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ABSTRACT

Sampling and recollstruction are usuaiiy analyzed under
the framework of linear signal processing. Powerful tools
like the Fourier transform and optimum linear filter design
techniques, allow for a very precise analysis of the process.
In particular, an optimum linear filter of any length can be
derived under most situations. Many of these tools are not
available for non—linear systems, and it is usually difficult to
find an optimum non4inear system under any criteria. In
this paper we analyze the possibility of using non-linear fil
tering in the interpolation of subsampled images. We show
that a very simple (5x5) non-linear reconstruction filter out-
performs (for the images analyzed) linear filters of up to
256x256, including optimum (separable) Wiener filters of
any size.

1. INTRODUCTION

In digital signal processing, it is often necessary to alter
the sampling rate of a discrete signal. We usually refer to
decimation (or sub-sampling) as the operation of selecting
a subset of the original samples of the signal; i.e., reducing
the sampling rate by an integer factor. We refer to interpo
lation as the operation of increasing the sampling rate by an
integer factor by estimating the value of intermediate sam-
ples. Previous work in this area {1, 2, 3] was based on the
Shannon Sampling theorem, which states that the signal
should be band-limited (by filtering) before (sub)sampling,
and the interpolation should consist of up-sampling followed
by filtering. In the most common case, both filters should
be low-pass, with cut-off at the Nyquist frequency.

Since optimum linear filters have been derived for
most practical situations, recent work has concentrated ei
ther on subjective effects of aliasing[4], or on non-linear
techniques[5 , 6, 7, 8].

In developing non-linear sampling/interpolation sys
tems, the lack of some key tools used in the analysis of
linear systems (e.g., Fourier transforms, Shannon theorem)
has limited the success of the early work on non-linear
fflters[7, 8]. However, recent results on Critical Morphologi
cal Sampling[5 , 6] provide a morphological equivalent of the
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Shannon sampling theorem, and can be useful in developing
better pre- and post-filters based on non-linear techniques.

Critical Morphological Sampling is similar to traditional
techniques in the sense that it also requires pre-ifitering be-
fore subsampling. In some applications, this pre-ifitering
maybe undesirable, or even impossible, in which case the
signal is simply subsampled, without any pre-filtering, or
a very simple filter is used. An example of increasing im
portance is video processing, where the high data rate and
memory restrictions often limit the filtering to very short
windows.

In this paper we show how it is possible to reduce
the effects of aliasing by using non-linear reconstruction
techniques. We analyze a specific reconstruction technique
which uses a 5x5 reconstruction filter. We compare the re
sults of the technique with those obtained by using FIR
reconstruction filters with and without pre-filtering. The
proposed technique outperforms all linear reconstruction
techniques when not using a pre-filter. Even when a pre
filter is used, the traditional (linear) technique requires a
much higher computation effort to provide equivalent per-
formance.

Section 2 formally defines the problem, and presents
some optimum linear solutions. Section 3 presents the pro-
posed non-linear interpolation filter, Section 4 gives the
results of simulations on some test images, and Section 5
presents some insight into what is “wrong” with linear inter-
polators. Section 6 presents some conclusions and further
research directions.

2. THE PROBLEM AND LINEAR SOLUTIONS

The problem is that of interpolating an image that has been
downsampled without an anti-aliasing filter (see Figure 1).
Note that we consider only the case of downsampling by
2:1. We want to compare the performance of several filters
under m.s.e. and m.a.e. criteria.

If no information about the signal is available, an ideal
low-pass filter is generally used as a prototype, and an FIR
filter with linear phase is designed to approximate the pro-
totype under some optimality criterion[9]. For example,
square window filter design minimizes the mean-squared
difference between the filter frequency response and that
of the prototype, and Parks-McClellan (equiripple) design
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Figure 1 : General block diagram of the system

millimizes the maximum approximation error. If informa
tion about the spectrum of the (original) signal is available,
then better filters can be derived. In [2], Oetken, et. al.
derive the FIR filter that minimizes the m.s.e. of the esti
mate. Their results could be used to derive optimum sep
arable linear filters for our problem. The ideas could also
be extended to the design of non-separable filters, but this
would require dealing with a 4-D autocorrelation matrix.
Instead, we note that these filters, based on the knowledge
of the original signal spectrum, are in fact just Wiener fil
ters, where the aliasing component is considered noise. In
other words, the ideal 1-D filter can be expressed as:

