arxXiv:1209.6348v1 [quant-ph] 27 Sep 2012

Efficient quantum circuits for binary elliptic curve aritletnc:
reducingl’-gate complexity

Brittanney Amento Martin Rotteler
Florida Atlantic University NEC Laboratories America
Department of Mathematical Sciences 4 Independence Way, Suite 200
Boca Raton, FL 33431 Princeton, NJ 08540, U.S.A.
bf er oz@ au. edu nroettel er @ec-1 abs. com

Rainer Steinwandt
Florida Atlantic University
Department of Mathematical Sciences
Boca Raton, FL 33431
rstei nwa@ au. edu

September 28, 2012

Abstract

Elliptic curves over finite field&-- play a prominent role in modern cryptography. Publishechgua
tum algorithms dealing with such curves build on a short Végiass form in combination with affine or
projective coordinates. In this paper we show that chanthiegurve representation allows a substantial
reduction in the number df-gates needed to implement the curve arithmetic. As a toelpresent a
quantum circuit for computing multiplicative inverseslii. in depthO(nlogn) using a polynomial
basis representation, which may be of independent interest

1 Introduction

Binary elliptic curves form an especially important famdy groups for cryptographic applications, and
the implementation of their addition law in a quantum citdus been studied by a number of authors
[11,[13]. To the best of our knowledge, in all these discussithe representation used for elliptic curves
is a short Weierstrass form in combination with affine or gctive coordinates. While this is a natural
choice, restricting to such representations does not ixple available technical machinery—there is a
substantial body of work on how to optimize elliptic curvétfametic on classical hardware architectures
(cf. [4]), and one may hope that some of these classicalteeallbw for simplification at the circuit level
when implementing binary elliptic curve arithmetic in a gtian circuit, e. g., when trying to find discrete
logarithms [[21]. For an actual implementation, the numider-qates needed to implement such a circuit
is particularly of interest and it is desirable to keep thisnber as small as possible. The reason for this
is that for most fault-tolerant quantum computing scherties implementation of -gates is achieved via
so-called magic state distillation! [6,/7,/18], a processohlis costly in terms of physical resources required.
For instance, in the case of the surface code, it is reasemalzissume that a single-gate has a cost that
is about100 times higher than a single CNOT|[7]. While minimizing thealohumber of7’-gates is the
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prime objective of circuit synthesis at the logical levik total depth of the computation when arranged as
an alternation betweeh-gates and Clifford gates (the so-calléb-tlepth”) is also an important parameter.
It is desirable to keep th€-depth low by parallelizing-gates as much as possible.

Our contribution.  Below, we show how changing the curve representation cantbekeduce the number
of T-gates needed to implement elliptic curve arithmetic—amndddition help to reduce the circuit depth.
The guantum circuit we present makes use of point additiomditae suggested by Higuchi and Takagi [9]
and can in particular be used to reduce the number of gateslbastthe depth, in comparison to the use of
ordinary projective coordinates (cf._[13]).

Some applications of elliptic curves may require uniquegsentations of curve points (cf. [13]). When
dealing with representations for fast arithmetic, degvanunique point representation may involve an in-
version in the underlying finite field. In a polynomial basgpresentation, a quantum implementation of
the extended Euclidean algorithm can be used for this i@réiowever the circuit ha® (n?) gates and
quadratic depth [11, 14, 13]. For other field representatiam inversion algorithm with depth(n log n)
andO(n?log n) gates has been proposéd [1]. In order to compute unique remrgsentations using a poly-
nomial basis more efficiently, we adapt the approach fiontdxhe polynomial basis setting. In this way
we obtain the first published quantum circuit using a polyi@tbasis representation which can compute
inverses infs, in depthO(n log n) with O(n?log n) gates.

2 Fixing a finite field representation

Fast addition formulae for points on an elliptic curve oveifirgte binary fieldFo» aim at reducing the
number of (expensive),~-operations. The following operations are of particuldeiast:

Addition: Givenq, 5 € Fon, compute their sum + .
Multiplication: Givena, 8 € Fyn, compute their produat - 5.

Multiplication with a constant: For a fixed non-zero constamte F3,., on inputa € Fon, coOmputey - a.
The valuey, for example, could be a coefficient in the defining equatibancelliptic curve.

Squaring: Givena € Fyn, computen?.

If one is interested in a unique representation of curvetppihen the inversion d,.-elements also comes
into play.

Inversion: Givena € F3,., finda™! € Fan.

The specific cost of each operation depends on how thelfiglis represented, and in the next two sections
we look at three representations that have been considethd literature on quantum circuits.

