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Abstract 

New challenges arise for addressee detection when multiple 

people interact jointly with a spoken dialog system using 

unconstrained natural language. We study the problem of 

discriminating computer-directed from human-directed speech in 

a new corpus of human-human-computer (H-H-C) dialog, using 

lexical and prosodic features. The prosodic features use no word, 

context, or speaker information. Results with 19% WER speech 

recognition show improvements from lexical features  

(EER=23.1%) to prosodic features  (EER=12.6%) to a combined 

model (EER=11.1%). Prosodic features also provide a 35% error 

reduction over a lexical model using true words (EER from 

10.2% to 6.7%). Modeling energy contours with GMMs 

provides a particularly good prosodic model. While lexical 

models perform well for commands, they confuse free-form 

system-directed speech with human-human speech. Prosodic 

models dramatically reduce these confusions, implying that users 

change speaking style as they shift addressees (computer versus 

human) within a session. Overall results provide strong support 

for combining simple acoustic-prosodic models with lexical 

models to detect speaking style differences for this task. 

Index Terms: addressee detection, spoken dialog system,   

prosody, language model, GMM, boosting, logistic regression. 

 

1. Introduction 

Dialog systems are continually evolving to handle less 

constrained spoken input, interpret user intent, and engage in 

natural dialog to accomplish complex tasks. A fundamental 

capability for spoken dialog systems, especially those relying 

heavily on speech input, is addressee detection--the ability to 

detect whether or not user speech is directed toward the system. 

In single-user human-computer (H-C) contexts, the alternate 

addressee may be the user him- or herself (self-talk), or others in 

the environment who are not interacting with the system.  

When multiple users interact jointly with a system, which we 

will refer to as H-H-C dialog, addressee detection becomes even 

more of a challenge. Human-human (H-H) conversation about 

the shared task can contain the same keywords a system would 

listen for.  And when system-addressed utterances contain more 

than only commands or keywords, word sequences can begin to 

look more like those in H-H speech.  Even other cues such as 

gaze can become less reliable (for example, when users are all 

looking at a system display, even while talking with each other).  

Past research on addressee detection has focused on H-H settings 

(such as meetings), sometimes with multimodal cues [1]. 

Relatively little work has looked at the H-H-C scenario [2]. Early 

systems relied primarily on rejection of H-H utterances either 

because they could not be interpreted [3] or yielded low speech 

recognition confidence [4]. Some systems combine gaze with 

lexical and syntactic cues to detect H-H speech [5]. Others use 

relatively simple prosodic features based on pitch and energy in 

addition to those derived from automatic speech recognition 

(ASR) [6]. An interesting recent approach is the use of 

nonstandard acoustic features, such as multiscale Gabor wavelets 

[7]. Prior H-H-C studies involved H-C speech consisting only of 

“commands”, which are lexically constrained and therefore 

relatively easy to detect. The present work looks at a scenario 

where computer-directed speech can be free-form and 

linguistically unconstrained. To deal with this challenge, we 

employ energy contour models which, either alone or in 

combination with more traditional prosodic and ASR-based 

features, give promising results. Also, with a view toward 

portability and future system integration, we limit ourselves to 

features that are independent of context and speaker. 

2. Method 

2.1. Data 

Data come from interactions between two acquaintances and a 

dialog system using only spoken input.  Subjects were brought 

into a room and seated about 5 feet away from a large TV screen 

and roughly 3 feet away from each other.  They were told about 

the basic capabilities of the system and the domains it could 

handle. They were also given a small set of short commands; 

those relevant to addressee detection included commands to start 

a new interaction, pause, stop listening, or ‘wake up’ the system. 

Subjects were told to otherwise use open-ended natural language.  

For more information about the dialog system itself and the 

spoken language understanding approach, see [8][9].  

The resulting corpus comprises 6.3 hours of recordings over 17 

sessions with 2 speakers each from a set of 13 unique speakers. 

Session durations ranged from 5 to 40 minutes, as determined by 

users. Speech was captured by a Kinect microphone; endpointing 

and recognition used an off the shelf recognizer. Although the 

full interaction was recorded, we focus on speech in the 

recognized segments, or “segments”, as described in Table 1. 

