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Abstract—Traditionally, the channelization structure in IEEE
802.11-based Wireless LANs has been fixed: Each access point
(AP) is assigned one channel and all channels are equally wide.
In contrast, it has recently been shown that even on commodity
hardware, the channel-width can be adapted dynamically purely
in software. Leveraging this capability, we study the use of
dynamic-width channels, where every AP adaptively adjusts not
only its center-frequency, but also itschannel-width to match its
traffic load. This gives raise to a novel optimization problem that
differs from previously studied channel assignment problems. We
propose efficient spectrum-distribution algorithms and evaluate
their effectiveness through analysis and simulations using real-
world traces. Our results indicate that by allocating more
spectrum to highly-loaded APs, the overall spectrum-utilization
can be substantially improved and the notorious load-balancing
problem in WLANs can be solved naturally.

I. I NTRODUCTION

One of the core design principles of IEEE 802.11–based
networks is the use of a simple, fixed channelization structure.
The entire available spectrum is divided into smaller channels
of equal channel-width (bandwidth), and each IEEE 802.11
network is specified to operate on a specific set of channels.
For example, the 2.4GHz ISM band has 3 non-overlapping
channels each being 20MHz wide, and at any given time each
Access Point (AP) operates on a particular channel.

In this paper, we argue that by moving beyond this fixed
channelization structure, the network capacity, overall spec-
trum utilization and fairness of WLANs can be greatly in-
creased. In WLANs, clients are often unevenly distributed
across the network and different clients have different traffic
requirements. Therefore, certain APs can become hotspots and
have to handle high traffic load, while others remain under-
utilized. With a-priori channels of fixed width, it is difficult to
naturally adapt to such spatial and temporal disparity of traffic
distribution [7], [12], [13]; the overall spectrum utilization
in the network, and hence its capacity, is reduced. Also, the
fact that some APs are heavily loaded while others are not,
creates a location-induced fairness problem. For instance, a
highly-loaded AP near a conference room may have to serve
multiple clients on a single channel, thus hurting these clients’
performance, while at the same time, other APs in the network
may serve only very few clients or no clients at all. While there
exist various approaches to mitigating these problems (includ-
ing power allocation [6], client-AP assignment [8], [21], and
channel-assignment [20], [18], or combinations thereof),none
of them addresses the fundamental root cause of the problem:
heavily-loaded network areas and the APs therein requiremore
spectrumthan others in order to serve their load equally well.

In this paper, we take a fresh look at channelization in
WLANs. In particular, we study the problem of how spectrum
should be allocated to APs if thewidth of the communication
channelscan be adaptively changed: wider channels (e.g. up to
40MHz) for heavily-loaded APs and narrower channels (say,
down to 5MHz) for lightly-loaded APs. This way, adapting
channel-widths of APs and their respective clients allows to
naturally implement the maxim“provide more spectrum where
spectrum is needed”, thus enabling a conceptually very simple
and efficient solution to the load-balancing problem.

Our studying the channel width as an adaptable knob,
rather than a fixed pre-set parameter is motivated by recent
work that has shown how even on commodity hardware
such as the Atheros chipset [1], the channel width can be
changed dynamically and purely in software with very little
overhead [10]. Furthermore, there also exist recent advances
in hardware technology that enable wireless devices to dy-
namically change both their operating frequency and channel-
width. For example, WiMAX allows nodes to use 11 possible
channel widths [3]. The 2007 version of the IEEE 802.11
standard [4] proposes the use of 5, 10 and 20MHz channel-
widths for operation in different parts of the spectrum.

In view of these new possibilities, the key algorithmic
challenge that needs to be investigated is, what channel (i.e.,
center frequency and channel-width) should be allocated to
which AP, i.e., how much spectrum should each AP get to
serve its clients. In this paper, we address this challenge by
first proposing a new, simple model that captures adaptive
channel-width. Based on this model, we define theadaptive-
width channel-assignment problem, a problem that turns out to
be very interesting practically, but also theoretically. This prob-
lem’s underlying combinatorial structure is substantially dif-
ferent from previously studied problems. Specifically, whereas
the problem of channel assignment in the conventional fixed-
channelization framework can be modeled as graph coloring
or a variant thereof, e.g. [20], [18], variable channel-widths
fundamentally introduces new algorithmic challenges suchas
self-fragmentation. Self-fragmentation can arise because, due
to practical hardware constraints, each AP must be assigneda
contiguous bandof spectrum [10]. Hence, if channels are not
allocated carefully, the total available spectrum at an APA
may be fragmented by its neighboring APs, in which caseA
can allocate only a small non-overlapping channel even though
the total amount of free spectrum may be large.

In WLANs with adaptive channel width, the ultimate al-
gorithmic design goal is therefore to allocate as much spec-



Scenario AP1 AP2 AP3 AP4 U SLF
Case 1: (fixed) 1/6 1 1/3 1 4 0.58
Case 1: (adaptive) 2/6 1/2 1/3 1/2 4 0.97

Case 2: (fixed) 1/6 X 1/3 1/2 3 0.82
Case 2: (adaptive) 2/6 X 1/3 1/2 4 0.97

TABLE I
SPECTRUM-PER-CLIENT (NORMALIZED BY 20MHZ)

trum to the different APs as needed, while 1) avoiding self-
fragmentation and 2) still allowing as much spatial reuse as
possible. In this paper, we present a compact, but computation-
ally inefficient integer linear program (ILP) that finds the opti-
mal solution. We show that the problem of optimally assigning
channels of variable width to APs is NP-complete and we
present constant-factor approximation algorithms. Basedon
these theoretical foundations, we then devise three simpleand
efficient heuristic approaches. We show that these algorithms
achieve close to optimal performance while drastically outper-
forming existing fixed channelization approaches. In particular,
our analytic and evaluation results show that dynamically
allocating channels of different widths to APs has the potential
of greatly increasing the network’s overall spectrum utilization
and fairness in a natural and conceptually simple way. Our
evaluations are based on real-world trace-data as well as
empirical measurements.
To summarize, we make three primary contributions:

• We explore the use of channel-width as a new, powerful
knob in the design of WLANs. Particularly, we quantify
the vast potential increase in both spectrum utilization and
spectrum fairness that can result from using this knob.