2.1 Polynomial basis representation

In a polynomial basis representatidfy- is identified with a quotienFs[z]/(f) where f € Fq[z] is an
irreducible polynomial of degree. Eacha € For is represented by the unique sequefeg . .., a,—1) €

F3 with o = Z;‘Z_Ol 2+ (f). Ina quantum circuit, we store each coefficientn a separate qubit. Quantum
arithmetic in such a representation has been explored byrd@uof authors, including Beauregard et al.
[3], Kaye and Zalkal[11], and Maslov et al. [13]. For each of thur basic tasks mentioned above, the
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exact implementation complexity varies depending on théquéar choice off and efficient circuits are
available:

Addition: As addition is defined coefficient-wise,CNOT gates are sufficient to derive the representation
of a 4+ 8 from those ofa. and 3. These gates operate on disjoint wires and can be implechénte
depthl. To realize an additiofw) |5) |0) —|a) |5) | + ) where the sum is stored in a separate
register, we can first add) to |0), followed by addingg), i. e.,2n CNOT gates and depthsuffice.

In particular, we do not need a singlegate to implemeni,- -addition.

Multiplication: Building on a classical Mastrovito multiplier [15, [16,/19j, [13] a linear depth quantum
circuit is presented which derives the product from o, 5 € Fan. This circuit requires:? Toffoli
gates and? — 1 CNOT gates. In particular, tHE-gate complexity of a fulF,.-multiplication is quite
substanti

Multiplication with a constant: Fix v € F3.. As multiplication with~ is F,-linear, invoking a general
multiplier is not necessary. Instead, we can realize migdépon by~ as a matrix-vector multipli-
cation with a suitable non-singular matrix An LU P-decomposition of® immediately yields a
depth2n circuit that is comprised of no more thai 4+ » CNOTs. No Toffoli gates are needed.

Squaring: No dedicated quantum circuit to implement the squaring mgp|0) ~|a) |a?) has been
proposed, but as squaringlia- is Fo-linear, it is enough to implement a matrix-vector muligaliion
in depth2n using no more than - (n + 1) = n? + n CNOTs. No Toffoli gates are needed.

Summarizing, among the above mentioned four basic opagtmnly the general multiplication involves
T-gates, and their number unfortunately grows quadratibereixtension degree In cryptographic appli-
cations of elliptic curves, values af> 160 are common. Hence, if we can save a genBsatmultiplication

at the expense of some additions, squarings or constaniptimaltions, this can be of great value for the
implementor of a quantum circuit.

So far, our discussion has ignored the inversion operafidre current literature offers only a circuit
with a cubic number of gates and quadratic depth [11], mattiegwo representations discussed in the next
section seemingly more attractive for inversion. HoweireGectiorl 2.8 below, we will show that both the
cubic gate complexity and the quadratic depth of this opmratan be avoided by adapating the inversion
technique used in [1] to the polynomial basis setting.

2.2 Gaussian normal basis and ghost-bit basis representatis

Aiming for a more efficient inversion algorithm, ihl[1] two fierepresentations are considered that differ
from the polynomial basis representation just discussedhast-bit basisand aGaussian normal basis
representation. For the purposes of this paper it is notssacg to discuss their technical details, and we
restrict to looking at the cost of the relevant arithmetiemgions:

Addition: With a Gaussian normal basis, addition can be performecdeisdime way as with a polynomial
basis. If a ghost-bit basis is available, element&in are represented with + 1 bits, resulting
again in two approaches for the addition. One approach igdd@ to |3) yielding one additional
CNOT gate and a depth 1 circuit. The other approach is to|agdollowed by |3) to |0) yielding
two additional CNOT gates and a depth 2 circuit. Apart fromsthdetails, the addition operation is
exactly the same as when using a polynomial basis reprdisenta

1with a realization off[2], a Toffoli gate can be implementeithout ancillae with seveff'-gates (ofl"f-gates which we assume
to have the same cost) in a circuit that hds-depth of3.



Multiplication: If a ghost-bit basis is available, the multiplication g of two field elementsy, 5 € Fon
can be realized in deptih+ 1 using(n + 1)? Toffoli gates.

With a Gaussian normal basis of typea quantum circuit of deptft + (¢t mod 2)) - n — 1 involving
(t + (t mod 2)) - n? — n Toffoli gates is available for multiplying two elementshig. .

Multiplication with a constant: Choosing the matrix® in accordance with the Gaussian normal basis or
the ghost-bit basis, we can proceed as in the case of a poighbasis. For a Gaussian normal basis
this yields a circuit with»? +n CNOTS, and as a result of the extra bit used in a ghost-bit pfsi
the latter we obtain a quantum circuit comprised:ft 1) - (n + 2) = n? + 3n + 2 CNOT gates. No
Toffolis are needed.

