes with position within the
image. Suppose that five symbols are in the secondary symbol
set for each block, and 10 b are used for frequency counts.
Then, Theorem 1 tells us that the savings that result from
using DSAC amount to about 0.64 b/symbol, or 0.30 b/pixel
for the image. This translates into 20% saving if the bit rate
with conventional arithmetic coding is 1.5 b/pixel.

Let us now develop lower and upper bounds for the number
of bits that DSAC uses to encode block. To this end,
we rewrite as shown in (10) at the bottom of the next page
(all subscripts are omitted). Let

and

if
if

Note that and are the weighted probabilities of
symbol at the beginning and end of block, respectively.
Denote by and the empirical Shannon entropies of
the primary symbol set (excludingESC) at the beginning and
at the end of block , respectively. We have

and

We now invoke an inequality from information theory [10],
which states that if , where
for , then

(11)

Since

and

we obtain by applying (11) to (10)

(12)

The last inequality follows from the concavity of the logarith-
mic function (“ ”).

(6)

(7)

1672 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

Similarly, we have

(13)

Therefore, the following bounds characterize the code length
that corresponds to the proposed algorithm:

Theorem 2: The code length of the proposed DSAC for
a stream of symbols is bounded by

(14)

where .
Theorem 2 enables us to estimate the code length without

actually applying DSAC to code the sequence of symbols.
It is especially useful when we want to find quickly the
optimal parameters, such as block sizes, scaling method, etc,
for DSAC.

Fig. 1. Images used in the experiments.

Note that expressions (9) and (14) in Theorems 1 and
2 can be further simplified with Sterling’s formula

for .
Similar results can be derived to compare DSAC and

ZFEAC, and for the variations of DSAC discussed in
Section II-C.

We conclude this section by comparing the predictions
of Theorems 1 and 2 to experimental results. Consider the
problem of entropy-coding the symbols corresponding to the
DCT ac coefficients in JPEG coding [11]. JPEG uses 176 dif-
ferent entropy-coding symbols for the DCT ac coefficients. To
perform our experiment, we used the seven standard 512512
gray-scale (8 b/pixel) shown as thumbnails in Fig. 1 and listed
in Table II. Each image was coded at four different quality
levels. Further, we set the number of bits for frequency counts

. A typical symbol distribution is shown in Fig. 2. Note
that the primary symbol set is much smaller than the alphabet.
Fig. 3 shows the relative errors between the predictions of
Theorem 1 and actual results. The relative error is defined as

relative error
actual saving bits Theorem 1’s saving bits

actual saving bits

(10)

ZHU et al.: ARITHMETIC CODING 1673

Fig. 2. Typical distribution of symbols.

Fig. 3. Comparison between the actual number of saving bits and Theorem
1’s prediction.

The horizontal axis denotes the case number. Each case
corresponds to a given image coded at a given quality level as
shown in Table I. The corresponding bounds computed from
Theorem 2 are compared to the actual number of coding bits
used by DSAC in Fig. 4.

Note that the predictions of Theorem 1 are very accurate.
Similarly, the bounds given by Theorem 2 are excellent. It is
interesting to note that the coding improvements predicted by
Theorem 1 are always lower than the actual observed coding
improvement values.

IV. EXPERIMENTAL RESULTS

To gain some insight into the performance of the proposed
DSAC, we have applied it to several image coding schemes
and compared its performance with that of WNCAC [3] and
ZFEAC [6]. We measure the coding performance enhance-
ment that results from using the proposed approach with

TABLE I
CASE INDEXES

Fig. 4. Actual number of coding bits with the lower and upper bounds from
Theorem 2.

the following dimensionless percentage variable as shown in
(15), at the bottom of the next page. Once more, we used
the seven standard 512 512 gray-scale (8 b/pixel) shown
as thumbnails in Fig. 1 and listed in Table II. We used the
same parameters with DSAC, WNCAC, and ZFEAC. Our
implementation of DSAC chooses the number of bitsused to
represent frequency counts automatically given a user selected
range for and a desired minimum number of blocks. The user
selected range for is chosen such that Max is
much larger than the size of alphabet. Such a choice provides
the proposed method with enough opportunities to potentially
shift symbols from the primary symbol set to the secondary
symbol set for most of the images that we have tested. (Recall
that in the simplest implementation of the proposed method
(Section II-B), shifting of symbols from the primary set to the
secondary occurs only at scaling time when the total frequency
count reaches its maximum value of Max). Further we did
not use the special EOF (end of file) symbol since image sizes
are known to arithmetic coders.