• We define a simple formal model that captures variable-
width channels in infrastructure-based networks. Based on
this model, we formulate the key spectrum distribution
problem as a combinatorial optimization problem and
discuss its algorithmically interesting properties.

• We devise a variety of algorithms that efficiently allocate
channels of variable width to different APs. We investigate
these algorithms by deriving complexity results and ana-
lytical worst-case guarantees, and by providing extensive
simulation-based comparisons with state-of-the-art fixed
channel-width solutions.

II. M OTIVATION

In existing WLANs, each AP is assigned a fixed width 20
MHz channel, and if possible, neighboring APs are placed on
orthogonal frequencies. When the traffic is uniformly distrib-
uted across the network, such a scheme increases capacity
and reduces interference. However, in dynamic conditions,
using fixed-width channels can be problematic and suboptimal.
When the number of APs is fewer than the number of available
channels, the spectrum is not fully utilized since each AP
uses only one channel. On the other hand, if the number
of APs is large, two or more neighboring APs are inevitably
assigned the same channel, which can create a varying degree
of interference [21].

To illustrate how adaptive channel width can help overcome
these challenges, we consider a simple example. Figure 1
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Fig. 1. A network with four mutually interfering APs. If channel-widths are
fixed, each AP is allocated a 20MHz channel. In the adaptive scheme,AP1

is allocated 40MHz,AP2 gets 20MHz, ,AP3 andAP4 get 10MHz each.

shows a scenario with four APs all within interference range
of one another. In Case 1 (left),AP1 has 6 clients,AP3

has 3 clients, while the remaining two APs have one client
each. In Case 2 (right), client A moves away fromAP2 and
associates toAP4. Suppose that all clients generate the same
traffic load. We compare the performance of using fixed-
width channels with adaptive-width channels. In the fixed-
width case, the spectrum is divided into 4 channels of 20 MHz
each.1 In the adaptive-width case, channels may be 10, 20, or
40 MHz. Table I lists thespectrum-per-clientat each AP. Also
included is the total spectrum utilization (U), and aspectrum-
per-load fairness index(SLF). In the case in which every client
generates the same traffic load, this index corresponds to Jain’s
fairness index and is computed as(

∑

ci)
2/

(

n
∑

c2
i

)

summed
up over all clientsi; ci is the share of clienti’s spectrum, and
n is the total number of clients.

In Case 1, fixed-width channelization leads to an unfair
spectrum distribution among different APs. A client associated
AP2 or AP4 can make use of the entire 20MHz spectrum,
whereas the same 20MHz spectrum has to be shared among
6 clients atAP1. In contrast, with an allocation of 40 MHz to
AP1, 20 MHz toAP2 and 10 MHz to the remaining APs, the
spectrum-per-load distribution improves significantly because
APs with many clients (AP1) receive a wider part of the
spectrum to serve its clients. Adaptive channelization canalso
help to improve system capacity. In Case 2, for instance, if
client A moves fromAP2 to AP4, an adaptive approach can
reallocate the 10 MHz spectrum formerly used byAP2 to
AP4, thus givingAP4 a total of 20 MHz.

Existing approaches to load-balancing:There exist sev-
eral alternative means of alleviating the load-imbalance prob-
lem illustrated in Figure 1. One idea, for instance, is to balance
the load by assigning some clients to more distant APs or by
adjusting transmission powers [6], [21], [8]. In comparison
to these solutions, leveraging the ability to adaptively change
channel-widths can provide a conceptually simple and more
natural solution. Instead of trying to artificially balancethe
load across APs, this scheme retains the natural locality-
induced client-AP association and simply assigns the spectrum
according to the specific needs. This does not force clients to
associate to far-away APs, and therefore does not reduce their
data rate. Each AP can then use any MAC-layer protocol (e.g.,
CSMA, TDMA, etc...) to fairly and efficiently distribute the
spectrum among its clients.

1Since there are in fact only 3 completely non-overlapping channels, our
estimate for the fixed-width case is optimistic.



III. D ESIGN APPROACH

A. System Architecture – Overview

We consider a network architecture based on the techniques
developed in [10], in which the channel width of different
APs and clients can be changed adaptively, based on their
respective traffic load. That is, each AP is allocated a certain
contiguous part of the spectrum (a channel of a certain
width), which it can then use to serve its clients. Notice that
this general architecture involves two, potentially orthogonal,
problems: 1) How to distribute the spectrum to the different
APs and 2) how each AP uses its allocated channel to serve
its associated clients. In this paper, we consider only the first
of these problems and assume that within an AP—i.e., for the
communication between an AP and its associated clients—any
existing contention resolution protocol may be used (CSMA,
TDMA,. . . ). In any case, measurements show that APs that
are allocated a wider part of the spectrum can deliver more
throughput to their clients [10].

Our algorithms are targeted for enterprise networks in which
all APs are connected via a backbone network. Each access
point is capable of gathering some measure that represents its
currenttraffic load. The simplest possible suchload measure
would be the number of clients currently associated with this
AP. However, more sophisticated and accurate measures could
take into account the traffic demands of each client. Each
AP periodically reports its load to a centralized server that
is attached to the network’s backbone network and main-
tains a view of the traffic distribution across the network
in a local database.2 Periodically, the centralized server—
based on information stored in its database—runs one of our
spectrum distribution algorithms, and assigns a channel-width
and center-frequency to each APs. The APs then inform their
clients of the new communication channel, upon which they
switch to the new channel. Notice that this can be done at
little overhead and without breaking any connections [10].