Squaring: This operation is for free since the square of a field elementbe obtained by simply reading
the coefficient vector in permuted order. Hence, no gateseayeired to implement the squaring
operation and we requirerespectivelyn + 1 CNOTS, all operating in parallel, to implement the map
) [0) =ev) la?), -

Again, in terms off-gate complexity, multiplication is the dominating op&vat and the number of squaring
operations in formulae for fast elliptic curve addition denexpected to be quite small. Consequently, using
a polynomial basis representation looks preferable, étbe particular extension degree of interest affords
a Gaussian normal basis of small type.

However, taking the computation of inverses into accoum-efgeration that occurs in the derivation of
a unique representation of a curve point—the situation sdéerbecome more involved: Inl[1] an inversion
circuit of depthO(nlogn) involving O(n?logn) gates has been presented. Compared to the quadratic
depth and cubic gate complexity of the best published immersircuit using a polynomial basis [11], this
looks quite attractive. While [11] builds on Euclid’s algbm, [1] builds on a classical technique by Itoh
and Tsujii [10], which exploits that an efficient squaring@ithm is available. As mentioned, in the case
of a Gaussian normal basis or a ghost-bit basis represamtéitie squaring operations in a quantum circuit
are actually for free. To overcome the cubic gate complexitg quadratic depth requirements of inversion
using a polynomial basis, the next section shows how to dpgiyand Tsuijii’'s algorithm with a polynomial
basis.

2.3 Itoh-Tsujii inversion with a polynomial basis represenation

Let o € Fyn be non-zero. Asy' = o?" 2, the inverse ofx can be computed through exponentiation.
Itoh and Tsujii proposed a particularly efficient method ¢onpute this power (seé [10, 23,120, 8)]), if the
squaring operation ifiy» is inexpensive. The quantum circuits for inversion in [1¢ exactly this technique
when working with a field representation where squaringssgupermutation of the coefficient vector. Here
we want to show that even with a polynomial basis, this apgrasa very attractive alternative to Euclid’s
algorithm. To describe Itoh and Tsuijii's approach, it isw@ment to introduce some notation: for 0 we
defines; = a* ~1. Then our goal is to find—! = (3,_1)? from 3; = «. For this we exploit that

Bivj =i B (1)

forall i, > 0. Writing n — 1 = 3"~ 2k with |logy(n — 1)) = k1 > ko > -+ > kyg(n_1) > 0, Itoh

and Tsujii’s strategy to find—! can be summarized in three steps:

() Repeatedly apply Equationl(1) with= j to find all of 50, o1, . . ., Bok; -
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(1) Use Equation[(lL) to fingB,, | gky , Bory oks 1oks s - - - 752k1+2k2+...+2khw(n71) (= Bn_1).
() Computea—! = (3,-1)%

Computing a valug; . ; from given values;, 5; by means of Equatiof](1) involes one multiplication and an
exponentiation by a fixed power 8f As mentioned in Sectidn 2.1, the multiplication can be ienpénted
with n? Toffolis plusn? — 1 CNOT gates in a quantum circuit of depfi{n). Differing from the situation

in [1], the exponentiation witk? is not for free, but as the map— ¢2 is Fy-linear and bijective, we can
implement it as a matrix-vector multiplication with a stata non-singularn x n matrix having entries iif;.
Thence, using an LUP-decomposition of this matrix, the edezkponentiation can be realized with+ n
CNOT gates in deptBn. Summarizing, we see that in a polynomial basis representaine evaluation of
Equation[(1) can be realized in deglin) usingn? Toffolis and2n? + n — 1 CNOT gates.

Step (1) in the above procedure requitgsg,(n — 1) — 1 evaluations of Equatioi{1), i. e., this step
can be realized in depth(n log, n) by means of |logy(n — 1) | — 1) - n? Toffolis andO(n? log n) CNOT
gates. In Step (ll), performingw(n — 1) — 1 evaluations of Equatioi (1) sequentially, we obtain a depth
of O(nlogn), involving (hw(n — 1) — 1) - n? Toffolis and O(n?logn) CNOT gates. Step (lll) is just a
matrix-vector multiplication with a suitable non-singutax n matrix, and using an LUP-decomposition of
the latter, a quantum circuit with no more thah+ n CNOT gates can realize this squaring in depth

To ‘uncompute’ ancilla, we run the complete circuit—withception of the final squaring—'backwards’
and obtain the following:

Proposition 2.1. In a polynomial basis representation,”!, the inverse of an element ¢ F,., can be
computed in depttd(nlogy(n)) using2 - (|logy(n — 1) | + hw(n — 1) — 2) -n? = O(n?log n) Toffolis and
O(n?logn) CNOT gates. This includes the cost for cleaning up ancillae.