We first applied the three procedures to the wavelet-based
image coding scheme reported in [12]. We used the 9-7
biorthogonal wavelet filters given in [13] to implement the

1674 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

TABLE II
COMPARISON FOR WAVELET-BASED CODER

approach of [12]. The run-length and nonzero quantized
wavelet coefficient values were coded separately with
arithmetic coding. The maximum run-length was set to 15
to balance the requirements of the small subimages that are
produced by the coarse low frequency stages of the wavelet
transform and the large subimages produced by the finer
high frequency stages of the wavelet transform. As a result,
the run-length coder uses a total of 18 symbols (run-lengths
from 0–15, an end-of-subimage symbol and a repeating-run-
length symbol for run-length larger than 15). The symbol set
corresponding to the nonzero quantized wavelet coefficient
values was designed to be as tight as possible in a continuous
range. The symbols with minimum and maximum value are
transmitted to the decoder. The experimental results for the
three arithmetic coding procedures are reported in Table II.
All three arithmetic coding procedures yield similar coding
results for run-length coding because the size of the symbol
set associated with run-length coding is small. Therefore,
we reported the performance enhancement in Table II in two
forms. The first column is labeled as “Q-coder.” It compares
the performance of the three coders when used to encode
the nonzero quantized wavelet coefficient values only. The
second column compares the overall coding performance of
the three coders, i.e., it includes the results corresponding
to the Q-coderand the run-length coder. As we can see
from Table II, the proposed DSAC has a significant coding
advantage over conventional arithmetic coding (WNCAC).
This coding advantage is in the range of 7% to over 19%
in overall coding performance (Q-coder run-length coder)
and 13% to over 30% for the “Q-coder” only. The coding
advantage of DSAC over ZFEAC is smaller but is still
nonnegligible. Both the adaptation of symbol sets and removal

TABLE III
COMPARISON FOR JPEG CODEC

of zero-frequency symbols from the symbol set contribute
to the performance advantage of DSAC over WNCAC and
ZFEAC. The PSNR of the compressed images are also listed
in the table.

If we compare the DSAC results with the next-generation
wavelet-based image codec, the EZW [8], we find that their
performances are very close: For Lena at 0.250 b/pixel, the
PSNR corresponding to DSAC is 0.17 dB worse than that
corresponding to EZW, while for Barbara at 0.50 b/pixel, it
is 0.46 dB better.

Next we applied the three arithmetic coding methods to the
JPEG image coding standard. Specifically, we implemented
the baseline JPEG procedure [11] and replaced the Huffman
entropy coding step by adaptive arithmetic coding. The results
of our experiments are shown in Table III. Note that the JPEG
algorithm uses a two-step coding procedure to encode each

performance
coding length with coder A coding length with DSAC

coding length with coder A
(15)

ZHU et al.: ARITHMETIC CODING 1675

TABLE IV
COMPARISON FOR JPEG-LIKE CODEC

quantized DCT coefficient: The first step encodes the number
of bits used to represent the coefficient. The second step simply
represents the coefficient as a variable-length integer (VLI)
whose length is specified in the first step. Entropy coding is
used only to encode the number of bits used to represent the
coefficients. All three arithmetic coding techniques were used
to encode these entropy coding values. We used the same VLI
number representation in all three implementations. Columns
4 and 7 in Table III show the performance advantage of DSAC
over WNCAC and ZFEAC when the entropy coding part only
is considered. Columns 5 and 8 show the overall relative
coding performances of the three methods. This includes the
effects of both the coded entropy values and the variable length
integers.