B. Model Abstractions

In order to study the potential of load-aware channel-width
allocation to APs, we develop a simple model that captures the
essence of the spectrum distribution problem: what channel
(channel-width and center-frequency) to assign to each AP.
It also allows us to analyze and understand the respective
merits of different allocation algorithms. The model makes
the following key abstractions:

• When setting up and managing a WLAN network, several
degrees of freedom may be tuned to optimize the net-
work’s throughput and/or fairness, including transmission
powers [6], client-AP association schemes [8], modulation
schemes, density of deployment, and even the locations of
the APs. In the sequel, we assume these variables to be

2Alternatively, using more decentralized, distributed solutions are also
possible and an interesting direction for future research.Since the main focus
of this work is to identify and quantify the potential gain when abandoning
fixed-width channels in WLANs, we focus on the conceptually simpler
centralized solution.

fixed, which keeps our results clean from complex inter-
dependencies.

• As mentioned above, we are not concerned with the exact
protocol that APs use to communicate with the associated
clients. In practice, experimental measurements support the
intuition that the total throughput achieved by all clients
associated to an AP grows linearly in the channel-width
used by that AP and its clients [10], [26]. This is also in
line with Shannon’s capacity formula.

• We use the simple and standard conflict-graph-based model
of inter-AP interference. While there has recently been
important work on studying interference models that more
accurately capture physical reality (e.g. [22], [23]), our
choice is justified for two reasons. First, it is conser-
vative and ignores additional optimizations that could
further enhance our system. Second, as we discuss next,
our algorithms are designed to allocate non-overlapping
spectrum bands to neighboring APs, deliberately limiting
interference among APs and their clients.

C. Non-Overlapping Channel Assignment

Empirical measurements show that whenever possible,
neighboring APs are best assigned non-interfering parts of
the spectrum. In traditional WLANs with fixed channelization,
it is often unavoidable to assign overlapping channels to
neighboring APs if the number of APs in a vicinity ex-
ceeds the number of independent channels. Several works
have investigated the cost of such overlaps and proposed
corresponding algorithms [20]. In contrast, having adaptive
channel-widths provides much more flexibility in avoiding
overlapping channels. For instance, if the minimum channel-
width option is 5MHz, as many as 16 APs in close physical
proximity can be assigned mutually orthogonal channels in
a 80Mhz total spectrum. In a ideal setting with unlimited
channel width options, overlapping channels could always be
avoided altogether.

This raises the interesting question whether neighboring
APs should always be allocated non-overlapping channels?
Specifically, one conceivable alternative to assigning non-
overlapping channels is to allocate the entire available spec-
trum to all APs, and purely rely on the 802.11 contention
mechanism to access the spectrum. Theoretically, such a
scheme should have several pitfalls. Transmissions using wider
channels can be more susceptible to interference [26], [10].
Furthermore, building a wide-band receiver to cover the entire
spectrum (say 160 MHz in the 5.8 GHz band) is expensive,
and will consume more battery power. Finally, the throughput
of interfering APs drops more than half if they use the same
portion of the spectrum due to contention overhead and losses
caused by interference.

Recent empirical measurements in [10] suggest that assign-
ing non-overlapping channels is indeed beneficial. Specifically,
it was shown that in spite of some cross-channel leakage, the
average combined throughput of the two flows when sharing
one channel of width2X MHz width is less than when
they are split on adjacent non-overlappingX MHz channels.



This gain of partitioning the spectrum is particularly striking
if different flows transmit at different data rates because of
the rate anomaly problem[16]. The other reasons for the
gain stems from reduced contention overhead and from the
fact that narrower channels have a smaller per-packet relative
overhead [10].

Simulations in QualNet: We corroborate these findings
with a simulation-based evaluation of the 6 AP scenario of
Section VI (Figure 3) in QualNet [2]. Six clients are associated
to each AP, and each AP is sending separate CBR flows to
every client. We measured the total throughput of the systemin
two scenarios: (i) APs using the 4 orthogonal channels used
in our deployment at 12 Mbps each (We used the channel
allocation presented in Chandra et. al. [11]); and (ii) all APs
on one channel using 48 Mbps data rate. The second scenario
is an approximation of all APs using the entire spectrum (4
channels), i.e. they can pack 4 times the number of bits per
second. To factor out the impact of encoding (and hence data
rates) on packet losses, we place the clients very close to the
AP they are associated with. The key results are that for these
scenarios, the total throughput of the system was 30.4 Mbps
when APs used 4 channels. In contrast, the throughput drops
to 17.85 Mbps when all nodes shared the same channel, albeit
at 4 times the data rate.

Both our empirical measurements and our simulations
shows that having two APs on two separate channels gives
better performance than having both on a single channel
of double the channel width. And for this reason, we have
designed our algorithms in Section V to always try and
assign non-overlapping channels. We note, however, that a
partial overlap in the AP’s channelsmight give better system
throughput than completely non-overlapping channels as has
been shown in a recent work [22]. We are currently extending
our model to capture this phenomenon.

IV. PROBLEM FORMULATION & COMPLEXITY

Based on the discussion in the previous section, we for-
malize the spectrum allocation problem as follows. Consider
a WLAN consisting ofn access pointsAP1, . . . , APn. Given
the fixed locations and transmission powers, letG = (V, E)
be the network’sconflict-graph[17], [25]: There is an edge
between two APs if they have significantly overlapping cov-
erage regions and should therefore avoid transmitting on the
same frequency.3 The conflict graph is static and is updated
only rarely. For anAPi, we denote byN(i) the set of all
neighboring APs that are potentially in conflict withAPi,
N(i) = {APj | (i, j) ∈ E}.

Each AP APi has a load Li associated to it. The load
corresponds to the amount of traffic the AP needs to service. In
practice,Li can either be determined using simple heuristics

3In a practical system, the interference relationship between neighboring
APs can be determined in an ad hoc fashion (e.g., by APs using beacon
messages to probe their proximity to other APs, or by client feedback) [25];
or it may be statically provided as part of the network planning. Also, more
sophisticated conflict-graphs can be used if desired. For instance, it can take
into account interference between clients and client-locations as in [21].
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Fig. 2. Network in which an optimal solution in terms of spectrum
utilization is unfair. T and F denote the allocations in a spectrum-
optimal and fair solution, respectively.