Remark 2.1. Organizing the computation ¢f,_; in Step (Il) in a tree structure, the circuit depth for this

step can be reduced 10(n log log n), but because of Step (1), for the overall depth of the investe still
obtain the bound(n logy, n).

Even though the squaring operation is not for free, in terimg-gate complexity, this inverter seems
quite competitive to the ones presentedlih [1] for ghostaniti Gaussian normal basis representations.
Thence, in the remainder of this paper we assume that a poighbasis representation of the underly-
ing field F»» is used.

3 Binary elliptic curves

Letn € N be a positive integer anfly» a finite field of size2™. For cryptographic applications, typical
values arer € {163, 233,283} [17]. Perhaps the most common representation of ordinéiptielcurves in
characteristi@ is ashort Weierstrass forpgiven by a polynomial iff'yn [z, y]:

v+ zy = 23 + asx® + ag (2)
Hereas, ag € Fan, with ag # 0, and for practical purposes one often hase {0, 1} (cf. [17]). We write
Eay,a5(Fan) := {(u,v) € Fon : v? + uww = u® + agu® + ag} U {O}

for the (Fo»-rational points on the) elliptic curve given by Equatii). (Zhe pointO € E,, 4, (Fan) corre-
sponds to the ‘point at infinir@’Because ofis # 0, we have(0,0) € E,, o, (Fan), suggesting0,0) € F3,

2More technically© is the unique point that is obtained when passing to the gliggeclosure ol q.
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as convenient representation®@f Hence, each curve point can be naturally represented asa pao field
elements (which fit int@n qubits). The elliptic curvéE,, ., (F2») is equipped with a natural group struc-
ture, whereD serves as the identity. Namely, 6 = (z1,y1) and P, = (x9,y2), their sumP; = P, + P,
can be computed by the procedure in Figdre 1, which is takem [22].

if P, = O thenreturn P,
if P, = O thenreturn P,

if:plzxgthenify1+y2:x2 #P=-—DP
then return O
else/\<—x2—|—y2/a:2 #P =P

T3 < )\2 + A+ as
Y3 23+ (A + )3
else \ < (y1 + y2)/(1'1 + x9) #P#£ P
x5 < N2+ N+ 21 + 22 + as
Y3 (22 + 3)A + 23+ Yo
return (zs3,ys)

Figure 1: adding two points on the elliptic curyé + zy = z3 + as2? + ag

3.1 Choosing a curve representation: the cost of adding a fidepoint

Before looking at the task of implementing a general poinligwh P, + P, it is worthwhile to consider the
special case whefy, # O # P,, P, # + P, and P, is a fixed point. In a discrete logarithm computation
as discussed in [11, 13], this is the only case needed, ing,the very last case of the addition law in
Figure[1 needs to be taken into account. Still, when usingetffoordinates, the addition law involves an
inversion inFy» and as indicated by the discussion in Sedtion 2, this inmergperation is typically (much)
more expensive to implement than addition or multiplicatio Fo-». Therefore, relying on a projective
formulation of the group law is a natural choice when desigrjuantum circuits. In projective coordinates,
each(z,y) € Eg,.q(Fan) \ {O} is represented by a tripleX,Y, Z) € F3. such thatX/Z = x and
Y/Z =y, andQ is represented by a tripi@, Y, 0) € F3, with Y # 0. These triples are only unique up to
multiplication with a non-zero element y».. Maslov et al. [[13] exploit this freedom to restrict the nuenb
of of finite field inversion circuits in a discrete logarithroroputation. In particular, they observe that as
long as such a (non-unique) projective representationffi€igumt, the addition of a constant curve point can
be realized in linear depth.

To the best of our knowledge, no detailed (gate-level) aglgf how to add a fixed point on an elliptic
curve has been published. Subsequently we note that—ewvanawdlever implementation of projective
coordinates—thd’-gate complexity of such a quantum circuit can be reducedtanbally by passing to
a different curve representation. As a welcome aside, inselat simultaneously the circuit depth can be
brought down.

3.1.1 Mixed addition with projective coordinates

For the fixed point that is to be added, one can assume an apresentation is available leaving no need to
handle a generalZ-coordinate’ for this operand. So using projective cocaits, a natural (non-trivial) way
to implement the addition of a fixed point is to apply timadd-2008-bformulae from [4]: with the curve



parametern, as in Equation[(2) these formulae derive a projective remtasion(Xs, Y3, Z3) of P; + Py
with twelve Fon -multiplications, three of them having one operand fixedr{aly, one operand iss, i, Or
as), seventyn-additions, and one squaring.