W(w) =
(w) + (2 _ ) ‘

(1)

where (w) is the power spectrum of the original (non
aliased) signal. This can be easily extended to the 2-D
non-separable case by including all the 3 components of the
aliasing:

I(wi, W2)
l’V(wi W2) =

W2) + 1a(W;, W2)

Pa(W1,W2) = I(2r — U;,W2)+

2ir — W2) + I(2ir — Wi, 2ir — W2). (3)

Since we want these filters only for comparison pur
poses, we computed only the 256x256 (separable and non-
separable) Wiener filters, since these can be designed di-
rectly in the frequency domain. These filters can be consid
ered as upper bounds for the performance of a linear filter
of smaller length.

3. THE NON-LINEAR STRATEGY

Non-linear reconstruction techniques have already found
important applications in areas where traditional tech-
niques cannot be applied, as is the case for example with
binary images[1O]. In such cases, non-linear filtering is
required, but even in a more general (gray-level) situa
tion, non-linear reconstruction filters can be designed to
explore the inherently non-band-limited nature of sharp-
edges present in most images.

The non-linear reconstruction filter we analyze in this
paper is a modified rank-order filter (an L-filter)[ll]. It
consists of averaging the result of the samples at rank .50
and .51 when using the weights in the mask of Figure 2-
a. A non-linear filter cannot generally be decomposed into
polyphase sub-filters. Nevertheless, since we only apply this
filter to the up-sampled signal, a polyphase decomposition
is possible, and will greatly reduce computations. Figures
2-b through 2-e show the 4 sub-masks corresponding to this

Figure 2: (a)Coefficients for the weighted median filter used
for reconstruction; (b-c) polyphase sub-filters.

Filter I size m.s.e. m.a.e.
without_pre-filtering

Non-linear 2 26.75 7.05
Low-pass 112 26.17 7.33
Low-pass 2562 25.55 8.62
Wiener (separable) 2562 26.46 7.47
Wiener (non-sep.) 2562 26.62 8.67

with pre-filtering
Low-pass 2 x 72 24.53 16.99
Low-pass 2 x 112 27.21 8.81
Low-pass 2 x 2562 28.03 7.36

decomposition. Notice that the first sub-filter (Figure 2-b)
is just the identity (as one would expect). The second sub-
filter (Figure 2-c) has all 4 weights equal, and therefore is
just the average between the rank 2 and rank 3 samples in
the 2x2 mask, and can be implemented using 4 comparisons,
1 sum, and 1 shift (division by 2). The last two sub-filters

( Figures 2-b and 2-c) are equivalent to averaging the two
center rank samples in a weighted rank order filter, with
weights (1,1,3,3,1,1), and can be implemented (in the worst
case) with 9 comparisons, 1 sum, and 1 shift. Therefore,
this filter can be implemented using less than 6 compar
isons, 1 sum and 1 shift (division by 2) per sample (no
multiplications). This is approximately the computational
effort for a typical separable 3x3 FIR filter (3 multiplies and
4 sums per sample).

The filter have been designed in order to preserve the
sharpness of edges. It can be shown that it preserves every
edge that can be identified in the 5x5 window, as well as
any fiat or slanted regions spanning the whole window.

4. RESULTS

In order to compare the performance of the proposed strat
egy with the traditional linear filtering strategy, we applied
the scheme of Figure 1 using several filters. We computed
mean absolute error (m.a.e.) and mean square error (m.s.e.)
using 6 common images (Lena, ape, camera man, bridge,
boy, and building) . Table 1 shows the average results on
these images. Non-linear refers to the proposed technique,
which uses the 5x5 reconstruction filter described in 5cc-

0 0 0 .25.25

0 .1 0 .1 0 0 1 0 .25.25

.1 .25 .3 .25 .1 0 0 0 (c)

0 .3 1 .3 0 (b)

.1 .25 .3 .25 .1 .1 .1

0 .1 0 .1 0 .1 .3 .1 .3 .3

.1 .3 .1 .1 .1

(a) (d) (e)

where

(2)
Table 1: m.s.e. and m.a.e. performance of some filters
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Figure 3: performailce of the linear strategies for several
filter lengths.

tion 3. Low-pass refers to the lixil and 256x256 (separa
ble) low-pass filters. A low-pass is probably the filter most
commonly used as prototype. The Wiener filter results re
fer to the 256x256 (separable and non-separable) Wiener fil
ters, optimized for the specific 6 images used. It can be con-
sidered as the absolute upper bound for the performance of

(separable and non-separable) linear filters. The last three
rows of the table, refer to cases where an anti-aliasing filter
was included (Low-pass filters, designed using a Ramming
window).