(e.g., Li is the number of clients associated to the AP) or
by more sophisticated means that include aspects such as the
clients’ data rates.

Algorithms: The set of loadsL1, . . . , Ln, along with the
interference graph, forms the input to aspectrum assignment
algorithm. This algorithm assigns a channelIi = [Si, Si +Bi]
to everyAPi, whereSi is the assigned channel’s lower-end
frequency, andBi is the channel-width.

Measures: For a given spectrum assignment, we consider
two measures for every AP: thetotal-spectrumTi and theper-
unit-load-spectrumPLi, or short, PUL-spectrum. The total-
spectrum is simply the total spectrum available toAPi, i.e.,
Ti = Bi if the channel assigned toAPi is non-overlapping.
The PUL-spectrum is defined asPLi = Bi/Li and captures
how much spectrum is allocated toAPi per unit of load that
this AP has to serve.

Given these definitions, we define the non-overlapping ver-
sion of our key spectrum distribution problem.

Adaptive-Width Channel-Assignment Problem: Given
AP loadsL1, . . . , Ln and an conflict-graphG = (V, E), find
a an assignment of a contiguous channelIi = [Si, Si +Bi] to
each AP. An assignment is callednon-interferingif, for any
pair of neighboring APs,APi and APj with (i, j) ∈ E, the
assigned channelsIi andIj are non-overlapping.

There are two important objectives that an adaptive-width
channel-allocation should achieve: 1)high spectrum utilization
and 2)per-load fairness.

Spectrum Utilization TSys: The goal is to reuse as much
spectrum as possible in the system, i.e., to maximize the
overall spectrum utilizationTSys =

∑

i∈V Ti.
Per-Load Fairness: For fairness, various definitions can

be considered and the optimization criterion can be defined
appropriately. We incorporate fairness by requiring a mini-
mum PUL-spectrum fairness across all nodes. Specifically, we
consider alocal fairness conditionin which every AP must
receive at least its fair share of spectrum in its neighborhood.4

In particular, we defineφ(i) = Li/(Li +
∑

j∈N(i) Lj) as the
fair spectrum-sharethat APi should receive. APs with high
loadLi get a proportionally larger share of the spectrum. In the
Fair Adaptive-Width Channel-Assignment Problem, we seek
to maximize the spectrum utilization under the condition that
every AP receives at least a spectrum ofBi ≥ αφ(i) · Btot,

4Other fairness definitions can be incorporated into our problem formula-
tion. Our fairness definition has the advantage of being entirely local. That
is, if there are dense and sparse regions in the network, the naturally higher
fairness restrictions in the dense network parts do not affect the sparse regions.



where the parameterα characterizes the maximally tolerable
unfairness in the system. Note that this fairness definition
implies a local PUL-spectrum fairness constraint.

Fairness vs. Capacity Trade-off:The parameterα char-
acterizes the trade-off between achieving high spectrum uti-
lization and fairness, which are typically contradicting aims.
Consider the star graph with uniform demands shown in Fig-
ure 2. An allocation maximizing spectrum utilization assigns
each leaf AP the entire spectrum, while giving no channel to
the center AP. While achieving spectrum utilization (the entire
spectrum is reused 4 times), such a solution starves clients
associated to the AP in the center. A completely fair solution,
on the other hand, consists of assigning each AP a channel-
width spanning half of the totally available spectrum. The
above problem definition addresses this fairness vs. throughput
trade-off by fixing a lower bound on the degree of fairness that
must be maintained between different APs.

Complexity: We can show that the fair dynamic-width
channel-assignment problem is NP-hard forα > 2/3. Due
to lack of space, the proof is deferred to the full version.

Theorem 4.1:The dynamic-width channel-assignment
problem problem is NP-hard for any fairness parameter
α > 2/3. This holds even in restricted geometric graph
models such as the unit disk graph.

V. A LGORITHMS

As motivated in Section III-C, our algorithms are designed
to assign non-overlapping channels to neighboring APs when-
ever possible, by making the channels narrower if needed. The
adaptive-width channel-assignment problemis different from
coloring problemsor multicoloring problemsthat have been
extensively studied in the networking and theory communities.
The reason is that, unlike in (multi)coloring problems, the
interval assigned to each AP must consist of acontiguous
chunk of spectrum. This contiguity constraint can lead to
fragmentationof the spectrum; APs may be unable to reserve
a large contiguous block of the spectrum even though the
totality of unused spectrum in their neighborhood would be
sufficiently high. The problem is therefore also of theoretical
interest. We devise three different algorithmic approaches.

A. Optimal ILP Formulation

The optimal solution of a problem instance can be character-
ized by the following integer linear program (ILP). Variables
bi and si denote the channel width and lower-end frequency
allocated toAPi. The ILP determines the optimal spectrum
utilization in a network with arbitrary channel-width options:

max
X

APi∈V

bi

si + bi − sj − fij · Btot < 0 , ∀(i, j) ∈ E

sj + bj − si − fji · Btot < 0 , ∀(i, j) ∈ E

fij + fji ≤ 1 , ∀(i, j) ∈ E

si + bi ≤ Ftop , ∀ APi ∈ V

si ≥ Fbottom , ∀ APi ∈ V

χ · bi ≤ Li , ∀ APi ∈ V

bi ≥ αφ(i) · Btot , ∀ APi ∈ V

fij , fji ∈ {0, 1} , ∀(i, j) ∈ E.