A= Y1+21-y, B = X1+7Z1-29, AB = A+ B,

C = B?, E = B-C, F = (A-AB+ay-C)-Z1 +E,
Xs = B-F,

Ys = C-(A-X1+B-Y1)+AB-F,

Z3 = E-Z.

Translating these formulae one by one immediately yieldseentum circuit in which the number of Toffolis,
respectivelyl’-gates, is determined by the nine genédfal-multiplications. To reduce the circuit depth,
we can try to parallelize some of the computations. Addimpes@NOT gates to create ‘work copies’ of
intermediate results, we can enable parallelization witicreasing the number @f-gates. To characterize
the complexity of the resulting quantum circuit, we wridg, (n) for the depth of arf'y»-multiplier

) 8) ) —la) B) € + aB),

and G/ (n) for the number of gates required to implement such a muétiplFurther, we writeD? (n)

for the T-depth of anFy»-multiplier andGﬂ(n) for the number off’-gates required to implement such a
multiplier. We assume thdd s (n), Gar(n), D1,(n), andG¥,(n) include the cost for cleaning up ancillae.
Squaring operations and multiplications with a non-zemstant can be implemented with no more than
n? + n CNOT gates in depthn each. As a functional composition of squarings and muttiions by a
non-zero constant can be combined into a single inverfiblenear map (through matrix multiplication),
any fixed functional composition of squarings and non-zemstant multiplications can be implemented in
depth2n with n? + n CNOT gates as well.

Proposition 3.1. The point addition X;) |Y1) |Z1) |0) [0) |0) —|X1) |Y1) |Z1) | X3) |Y3) |Z3) can be
implemented in overall depthD;;(n) plus8n+ O(1) (the latter accounting for CNOT gates), afiddepth
6D7,(n). Further, a total of15G/(n) gates and8n? + O(n) CNOT gates suffice. The total number of
T-gates isl5G£[(n). This includes the cost for cleaning up ancillae.

Here (X3, Y3, Z3) is some projective representation Bf + P, and P» € E,, o,(F2») a fixed point,
represented with affine coordinatés,, ys).

Proof: To implement thanadd-2008-bformulae we can proceed as follows:

1. Create a ‘work copyZ; of Z; usingn CNOT gates, all of which operate in parallel. Then compute
Zy - yo and Z] - xo in parallel and store these values in separ&€-ipitialized) registers, using
2 - (n? + n) CNOT gates and depth.

2. Using2n CNOT gates, all operating in parallel, abidto Z; - y, and addX; to Z; - 22, so that those
registers now holdd and B respectively. Usin@n additional CNOT gates and increasing the circuit
depth by2, we can also storelB = A + B in a new (0)-initialized) register. Moreover, usingy
CNOT gates, we can in constant depth provide ‘work copiéf A and B’ of B.

3. Usingn? +n CNOT gates, we can now compute= B? in depth2n. If a; # 0, with no more than
n? 4+ n additional CNOT gates we can in parallel determine (B’)?.

4. Using four multiplication circuits that operate in pdeglwe can now comput& = B - C, A - AB,
A" Xy andB’ - Y; indepthDys(n), using4 - Gy (n) gates.
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5. Next, using< 2n CNOT gates that operate in parallel we can addX; to B’ - Y; and—ifas # 0—
A-ABtoay - (B>

6. With three generdly»-multipliers we can now computed- AB+as-(B')?)-Z;, C-(A’- X1+ B'-Y1),
Zs = E - Z; and store these values in new registers. For this, dBpitin) and3 - Gj/(n) gates
suffice.

7. By adding(A - AB + ay - C) - Z{ to E we obtain the valué” in depth1—involving n CNOT gates.
Increasing the depth blyand adding: more CNOT gates, we can also create a ‘work cagyof F.

8. Invoking two more multiplication circuits, we can obtaify = B - F andAB - F’ in depthDj;(n)
with 2 - G/ (n) gates.

9. Finally, addingAB-F'to C'- (A’- X; + B’ Y1) yieldsY3, and this addition can be realized in depth
with n CNOT gates.

To clean up ancillae, the circuit is run backwards, exclgdire final multiplications to computé; = E- 77,

X3 = B-F, the multiplicationC'- (A’ X; + B’- Y1), and the final addition to compui§. This increases the
overall depth by3 D, (n) plus4n + O(1) (the latter accounting for CNOT gates), thedepth by3 DT (n),

the gate count by an additionédz y;(n) plus4n? + O(n) (the latter accounting for CNOT gates), and the
T-gate count bypG? (n). [ |