Table 1.  Speech segment types, distribution, and 

grouping for binary classification purposes 

Addressee, Type Abbreviation % Total Class 

Computer, command C command 39.9 C 

Computer,  noncommand C noncommand 38.3 C 

Mixed Computer/Human M   2.7 C 

Human H 19.1 H 
 



A total of 1802 segments containing 1.2 total hours of speech 

were hand-transcribed and annotated for addressee.  Computer-

addressed segments were also labeled as either command or 

noncommand. Segments containing both human- and computer-

addressed speech (in any sequence) were marked as “mixed”; 

since these were also processed by the system they were grouped 

with the computer-addressed class for detection purposes.    

2.2. Lexical features 

Lexical features (N-grams).  We used unigrams, bigrams, and 

trigrams of automatically recognized words, including start/end-

of-utterance tags.  The speech recognition system used had a 

word error rate of 19% and a sentence error rate of 28%. (In 

5.5% of utterances the recognition hypothesis was empty.) For 

experiments to assess the best case scenario for N-gram 

performance, we also extracted N-grams from parallel human-

produced reference transcripts 

 

Maximum cosine similarity. This feature aims to capture 

whether the user’s utterance refers to content displayed by the 

system. Assume di,1 , ..., di,n are the n items that are shown to the 

user after turn i, then maximum cosine similarity is defined as 
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where ui+1 is the user’s utterance in the next turn, and cossim(x,y) 

is the cosine between vectors representing texts x and y, each of 

which is a binary vector of length |V|, the number of terms in the 

vocabulary V; each vector component is 0 or 1, depending on the 

absence or presence of the corresponding word in the utterance. 

ASR confidence. As in past work in this area [4][6], we also 

include a real-valued number representing the utterance-level 

confidence score for the 1-best sequence output by the 

recognizer. The motivation was that computer-directed speech 

should be better matched to recognizer acoustic and language 

models.  

2.3. Acoustic-prosodic features  

We also explored acoustic-prosodic features. Here, unlike some 

past studies in related areas, we only examine features consistent 

with all three conditions below—to facilitate later integration in 

an online system: 

1. Word independent: features do not rely on ASR.  

2. Context-independent: features do not rely on system 

state or information from other segments in the session. 

For example, no session-level normalization is used.  

3. Speaker-independent: features do not require any 

speaker normalization or modeling. 

 

Segment-level features.  We extracted acoustic-prosodic 

features at the level of the Kinect segment, designed to capture 

energy and speaking rate features that meet the conditions above. 

While pitch features showed some value in separate analyses, in 

particular in detecting computer-directed commands, we exclude 

them here because they are more complicated to model, 

especially with respect to speaker-independence. 

 

One set of segment-level prosodic features is extracted from 

energy peaks, similar to [6] but including additional measures. 

We ran a peak-picking algorithm [10] on 10-ms-frame intensity 

output from Praat [11], after mean subtraction. Features include 

the peak count, rate, mean and max distance apart, 

mean/max/min/stdev intensity value, and the location and value 

for the highest peak.  Another set of features uses speech activity 

information to describe speaking rate and duration information. 

In practice, our speech activity features are computed from the 

time-alignment of the word recognition output within the region 

that triggered speech activity detection, without making 

reference to the identity of the recognized words.  The features 

include total waveform duration, lengths of initial and final 

nonspeech regions, and the total duration of nonspeech regions 

between words.  

 

Energy contour features.   In examining computer-directed 

speech from a separate collection, we noted that it often sounds 

more rhythmic or “sing-songy” than typical human-human 

conversation. We sought to capture this behavior by extracting 

energy-related features in fixed-length temporal windows and 

modeling DCT bases with Gaussian mixture models (GMMs). 

The approach utilizes 10-millisecond-frame c0 output from 

standard MFCCs, a 200-millisecond sliding window with a 50% 

shift, and the first 5 DCT bases for mean-subtraction-normalized 

c0 output. Similar results were found using intensity output [11] 

instead of c0. Appending the first 2 bases for c1 added a small 

improvement.   We also tried adding pitch contours, separately 

or in the same model, but did not find appreciable gains.   