To better compare the three methods, we replaced the
JPEG symbol coding scheme with direct entropy coding of
all quantized dc and ac DCT coefficients and run-lengths of
zeros. We encoded each type of information with a different
adaptive model. The sizes of the resulting alphabets depend on
the quantization table and the quality scale. Each alphabet was
designed to include only the possible symbols in a continuous
range for the specific quantized table and the quality scale
used. For example, the quantization table we used gives a
smallest value of 11 for the ac DCT coefficients. If the quality
scale is chosen to be 0.8, the smallest quantization step is
8.8. Since the range of ac DCT coefficients is from1023
to 1023 (from Table III of paper [11]), the alphabet used to
encode these ac coefficients with arithmetic coding includes all
integers from 117 to 117 (). We shall refer
to this modified coder as the JPEG-like coder. A comparison
of the three arithmetic coding procedures for this JPEG-like
coder are shown in Table IV. The JPEG-like coder gives the
exact same decompressed image as that from the JPEG coder
on the same row of Table III. Note also that, as expected, the
direct entropy coding of quantized DCT coefficients in the
JPEG-like coder usually results in better compression than the
two-step approach used in the JPEG standard (Table III).

The performance of ZFEAC with both the JPEG and JPEG-
like coders is very close to that of DSAC. The relative coding
advantage of DSAC over WNCAC is also smaller for the
JPEG and JPEG-like coding algorithms as compared to the

wavelet coding procedure of [12] (cf. Tables II and III). This
is due to the fact that the wavelet transform yields a better
compaction of the signal energy. DSAC is able to better exploit
the resulting localized and skewed symbol distribution. In
JPEG, the image is divided into 8 8 blocks. These image
blocks are independent of each other. The raster scan of the
8 8 image blocks in JPEG and JPEG-like coders reduces
the ability of DSAC to efficiently exploit the localization of
symbols in the image.

We can conclude from the experimental results that the
performance gain of DSAC over WNCAC comes from re-
moval of zero-frequency symbols for both DCT based image
coding methods. For the wavelet-based coder, the performance
gain comes from removal of zero-frequency symbolsand the
adaptation of the symbol set to the local statistics of the source.

V. CONCLUSION

We have proposed a novel arithmetic coding which works
well for sources that produce locally a small subset of all pos-
sible source outputs. We provided theoretical and experimental
comparisons between the proposed algorithm, the conventional
adaptive arithmetic coding procedure of [3] and the zero-
frequency escape arithmetic coding of [6]. We showed exper-
imentally that the proposed procedure outperforms the other
two arithmetic coding techniques when used in conjunction
with wavelet-based image coding. This coding advantage is
due to the fact that the proposed scheme is better able to exploit
the skewedness and variability of the symbol distributions
associated with wavelet based image coders. For DCT-based
image coding schemes, its performance is still better than that
of [3] and comparable to that of [6].

REFERENCES

[1] G. G. Langdon, Jr., and J. Rissanen, “Compression of black-white
images with arithmetic coding,”IEEE Trans. Commun.,vol. COMM-29,
pp. 858–867, 1981.

[2] C. B. Jones, “An efficient coding system for long source sequences,”
IEEE Trans. Inform. Theory,vol. IT–27, pp. 280–291, 1981.

[3] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Commun. ACM,vol. 30, pp. 520–540, 1987.

[4] P. G. Howard and J. S. Vitter, “Arithmetic coding for data compression,”
Proc. IEEE,vol. 82, pp. 857–865, 1994.

[5] , “Analysis of arithmetic coding for data compression,”Inform.
Process. Manage.,vol. 28, pp. 749–763, 1992.

[6] I. H. Witten and T. C. Bell, “The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression,”IEEE
Trans. Inform. Theory,vol. 37, pp. 1085–1094, 1991.

[7] J. G. Cleary and I. H. Witten, “Data compression using adaptive coding
and partial string matching,”IEEE Trans. Commun.,vol. COMM-32,
pp. 396–402, 1984.

[8] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing,vol. 41, pp. 3445–3462,
1993.

[9] X. Wu and N. Memon, “Context-based, adaptive, lossless image codec,”
IEEE Trans. Commun.,vol. 45, pp. 437–444, 1997.

[10] T. M. Cover and J. A. Thomas,Elements of Information Theory.New
York: Wiley, 1991.