3.1.2 Mixed addition with a formula by Higuchi and Takagi

Building on earlier work by Lopez and Dahdb [12], n [9] Hhi and Takagi suggest a method to add
points on an elliptic curve, which requires fewer multiplions than thenadd-2008-blformulae we just
discussed. Again, we consider the case of a point additjenP, with P, #£ + P andP; # O # P», where

P, is fixed. Instead of the usual projective coordinat&sY, Z) with x = X/Z andy = Y/Z satisfying
Equation [[2), Higuchi and Takagi choose a projective regrgion withr = X/Z andy = Y/Z2. The
corresponding projective formulation of Equatidn (2) tietomes

Y24+ XYZ = X3Z 4+ as X?Z?% + ag 2%,

and the identity elemer® is represented byX,0,0) € F3, with X € F%, arbitrary. For adding a curve
point P, represented in these coordinates(B§, Y1, Z1) € F3. to a fixed curve poin?, given by affine
coordinates(zz, y2) € F3., ten Fon-multiplications along with ninéFy.-additions and three squarings
suffice. In two of the ten multiplications one operand is ¢ans

A = xg-Zl, Bl = X12, BQ = A2,

C = X1+A, D = Bi+By, E = y- 7%,
F = Y1+E, G = F-C,

Zs = Z1-D,

X3 = Xi-(E+ B2)+A-(Y1+ B1),

V3 = (X1-G+Yy-D) D+ (G+ Z3) - Xs.

Allowing an additional squaring, which does not affect ffigate complexity, the formula far; can be
rewritten as

Ys=X,-D-G+Y,-D*+ (G + Z3) - Xs. (3)
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This latter formulation is helpful in deriving a quantumatiit with fewer7'-gates and a lower depth than
the one in Proposition 3.1:

Proposition 3.2. The point addition
[X1) Y1) 1Z1) [0) 0) [0) —|X1) Y1) |Z1) [X3) [Y3) | Z3)

can be implemented in overall depttv,,(n) plus4n 4+ O(1) (the latter being CNOT gates), arichdepth
4D7T (n). Further, a total of13G/(n) gates and8n? + O(n) CNOT gates suffice. The total number of
T-gates isl3GY,(n). This includes the cost for cleaning up ancillae.

Here (X3, Y3, Z3) is some projective representation Bf + P, as used by Higuchi and Takagi arit
a fixed curve point that is represented with affine coordiséie, y2).

Proof: To implement the point addition formulae by Higuchi and Tgik&e can proceed as follows:
1. Using3n CNOT gates, in dept@ we create ‘work copiesX of X; as well asZ], Z{ andZ}" of Z;.

2. With no more thant - (n? +n) CNOT gates, use the matrix-vector multiplications to cotepti =
x9-Z1, By = X}, By = (v2-Z})% andE = ys-(Z{')? which can be performed in parallel in degth.
To be able to comput®?, using2 - (n? + n) CNOT gates, we also compute in paraligf = (X})*
andB3? = (xq - Z")™.

3. UsingO(n) CNOT gates and constant depth we can now store X; + A, D = B; + By, a ‘work
copy’ D’ of D, andF = Y; + FE in separate registers. Moreover, maintaining constarthcemd with
a linear number of CNOT gates, we can also stBre Bs, Y7 + By, andD? = B% + B%; the latter
three values will be used for computidfs andY3 respectively.

4. Now, using six generdFon-multipliers, we can in parallel comput€ = F - C, Z3 = Z; - D,
X1 - (E+ By), A- (Y1 + By), X| - D', andY; - D?. For this,6 - Gj(n) gates and dept®,(n)
suffice.

5. At this point,0O(n) CNOT gates and constant depth are adequate to compute X; - (E + By) +
A - (Y1 + By) andG + Z3 and store these values in new registers.

6. With two more multipliers that operate in parallek’; - D’) - G and(G + Z3) - X3 can be computed.
Using2 - Gr(n) gates, this can be accomplished in deptty (n).

7. Finally, usingO(n) CNOT gates and depth with Equation[(8) we can computg = X; - D' - G +
Y1 -D?+ (G + Z3) - X3.

To clean ancillae, we run the circuit backwards with the pioa of the the final additions to compulg

and X3 and the multipliers to computé&s = Z; - D, (G + Z3) - X3 andA - (Y1 + By). This increases the

overall depth by2D) (n) plus2n + O(1) (the latter accounting for CNOT gates), thedepth by2 DY (n),

the gate count by an additiona(7 y;(n) plus6n? + O(n) (the latter accounting for CNOT gates), and the

T-gate count bypG? (n). [ |
Comparing Proposition 3.1 and Proposition] 3.2, we see tisgipg from the usual projective represen-

tation to the one used by Higuchi and Takagi results in a Bagmit saving in the total number of gates and

T-gates while reducing the circuit depth aihddepth. Thence, replacing the usual projective addition in

the quadratic depth solution for the discrete logarithnbfenm in [13] with the addition discussed in this

section is an attractive implementation option.