For each pair of APsAPi and APj with (i, j) ∈ E, the
ILP has two binary indicator variablesfij and fji. The first
two constraints force these variables to behave as follows.The
variablefij is 1 if and only if the top-frequencysi + bi of
APi is “above” the bottom-frequencysj of APj . Conversely,
fji = 1 if and only if sj + bj > si. Considering two
intervals [si, si + bi] and [sj , sj + bj], it is easy to observe
that these intervals overlap if and only ifsi + bi > sj and
sj + bj > si. The third constraint therefore guarantees that
no two neighboring intervals in the graph overlap, i.e., the
resulting channel assignment is non-overlapping. The nexttwo
constraints ensure that the assigned interval is located within
the available spectrum[Fbottom, Ftop]. The sixth one expresses
that above a certain load-dependent point, raising the channel
width does not increase throughput. Finally, the last inequality
captures our localper-load fairnesscondition as discussed
in Section III. Note that the ILP assumes channel-widths to
be arbitrarily tunable. However, discrete widths can easily be
incorporated by restricting the variablesbi to a corresponding
set of integers. In Section VI, we examine the impact of this
discrete set of channel width options.

While the ILP describes the theoretical optimum of any
problem instance, it is computationally practicable only in
small networks. Therefore, we now investigate computation-
ally efficient approximate solutions.

B. LP-Based Approximation

Our problem has the intricacy thatfragmentationneeds to be
avoided, which makes it very difficult to formulate the problem
as a linear program (LP) relaxation.
A Packing Algorithm that avoids Fragmentation: We start
by considering the interval packing problem in isolation. As-
sume for the moment that the channel-width intervals allocated
to the different APs was already determined. How should these
intervals be packed? Intuitively, adhering to the following rules
of thumb may help:
R1. Pack large items first.
R2. Try to fill up from one end.

However, in addition to being a packing problem, the
problem also has the flavor of a complex (interval)coloring
problem. The well-known greedy coloring algorithm visits
nodes one-by-one, assigning each node the lowest color still
available in its neighborhood. Clearly, this procedure colors
any graph using at most∆(G) +1 colors, where∆(G) is the
maximum node-degree. Similarly, if we were not constrained
to assigning acontiguous intervalto each AP, we could assure
that all required spectrum can be packed in a total spectrum
of

δ(b)
∆
= max

u∈V

(

bu +
∑

v∈N(u)

bv

)

, (1)

which is essentially the continuous counterpart of the∆(G)+1
coloring upper-bound. That is, without the contiguity con-
straint, the greedy coloring algorithm assures that the total
spectrum requirement isδ(b). Based on these observations,
we now present an approximation algorithm that combines
both the packing and coloring aspects of the problem.



Assume that the widths of all intervals followed a power
series, i.e., each interval has length2k for some integerk.
Applying rule of thumb #1, we sort the items in decreasing
order of their sizes and try to pack them one by one into the
real axis[0, +∞]. Applying rule of thumb #2, when packing
each item, we always try to fill up from one end, closer to
the origin. When packing in this way, it can be proven by
induction that whenever an interval of size2k is packed, all
available chunks of the spectrum are of size at least2k (in fact,
they are an integer multiple of2k). Hence, in this case, we do
not suffer from fragmentation: when packing intervals in this
order, every interval can be placed in such a free spectrum
chunk. And as pointed out before, the total spectrum required
to pack all intervals is at mostδ(b). Therefore, this method
achieves for the joint packing and coloring problem the same
performance that one can achieve for coloring.

If the channel-width intervals to be packed do not follow
a power series, we can round them up accordingly. Suppose
the given interval lengths areb0 ≥ b1 . . . ≥ bN . Then we
round eachbi to the next higher power of2. Consequently, all
intervals can be packed within a spectrum of

max
u∈V

(

b̃u +
∑

v∈N(u)

b̃v

)

≤ 2δ(b). (2)

Finally, we can linearly map the assigned frequencies
in [0, 2δ(b)] to the entire available spectrum interval
[Fbottom, Ftop]. Doing so, we have packed demandsb in a
maximum interval of2δ(b), which is at most by a factor of 2
(due to the rounding) worse than applying the greedy coloring
algorithm to a relaxed problem where each node can make use
of non-contiguous bands.

Optimizing the Interval Lengths: The packing algorithm
presented in the previous subsection is effective in assuring
the performance for the worst AP (with maximum load in
its neighborhood). While this is good from the fairness per-
spective, it may harm throughput in scenarios in which some
parts of the graph are dense, and others are sparse. We now
show how the overall spectrum utilization can be enhanced
without sacrificing fairness. We use the packing algorithm as
a building block that packs any load vectorb into an spectrum
of width [0, 2δ(b)]. The idea is to employ a sequence of linear
programs to search for a load vector with good worst-case
performanceδ(b) and good spectrum utilizationTSys. The
packing algorithm can then be run over the resulting load
vectorb to pack it into[0, 2δ(b)].
Consider the following linear program:

TSys(α)
∆
= max

b

∑

u

bu, subject to: (3)

bu ≥ αφu · Btot , ∀u (4)

bu +
∑

v∈N(u)

bv ≤ Btot , ∀u. (5)

Constraint (5) ensures that the computed vectorb results
in a feasible solution with a greedy coloring algorithm.
Constraint (4) maintains fairness by guaranteeing nodeu its

fair PUL-spectrum share. By varying the constant scaling
parameterα from 0 to some maximum valueα∗, different
tradeoffs between fairness and spectrum utilization can be
achieved. Using the maximum valueα∗ maximizes the worst
node’s performance; this value can be determined using the
following LP:

α∗ = max
b,α

α, subject to: (4)(5) (6)

Approximation Guarantees: For any specificα, the perfor-
mance achieved by a slightly adapted version of the LP-based
algorithm can be shown to be within a constant factor of the
optimal algorithm. The proof is omitted due to lack of space.

Theorem 5.1:When modeling the wireless network as a
disk graph, the LP-based algorithm achieves a spectrum uti-
lization that is within a constant factor of the optimal solution.
This holds for any per-load fairnessα and the constant depends
on the underlying network model.
Furthermore, it is worth noticing that our proofs of the packing
scheme imply a second important result.