Notice that the non-linear technique outperforms all
strategies under the mae. criteria (even including a pre
filter). For m.s.e., the results depend on the computational
complexity allowed for the linear case (filter length used for
the FIR filter), but is clearly favorable to the non-linear
technique.

. If a pre-filter is not used, the non-linear 5x5 recon
struction filter outperforms FIR filters of any length,
under both m.a.e. and m.s.e. criteria.

. If pre-filtering is allowed in the linear strategy, the
proposed scheme still performs better under m.a.e.

. If pre-filtering is allowed, and under the m.s.e. cri
teria, two FIR filters of the order of approximately
9x9 will be required to match the performance of the
non-linear strategy. This is many times the computa
tional complexity of the non-linear strategy (remem
ber that a pre-filter is about 4 times more complex
than a post-filter of same size).

Figure 3 compares the performance of the filters for
several filter lengths. The circles refer to FIR pre- and
post-sampling. The crosses refer to FIR post-sampling fil
ter only. The “x” corresponds to the proposed non-linear
strategy (which does not include pre-filtering), and the hor
izontal line represents the upper bound for linear filter (non-
separable 256x256 Wiener filter). Note that the perfor
mance of the low-pass FIR post-filters reach a peak around
llxll. This can be attributed to the fact that, at that

length, the filter is a good approximation for the Wiener
filter for these images, while the sharper cut-off filters will
allow more of the mid-frequency aliasing to pass through.

The different nature of distortion for the different tech-
niques can be perceived in Figure 4. The images correspond
to a lOOxlOO segment of the 256x256 interpolated images.
The P$NR figures refer to the whole image. Notice that the
non-linear technique produce the sharpest edges. Among
the linear low-pass filters, the 256x256 produces sharper
edges than the llxll, but it lets more aliasing pass through.
Note also the similarity between the output of the llxll
low-pass and the l-D Wiener filter.

5. SOME INTERPRETATIONS

Under the morphological approach, images are considered
as a combination of sets, instead of a linear combination of
sinusoids, as in traditional linear systems analysis. From
this point of view, “small” sets (e.g., an isolated impulse)
should be removed (filtered out) from the signal before
subsampling[5 , 6] , in order to avoid generating larger sets
in the reconstructed signal (what can be considered “shape
aliasing”). If it is known that this filtering has not been per-
formed (as it was the case here), the consequences can be
“controlled” by trying to identify some of these impulses in
the subsampled signal, and not dilating those pixels. That
is exactly what the non-linear reconstruction filter used in
this paper does.

We can apply a similar analysis to linear interpolation.
In this case, it is easy to see that the superposition require-
ment, together with the (desired) DC preservation, will irn

ply that an isolated impulse be smeared into a shape whose
sum of amplitudes be at least 4 times the amplitude of the
original impulse. In other words, linear interpolators need
this “shape aliasing” to preserve the DC component of the
images.

6. CONCLUSIONS

In this paper we show that it is possible to mitigate the
effects of aliasing after subsampling. Using the ideas intro-
duced in this paper one can remove anti-aliasing filtering
from the process, use a simple reconstruction filter, and yet
obtain performance equivalent to much more complex FIR
filter strategies.

This should find immediate application in several real-
time video applications, where computational complexity is
usually an issue, and where subsampling is often used as a
way of reducing the amount of data, converting between dif
ferent resolutions, or producing multiresolution pyramids.

It should be pointed out that the filter we presented
in this paper wifi not necessarily perform well for other
applications, or on radically different images. Non-linear
techniques stifi lack powerful design tools. Recent de
velopments, such as the Critical Morphological Sampling
Theorem[5, 6] and the Slope transform[12] may be the ba
sis for adequate design techniques in the near future.
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Figure 4: Examples of the various reconstruction techniques: (a) original (lOOxlOO); (b) 5x5 non-linear filter (30.13 dB); (c)
256x256 low-pass (29.02 dB); (d) pixel replication; (e) 256x256 separable Wiener filter (30.02 dB); (f) llxll low-pass (29.96
dB).