 

The contour modeling approach itself is similar to methods used 

in prior work on speaker verification and language identification. 

Select studies successfully incorporated prosodic contour 

information for those tasks, using Legendre or DCT bases of 

pitch and/or energy, and modeling them for either syllable-like 

segments or fixed-length windows, e.g., [12][13]. What is 

interesting is that, in this task, the energy contour features appear 

to capture differences in two speaking styles (human-directed 

and computer-directed) that cooccur within the same user, 

language, acoustic environment, and session.  

2.4. Classifiers and evaluation 

A variety of machine learning approaches were used to model 

the features described above, and to obtain classifiers for 

addressee detection.  All classifiers output a real value that can 

serve either as a detection score, or as a new feature to be fed 

into second-level classifiers. 

 

Language models. We compute a log likelihood ratio of the two 

addressee classes from lexical N-grams by modeling each class 

with a standard trigram backoff language model.  Witten-Bell 

discounting was used for smoothing. The detection score for an 

utterance w is computed as 
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where | | is the number of recognized words in the test 

utterance. 

 

GMMs.  The energy contour features employ Gaussian mixture 

models (GMM) to compute a log likelihood ratio.  Training 

feature vectors for each class are pooled and a GMM with full



 

co-variances is trained.  The score of a test utterance with 

feature vectors X then becomes 
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where | | is the number of vectors, and  ( |     ) is the 

aggregate GMM likelihood, assuming independence among the 

vectors.  The energy contour features described earlier are 

modeled by a 20-mixture component GMM. Given large 

improvements from session variability compensation 

techniques in other work [14] it was natural to try these 

approaches. We applied eigenchannel compensation to the 

energy contours but found no improvement; this can be 

revisited when more data are available. 

 

Boosting. Real-valued and binary utterance-level features are 

modeled by the Boostexter adaptive boosting algorithm [15] as 

implemented by [16]. Boosting induces a strong learner as a 

weighted combination of weak learners, each of which 

examines only a single feature of the input. The weighted 

combined score also serves as a detection score in our 

experiments. We use boosting to jointly model the segment-

level acoustic-prosodic features, as well as max cosine 

similarity and ASR confidence.  While it is also possible to 

include N-gram features in boosting, we found on our data that 

language models for those features give better results.  

 

LLR. We use linear logistic regression (LLR) to calibrate and 

combine one or more detection scores (obtained by any of the 

methods described earlier).  Given input scores x1, …, xn, the 

LLR model produces a new score 

          (                ), where the function 

       ( )   
 

     
 ranges between 0 and 1 and can be 

interpreted as a posterior probability of the target class. The 

parameters a0, …, an are estimated on the training data to 

minimize the cross-entropy between the model’s predictions x 

and the target labels. 

 

Evaluation.  We evaluate results using equal error rate (EER), 

actual error rate (broken down further by utterance type), and 

detection error tradeoff  (DET) curves.  Given the current size 

of this new data collection, we used cross-fold validation, in 

two stages.  The available data was divided into 17 partitions, at 

session boundaries. The top-level classifiers for each 

experiment where then trained and tested using 17-fold cross-

validation, using 16 sessions for training, and testing on the 

remaining one, round-robin until all sessions are used once for 

testing.  Results aggregate results over the entire dataset. For 

experiments involving two levels of classifiers (e.g., a GMM  

producing scores used as input to LLR), the cross-validation 

was carried out in a hierarchical manner.  Assume that classifier 

A produces inputs for classifier B, the top-level classifier, and 

that as part of the cross-validation classifier B is to be trained 

on sessions 1,…,16 and tested on session 17. To generate inputs 

for B using A, we would apply cross-validation to the subset 

1,…,16, i.e., train A on 15 sessions and using its outputs on the 

16th  session, thereby cycling through the 16 training sessions 

without touching the 17th used as the test set for B.  

3. Results 

Table 2 summarizes the performance of various subsets of 

features and their combinations. EER is the value at which false 

detections and misses occur with the same probability relative 

to their true classes, a metric that is independent of the class 

priors. Error denotes the overall classification error on the class 

distribution seen in the data. Since class priors depend on many 

factors, we are primarily interested in the discriminative power 

of systems independent of prior class distribution.  Figure 1 

plots the detection error tradeoff (DET) between false alarm 

and miss errors for the eight systems in Table 2.   