Corollary 5.2: Every non-contiguous, but otherwise feasi-
ble spectrum allocation to APs can be turned into a feasible
contiguous spectrum allocation at the cost of at most a factor
of 2 in spectrum utilization.
Practical Deployment: Our LP-based algorithm leaves open
various parameters for tuning the involved fairness vs. spec-
trum utilization trade-off. A simple way of employing it in
practice is the following: First, determine the optimal fairness
parameterα = α∗ using LP 6. Then, using thisα, use the
first LP to computeBtotal(α). This amounts to a conserva-
tive approach that maximizes the total spectrum utilization
(by “flattening” the loads at the nodes) while assuring the
maximum level of fairness at the worst node. The LPs can
either be solved directly using an LP solver, or we can apply
efficient approximation algorithms [15].
C. GreedyRaising: Simple Greedy Heuristics

The LP-based approximation algorithm in Section V-B
provides provable worst-case performance guarantees. We now
apply the lessons learned in the previous section and devise
simpler heuristic solutions that do not require solving a linear
program and, as we show in Section VI, still perform well.

The heuristics are based on the greedy-packing subroutine
shown in Algorithm 1. This greedy packing routine takes
as input an ordering of APs (for example, from heaviest
to lightest load) and a channel-width for each AP. It then
proceeds in order of the given ordering and, when considering
APi, greedily attempts to pack a non-overlapping channel of
width Bi into the spectrum. If there is a choice, the interval
is packed at the lowest possible frequency.

Depending on the given ordering and channel-widths, the
greedy-packing scheme may not succeed. If the desired
channel-widths are too wide, it is theoretically impossible to
correctly pack. However, even if itis theoretically possible
to achieve a valid assignment of intervals to APs, the greedy
allocation may make suboptimal decisions and get stuck in
the process. In this case, the subroutine returns false, thereby
indicating that narrower channel-widths should be tried.



Algorithm 1 GreedyPack(B1, . . . , BN ,O) Routine
Input: Channel widthsB1, . . . , BN and an orderingO of APs
Output: If possible, a non-overlapping packing of

channel widths into the available spectrum.
Return false if no packing is found.

1: In the order ofO: for each APi ∈ V do
2: pack an interval of channel-widthBi in the lowest

possible non-overlapping frequency.
3: end for
4: if the interval of all APs was successfully packed

within the total spectrum[Fbottom, Ftop] then
5: return true
6: else return false
7: end if

Algorithm 2 GreedyRaising Algorithm
Input: An orderingO of APs
Output: A non-overlapping packing of channel widths

intervals in the available spectrum.
1: Set parametersθupper := BIGV ALUE and θlower := 0 and

let successful := FALSE;
2: while θupper − θlower > 0.01 do
3: θ := (θupper + θlower)/2;
4: Let φ′

i := θ · Li/(Li+
P

j∈N(i)Lj) for eachAPi ∈ V .
5: Let Bi be the largest channel width option s.t.Bi≤φ′

i · Btot

6: successful := GreedyPack(B1, . . . , BN ,O).
7: if successful
8: then θupper := (θupper + θlower)/2;
9: elseθlower := (θupper + θlower)/2;

10: end if
11: end while
12: In the order ofO: for each APi ∈ V do
13: Let bBi be the next higher channel width option ofBi.
14: successful := GreedyPack(B1, . . ., bBi, . . ., BN ,O).
15: if successful = TRUE then Bi := bBi.
16: end for

The basic idea of our GreedyRaising heuristics is the fol-
lowing. Starting from a feasible initial assignment, the heuris-
tics “probes” APs one-by-one and checks whether greedy-
packing remains successful if the AP’s channel-width is raised.
More specifically, GreedyRaising considers all APs in a given
sequenceO. When considering an AP, its channel-width is
increased to the next higher channel-width option, and the
greedy-packing subroutine is called in order to see whetherit
still succeeds. If it does, the higher channel-width is adopted;
if not, its channel-width is reset to its original value.

The only thing that remains to be defined is the orderingO
in which APs are considered in both the greedy packing sub-
routine and the main algorithm. We distinguish two different
orderings and evaluate their relative merits:

Most-Congested-First: In this ordering, APs are sorted in
decreasing order of their load.

Smallest-Last: Consider an orderingO and let τi be the
number of APs that are neighbors ofAPi that appearbefore
APi in O. The smallest-last ordering is an ordering that
minimizes the maximumτi over all APs in the network [19].
This ordering has been studied in the context of coloring
problems and is based on the following observation. When
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Fig. 3. Floor plan and AP locations on the floor of an office building.
Solid lines represent two interfering APs, and dashed linesindicate
that APs interfere at one of the clients.
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Fig. 4. Number of active clients at different times of the day.

consideringAPi in the greedy-packing routine,τi reflects the
number of potentially interfering intervals that have already
been packed inAPi’s neighborhood. Intuitively, the fewer such
intervals, the easier it is to packAPi’s allocated channel.
Considering the APs in smallest-last order minimizes the
maximum obstruction that any AP faces when its channel
width interval is packed. The smallest-last ordering can be
computed efficiently in a single pass [19].

Our evaluations show that both GreedyRaising heuristics
perform similarly well and outperform schemes based on
fixed channels. In many network topologies, the smallest-last
heuristic has the tendency to perform somewhat better.

VI. EVALUATION

Simulation Settings: We evaluate our algorithms using
two data sets: a small-scale enterprise WLAN and a large
enterprise/campus WLAN deployment.

Small WLAN: We use the wireless usage data collected
in [11]. This dataset contains monitoring information of 6 APs
on the floor of an office building. The floor plan of the office
building and the AP locations is illustrated in Figure 3. Lines
between APs show the conflict (interference) relationship.Two
APs are treated as interfering if there is one client associated
with one AP that can hear beacons from the other AP.