3.2 Implementing a general point addition using Edwards cuves

In view of the case distinctions in the addition law in Figdkemplementing a quantum circuit that properly
handles all cases of a point addition appears to be a soméwiggnsome task: in addition to the ‘generic
case’P; # £P, (with P, not being fixed) and®, # O # P, we have to implement a doubling formula
(P = P), making sure that the identity element is handled prop@fly= — P, P, = O or P, = O). ltis
important to note here that testing the branching conditinrFigurd_1 comes at a certain cost when working
with inversion-free arithmetic as just discussed. Withj@rtive coordinates as described in Seclion 8.1.1,
let (X1,Y1,Z1) € F3, and(Xs, Ys, Z5) € IE‘% be representations of two curve poitits, P, different from

the identity. Checking if these two points satisfy

Xl/Zl = XQ/ZQ ( <~ X122 = Xng)
—_———  S—
x1 x2

requires twaFy--multiplications—not taking into account additional gatbat may be needed to clean up
ancillae.

Working with a different representation of elliptic curveffers an elegant alternative to dealing with
the case distinctions in Figuré 1: In [5], Bernstein et akcdss a representation of ordinary elliptic curves
overFy» which affords acompleteaddition law, i. e., the addition of any two curve points isitied with
the very same formula. Fer > 3 (which is especially safe to assume in cryptographic apptios), each
ordinary elliptic curve is birationally equivalent to sualcomplete binary Edwards cung].

Definition 3.1 (Complete binary Edwards curveletd;,dy € Fon with Tr(dy) = 1. Then thecomplete
binary Edwards curve with coefficiends andds is the affine curve defined by

di(z +y) + do(2® + ) = xy + xy(z +y) + 2%y
We will write Eg 4, 4, (F2») for the set of Fy»-rational) points on this curve.

The identity element of a complete binary Edwards curv@i$) € Eg 4, 4,(F2»), and forany two
pointsPl = (ml, yl) and P, = (xg, yg) in EB,d1,d2 (an), their sum isP; = (xg, yg) with

di(z1 + m2) + da(z1 + y1) (2 + y2) + (z1 + 23) (@2 (y1 + y2 + 1) + y1y2)
di + (w1 4 23) (x2 + y2)

di(y1 + y2) + da(@1 + y1) (@2 + y2) + (11 +y1) (W21 + 22 + 1) + 3179)
di + (y1 +y1)(z2 + y2)

Similar to working with a short Weierstrass form, one canspasprojective coordinates to avoid costly
inversions. In[[5] an explicit addition formula is given torapute a representatigiX s, Y3, Z3) of the sum of
two points on a complete binary Edwards curve, represemagdaqtively as( X, Y7, Z;) and(Xz, Ya, Z2).
The formula involves 21 general multiplications a~, three multiplications by the parametéy, one
multiplication by the parametef,, 15 additions ofF3~-elements, and one squaring:

Wi = Xi+Y, We = Xo+4Ys, A= X (X1+21), B =Yi-(WM+2y),

C = Z1-Zy, D = Wy-Zy, E = dlCz, H = (d1Z2+d2W2)'W1-C,
I = dz1-C, U = E+A-D,V = E+B-D, S =U-V,

Xs = S Yi+H+Xo-(I+A- Yo+ 22))- V-2,

V; = S X1+ (H+Ys-(I+B-(Xo+2)) -U- 7y,

Zs = S-Z.

These formulae can be translated into a quantum circuitdding arbitrary (variable) curve points:

and

r3 =

ys =

10



Proposition 3.3. Denote by( X1, Y7, Z1) and(Xs, Y5, Z5) projective representations of two (not necessarily
distinct) pointsP;, P» € Eg 4, 4,- Then the point addition

1X1) Y1) |Z1) |X2) [Ya) |Z2) [0) [0) [0) —|X1) Y1) |Z1) |X2) [Ya) |Z2) |X3) [Y3) [Z3)

can be implemented in overall depit®;(n) + 4 max(Dys(n),2n) + O(1), where the argumerin of
max(-) as well as theD (1) reflect CNOT gates only, arifi-depth9 D7, (n). Further, a total of39G (n)
plus8n? + O(n) CNOT gates suffice. The total numberlofates is39G%, (n). Atthis, (X3, Ys, Z3) is a
projective representation d?, + P,. This includes the cost for cleaning up ancillae.