[11] G. K. Wallace, “The JPEG still picture compression standard,”Commun.
ACM, vol. 34, pp. 31–44, 1991.

[12] H. Gharavi and A. Tabatabai, “Sub-band coding of monochrome and
color images,”IEEE Trans. Circuits Syst.,vol. 35, pp. 207–214, 1988.

[13] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using the wavelet transform,”IEEE Trans. Image Processing,vol. 1, pp.
205–220, 1992.

1676 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 12, DECEMBER 1999

Bin Zhu (M’97) received B. S. degree in physics
from University of Science and Technology of
China in 1986 and the M.S. and Ph.D. degrees
in electrical engineering from the University
of Minnesota, Minneapolis, in 1993 and 1998,
respectively.

Since 1996, he has been with Cognicity,
Inc, Edina, MN, where he presently holds the
position of Lead Scientist. He is one of the
founders of Cognicity, Inc. His research interests
include multimedia watermarking, compression,

and communications, content-based visual data retrieval, and multiscale
signal processing.

En-hui Yang was born in Jiangxi, China, in 1966.
He received the B.S. degree in applied mathemat-
ics from Hua Qiao University, Qianzhou, China,
and the Ph.D. degree in mathematics from Nankai
University, Tianjin, China, in 1986 and 1991, re-
spectively.

He joined the faculty of Nankai University in
June 1991 and was promoted to Associate Professor
in 1992. From January 1993 to July 1993, and from
January 1995 to August 1995, he was a Research
Associate in the Department of Electrical and Com-

puter Engineering, University of Minnesota, Minneapolis. During the summer
of 1994, he was a guest of the Sonderforschungsbereich “Diskrete Strukturen
in der Mathematik,” University of Bielefeld, Bielefeld, Germany. From
October 1993 to May 11997, he was a Visiting Scholar in the Department
of Electrical Engineering–Systems, University of Southern California, Los
Angeles. Since June 1997, he has been with the Department of Electrical
and Computer Engineering, Faculty of Engineering, University of Waterloo,
Waterloo, Ont., Canada. His current research interests are multimedia data
compression, digital wired and wireless communications, information theory,
Kolmogorov complexity theory, source coding, and applied probability theory
and statistics.

Dr. Yang is the recipient of the 1992 Tianjin Science and Technology
Promotion Award for Young Investigators and a co-recipient of the third
Science and Technology Promotion Award of Chinese National Education
Committee in 1992.

Ahmed H. Tewfik (F’95) was born in Cairo, Egypt in 1960. He received the
B.Sc. degree from Cairo University, Cairo, Egypt, in 1982, and the M.Sc.,
E.E., and Sc.D. degrees from the Massachusetts Institute of Technology,
Cambridge, in 1984, 1985, and 1987, respectively.

He was with Alphatech, Inc., Burlington, MA, in 1987. He is currently the
E. F. Johnson Professor of Electronic Communications with the Department
of Electrical Engineering, University of Minnesota, Minneapolis. He served
as a consultant to MTS Systems, Inc., Eden Prairie, MN, and is a regular
consultant to Rosemount, Inc., Eden Prairie. His current research interests are
in signal processing for multimedia (in particular watermarking, data hiding
and content-based retrieval), low power multimedia communications, adaptive
search and data acquisition strategies for world wide web applications,
radar and dental/medical imaging, monitoring of machinery using acoustic
emissions, and industrial measurements.

Dr. Tewfik is a Distinguished Lecturer of the IEEE Signal Processing
Society for the period July 1997 to July 1999. He was a Principal Lecturer
at the 1995 IEEE EMBS summer school. He received a Taylor Faculty
Development Award from the Taylor Foundation in 1992 and an NSF research
initiation award in 1990. He gave a plenary lecture at the 1994 IEEE
International Conference on Acoustics, Speech, and Signal Processing in
1994, and an invited tutorial on wavelets at the 1994 IEEE Workshop on
Time-Frequency and Time-Scale Analysis. He was selected to be the first
Editor-in-Chief of the IEEE SIGNAL PROCESSINGLETTERS in 1993. He is a
past Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSINGand
was a Guest Editor of two special issues of the TRANSACTIONS on wavelets
and their applications.