Figure 4 shows the maximum number of clients that are
simultaneously associated to each AP during every hour from
8 AM to 8 PM on Tuesday of a work week. The plots for
the other days show a similar trend; they are omitted in the
interest of space. Clearly, there is a spatial and time disparity
in network usage across different APs. At any given time,
APs at some locations serve a significantly larger number of
clients then the others. For example, AP 4, which is located
close to several conference rooms had up to 16 clients from
2 PM to 3 PMs. Furthermore, client populations at the APs



Figure 5: Performance comparisons for the small network: fixed channel-width vs. ILP with 4 channel width options vs. ILP with
11 channel width options vs. ILP without discrete channel width constraints vs. ideal approach.

vary significantly over time. The set of heavily-loaded APs
also changes at various times of the day across different days.

The conflict graph of Figure 3, together with the number
of clients associated to each AP for each hour, constitute a
test sample. We use the data for Monday to Thursday, each
covering 13 hours; hence there are altogether 13×4=52 tests.
We will present the results for 6 tests covering cases with low,
medium, and high variances in the client-distribution.

Large WLAN: This test scenario is generated based on
measurement data reported in [7], which measured the number
of clients associated to each AP for a network of 177 APs that
spans three buildings. The result is reported as a cumulative
distribution function of the number of clients associated to an
AP. In this trace, 50% of the APs serve less than 5 users, while
10% of the APs serve over 15 users; the average number of
clients served by each AP is 8. We generated a 50 AP test
scenario by drawing according to the distribution reportedin
[7]. Then we randomly placed the APs in a 1000m×1000m
square area. We generated two conflict graphs, for interference
ranges of 50m and 75m, respectively. They constitute two tests,
which we label as “sparse” and “dense” in the plots.

Using the test scenarios mentioned above, we first compare
the performance of the proposed adaptive-width scheme with
(i) a state-of-the-art solution that uses fixed-width channels,
and (ii) the ideal upper-bound assuming best possible adapta-
tion. For brevity, the former will be referred to as “fixed-width
approach” and the latter will be referred to as “ideal approach”.
The ideal approach can be viewed as either a perfect time-
domain adaptation approach or a perfect frequency-domain
adaptation approach where an AP can be allocated multiple
non-contiguous bands of arbitrary width. Specifically, here we
are evaluating the performance of the ILP scheme described
in Section V-A. This serves as the optimal spectrum-domain
adaptation scheme without complexity constraints. In the next
subsection we will evaluate how far the low-complexity ap-
proximation algorithms can approach the ILP’s performance.

The overall available spectrum is assumed to be 80 MHz.
We consider three variants of the ILP scheme. The first one as-
sumes a discrete set of allowed channel-widths,{5, 10, 20, 40}
MHz. The second one assumes a different set of channel-
widths, {3, 5, 6, 7, 10, 12, 14, 20, 24, 28, 40} MHz (this is the
set of channel-widths defined in WiMAX). The third variant
assumes any channel-width is allowed.

Performance Metrics: We use three performance metrics.
The first metric is thetotal spectrum utilizationTSys. The
second metric is aglobal spectrum-per-load fairness (SPF)

Fglobal that is similar to Jain’s fairness index. Specifically, the
global fairness index is defined as follows: For every unit of
load j at anAPi, we defineCj = Ti/Li. The fairness index
is then, i.e.(

∑

Cj)
2/

(

n
∑

C2
j

)

, where the sums are over all
units of load andn is the total number of clients. This global
fairness index reflects the uniformity of spectrum obtainedby
every unit of traffic load in the network. The above fairness
index has shortcomings. In a network with dense and sparse
parts, a completely fair solution according toFglobal may be
far from a good solution, because it wastes potential spectrum
in the network’s sparse parts. To reflect this consideration,
we also consider thelocal per-load fairnessintroduced in
Section IV. That is, this local fairness index, denoted byFlocal,
is Flocal = minAPi

Bi

Li/(Li+
P

j:j∈N(i) Lj)·Btotal
. It is the ratio

of an AP’s allocated spectrumBi over the AP’s fair spectrum
share, minimized over all APs.

Small WLAN Results: We begin with the small WLAN
setup shown in Figures 3 and 4. Note that the minimum
number of colors in a proper vertex coloring of this conflict
graph is 4. Hence, the “fixed-width approach” assigns 4 or-
thogonal channels to the APs, each of width 20MHz. The four
channels correspond to channels 1, 4, 8, and 11 in the IEEE
802.11 standard. Although in reality, these channels are not
completely non-overlapping, in order to make a conservative
comparison with our adjustable channel width allocation, we
assume the fixed-width approach can assign four completely
non-overlapping channels.

Figure 5 shows the performance comparisons for the small
network, for the three performance metrics discussed above.
In terms of spectrum utilization, the fixed channel-width
approach achieves 144 MHz whereas the ideal bound is 192
MHz in all six scenarios. The ILP without discrete channel-
width constraints achieves 192 MHz, showing that requiring
the band to be contiguous does not decrease the spectrum
utilization. The average spectrum utilization of ILP with 11
channel-width options is 182.4 MHz, which is better than
the state-of-the-art fixed channel-width approach. In terms of
global fairness indexFglobal, the average value for the fixed
channel-width approach is 0.54; the ILP with 4 channel-width
options achieves 0.63; the ILP with 4 channel-width options
achieves 0.65; the ILP without constraints as well as the ideal
approach achieve 0.77. Hence our algorithms provide slightly
better global fairness than the fixed channel-width approach.
However, similarly as in the case of spectrum utilization, our
algorithms are significantly better in terms of the local fairness



Figure 6: Large network. Spectrum utilization (left), Global fairness index (middle), Local fairness index (right)

index Flocal
5. Again, the fixed width approach is the worst,

whereas the ILP without discrete channel-width constraints has
about the same performance as the ideal solution.