Proof. To implement the above addition formulae, we proceed asvisli

1.

10.

11.

Compute in parallel the valuég,, W5 as well asX; + Z; andY; + Z1, Y5 + Z5, and X5 + Z, from
the input valuesXy, Y1, Z1, X2, Ya, Zo—this can be done in constant depth using:) CNOT gates.
In addition we use (depth) additions t00) to create ‘work copiesW; of Wy, Z1 of Z;, andZ, Z3
of Z5 using3n CNOT gates.

. Using four generaFy-»-multipliers and two matrix vector multiplications, contpun parallel the

valuesA, B, C, D = W, - Z}, along withd, Z) andd,W3. As all involved multipliers operate on
disjoint sets of wires, this can be done in depthx(Djs(n), 2n) using no more thadG;(n) plus
2 - (n? 4+ n) gates (the latter accounting for CNOT gates).

. Compute (in preparation for computidf) the valued, ZJ + d2 W and create ‘work copiesA’ of A,

B’ of B, C'" of C, andD’ of D usingO(n) CNOT gates and constant depth.

. Using five generaFy-»-multipliers and two matrix vector multiplications, conmtpuin parallel the

valuesk = d1C?, W1 -C', A-D,B-D', A"- (Yo + Z3), B'- (X2 + Z3) andd; Z;. This can be done
in depthmax(Dy;(n), 2n) with no more tharsG'y; (n) plus2 - (n? + n) gates (the latter accounting
for CNOT gates).

. Computd/ andV and create ‘work copied’’ of U andV"’ of V' in constant depth usin@(n) CNOT

gates.

. Using five generaFy»-multipliers, find H, I, S, U'Z; and V'Z; using 5Gs(n) gates in depth

Dys(n).

. Computel + A - (Y2 + Z») andI + B’ - (X3 + Z3) in constant depth using(n) CNOT gates.

Moreover, generate a ‘work copy’ of S usingn CNOT gates and maintaining constant depth.

. Using four generdFy»-multipliers, compute in paralleXs - (I + A- (Yo + Z3)) andYs- (I + B(- X2+

Z3)), SX; andS'Y7, in depthDj;(n) using4Gas(n) gates.

. Involving O(n) CNOT gates, computel + X - (I +A-(Ya+ Z3)) andH + Yy - (I + B - (X2 + Z2))

in depth2.

Multiply H + Xo - (I + A - (Yo + Zo2)) With V'Zy, H+ Y2 - (I + B - (X2 + Z3)) with U’ Z], and
computeZs = S - Z;. This can be done usirt(~,,(n) gates in depttD;(n).

ComputeX3 by addingS’Yy to (H + Xo - (I + A - (Yo + Z5))) - V'Z; andY3 by addingSX; to
(H+Ys - (I+ B-(Xo+ Z3)))-U'Z] in depthl usingO(n) CNOT gates.

11



The above circuit has dep8D,/(n)+2 max(Das(n), 2n)+0(1) with the argumen2n of max(-) as well as
theO(1) originating in CNOT gates. The number of gates is bounde2iii, (n) plus4n?+O(n) CNOTS.
‘Uncomputing’ auxiliary qubits by running the circuit bagkrds—with the exception of the multiplications
Zs=S-Z1,H+Ys- (I—I—B, . (X2 + Zg)) . U/Zi, H+ X5 - (I—|—A (Yé + Zg)) . V’Zl, and the final
additions to comput&’; andYs;—yields the desired bound. |

Making use of the (linear-depth and polynomial-size) npliltation circuits in[[1], for asymptotic pur-
poses we obtain the following corollary from the above psion.

Corollary 3.1. Two points on an Edwards curve in projective representatian be added in linear depth
with a polynomial-size quantum circuit.

Proof: This follows immediately from the multiplier architectgrdescribed in[1], which have linear depth
and involve only a polynomial number of gates. |

4 Conclusion

The circuits for binary elliptic curve arithmetic we haveepented here are most likely not ‘optimal’ yet,
but they give ample evidence that incorporating resultsftioe classic elliptic curve literature in quantum
circuit design is worthwhile: it is possible to bring dowrethumber of gates arntl-gates that need to be

protected against errors and it is possible to reduce thelbeircuit depth and'-depth. We hope that our

results stimulate follow-up work on the design of efficiemaqtum circuits for elliptic curve arithmetic—

including the case of fields of odd characteristic. For adégjy evaluting the cryptanalytic potential of
guantum computers, this appears to be a fruitful and impbr&search avenue.
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