 

Figure 1. DET curves for the systems in Table 2. Axes 

use a normal deviate scale, thin curves use REF words. 

Table 2. System performance. EER=equal error rate, Error=classification error. Subscripts denote features: asrng=asr word ngrams, refng=reference 

ngrams, cosim=max cosine similarity, conf=asr confidence, energy=c0 DCT bases, segstats=segment-level prosody, * = human-transcribed words. 

 System Type Model EER Error 

 Chance Random decision/Majority class 50.00 19.10 

1 Lexical (ASR) LMasrng 28.95 17.44 

2 Lexical (ASR) LLR ( LMasrng , Boostcosim,conf ) 23.11 16.67 

3 Prosodic (noASR) Boostsegstats 16.03 11.83 

4 Prosodic (noASR) GMMenergy 13.93 11.21 

5 Prosodic (noASR) LLR ( Boostsegstats , GMMenergy ) 12.63 10.17 

6 Lexical (ASR) + Prosodic (noASR) LLR (LMasrng , Boostcosim,conf , Boostsegstats , GMMenergy ) 11.08 9.06 

7 Lexical (REF*) LMrefng 10.16 8.88 

8 Lexical (REF*) + Prosodic (noASR) LLR (LMrefng , Boostsegstats , GMMenergy ) 6.72 5.06 



As shown in Figure 1, all feature types give significant 

performance gains when combined with others, whether within 

or across feature types (lexical or prosodic).  ASR confidence 

and max cosine similarity (system 2) add to word N-grams (1). 

The two individual prosodic models (3,4),  despite similar Error  

(Table 2), combine well to reduce both Error and EER (5). 

Prosodic models alone (3,4,5) give far better results than lexical 

features alone (1,2) and also combine well with lexical features, 

yielding the best ASR-based performance (6). Prosodic features 

(5) even provide a 35% relative reduction in EER when added 

(8) to a system using reference words (7). 

 
 

 

Figure 2. Error rate by segment type and system. Note 

the error rates are on a log scale. Bar widths reflect 
relative frequencies of utterance types (see Table 1).  

Figure 2 breaks down performance by segment type. A clear 

pattern is the high error rates on the human-directed segments 

(H), especially noting the scale.  For example, the H class error 

rate for System 2 is over 71% error. Prosody (System 5) greatly 

reduces this rate in absolute terms—from 71% to 33%, without 

large absolute error increases for commands or noncommands. 

With correct words alone (System 7), commands are detected 

as C almost perfectly, but the H class still has over 40% error. 

This is reduced to 15% for System 8, without adding errors on 

commands, and only slightly increasing error on noncommands 

in absolute counts. Mixed-type utterances have results 

intermediate between H and C types; they exhibit the least 

reduction in classification error, suggesting that they might 

require special treatment to achieve further improvements. 

4. Discussion and Conclusions 

Acoustic-prosodic features that do not require word recognition 

offer the possibility of reducing latency in a real-time system, 

and may facilitate portability across domains and even 

languages. Lexical features alone, even for improved ASR, 

quality can remain variable in the face of noise and various 

sources of model/data mismatch.  The large difference (Table 

2) found in N-gram model performance between ASR and REF 

means that it will be difficult to calibrate such a system. Results 

in Figure 2 show that even with reference words, lexical 

features still have trouble classifying human-addressed speech.   

 

In summary, new challenges arise for addressee detection when 

users speak with each other (about the domain) and use 

unconstrained language to interact with a system. We find that 

in particular, natural unconstrained utterances to a system are 

confusable with speech between users.  A combination of 

lexical and ASR-independent prosodic models yields large error 

reductions from a lexical model alone, holding up even if word 

recognition is perfect.  As a prosodic model, we propose in 

particular a simple energy contour GMM that yields low error 

rates alone as well as in combination with other systems.    

Overall, we conclude that speakers modify their prosody not 

only in commands, but also in unconstrained computer-directed 

speech, and that this style difference can be harnessed for 

improved addressee detection in both H-C and H-H-C dialog. 
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