Large WLAN Results: To compare with existing WLAN
deployments in which each AP is assigned one (fixed width)
channel, we compute the spectrum utilization with existing
deployment for the 50-node topology as follows. Since the
conflict graphG in this case is not colorable with four colors,
we cannot avoid conflicting channel assignments. We proceed
by first obtaining a (conflicting) channel assignment on four
channels and then compute the spectrum utilization assuming
that if an AP conflicts withk of its neighboring APs on
the same channel, then this AP can use effectively a fraction
1/(k + 1) of its assigned 20MHz spectrum. To obtain a good
channel assignment, we use the weighted coloring channel
assignment algorithm in [20].

Figure 6 gives the performance comparisons for the larger
WLAN, for the two test cases. In both cases, the spectrum
utilization of the fixed channel-width approach is significantly
worse than the other approaches (up to 4X smaller). Similar
to the small WLAN case, the ILP with discrete channel width
options achieves a much better spectrum utilization, and the
ILP without discrete constraints achieves a spectrum utilization
close to that of the ideal solution. However, in this case, having
11 channel-width options does not significantly improve the
spectrum utilization. In terms of the local fairness index,the
fixed channel-width approach can be as much as 8X worse
than the the adaptive channel-width approach.

Low Complexity Approximation Algorithms: The ILP
scheme described in Section V-A, although optimal, has a high
complexity, limiting its use to only small networks. In thissub-
section we compare the ILP scheme with the low complexity
approximation algorithms in Section V-B and Section V-C.
Figure 7 shows the throughput comparisons for the small
network and the large network, where the ILP approach is
compared with (i) the LP approach followed by greedy tuning,
(ii) the greedy raising algorithm using the most-congested-first
ordering, (iii) the greedy raising algorithm using the smallest-
last ordering. In this setting, there are four channel-width
options,{5, 10, 20, 40} MHz; the results for 11 options are
similar and are omitted. The crucial observation is that thelow
complexity heuristics algorithms can achieve close to optimal
spectrum utilization. The same is true for both the global and
local fairness index measures.

5The local fairness index can exceed 1 if the spectrum assigned to every AP
exceeds its fair share. This can happen if spectrum is reusedvery efficiently
by the algorithm.

Figure 7: Comparison of spectrum utilization—Large network
(top), Small network (bottom): ILP vs heuristics. “LP-4wid ths”
refers to the LP algorithm using 4 channel-width options. “GR-
MCF-4widths” refers to the greedy raising algorithm with most-
congested-first ordering and 4 channel-width options.

Summary of Observations: In summary, the proposed
adaptive channel-width architecture, which allocates each AP
a contiguous channel with a tunable width, can significantly
outperform the fixed channel-width approach in terms of
spectrum utilization. In some cases, the increase in spectrum
utilization can be as much as 4X. Secondly, adapting channel-
widths based on the loads at the APs also helps in substantially
improving fairness in the network, thus providing a good
solution to the load-balancing problem. And finally, the perfor-
mance of our heuristic algorithms is close to the optimal upper
bound that assumes non-contiguous, arbitrary-width channels.

VII. R ELATED WORK

Several algorithms and techniques have been proposed to
balance load across APs in a WLAN.

Bejerano et. al. [8] showed the importance of association
control for fairness and load balancing in WLANs. Cell
Breathing [6] adjusts power levels of APs to achieve asso-
ciation control. It decreases the transmit power of heavily
loaded APs to force some clients away from it. Similarly, it
increases the transmit power of lightly loaded APs to attract
clients. Other approaches, e.g. [27], explicitly modify clients
to associate with the best AP. Although association control
is important, it might not be the best approach for load
balancing if done in isolation. For example, cell breathing
might associate a client with a farther away AP. Although,
this can reduce the number of clients associated to an AP,



moved clients might get much lower data rates if the new AP
is far, or they could reduce the throughput of other clients
around it due to the rate anomaly problem [16]. In contrast,
our approach of load-aware spectrum allocation allows clients
to stay associated to the best APs. We note, however, that
association control is complementary to our approach of using
adaptive channel widths, and both these mechanisms can be
combined for better WLAN performance.

Other approaches such as SMARTA [5], MDG [9], or
DenseAP [24] have realized the limitations of performing
association control in isolation, and propose an integrated
approach for improving WLAN performance. They adapt the
AP transmission power and channel, and also control client
AP associations. Furthermore, these systems propose dense
AP deployments to reduce the client-unfairness problem. Each
AP only serves a few clients, and therefore the impact of
client-unfairness is reduced. However, the problem still exists
as long as each AP serves more than one client and the
client distribution is not uniform. In these scenarios, SMARTA,
MDG, and DenseAP can benefit from using channel width as
an additional tuning parameter.

There exists prior work on allocating channel widths based
on demand in other types of networks. In OFDMA [14], an
AP can split its channel width among its clients to reduce the
impact of interference. However, the allocated channels can
be fragmented. Further OFDMA work deals with allocating
channel widths to single communication links between clients,
and not with balancing load among various APs [10]. In
another work, the KNOWS system [28], [29] proposes the
use of contiguous bands to maximize the usage of fragmented
spectrum in mesh networks. To the best of our knowledge,
ours is the first work to use channel width as a parameter to
solve the load balancing problem in WLANs.

VIII. C ONCLUSION

The fixed-width channelization technique in IEEE 802.11
networks inherently has difficulties in coping with the spatially
non-uniform and temporally dynamic user demand that is
prevalent in many infrastructure networks deployed today.
To remedy this situation, various load-balancing techniques
have been investigated. In this paper, we argue that we can
leverage recent work on adaptive channel-width systems to
move beyond pre-determined channels of fixed width. This
provides a very powerful and conceptually simple solution
to the load-balancing and spectrum allocation problem in
WLANs; a solution that has the potential of significantly
increasing both fairness and spectrum utilization.

Before this potential can ultimately be tapped, a number
of practical issues need to be solved. For example, the IEEE
802.11 scanning process will become more heavyweight, since
every client may have to try different channel-width options on
every center frequency to determine the presence of an AP. We
are currently in the process of solving this and other problems
on a real-testbed. There are also numerous directions for future
algorithmic research, such as incorporating power controlor
client-AP association into the optimization framework.
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