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Abstract
Wide-area sensing services enable users to query data

collected from multitudes of widely distributed sensors.
In this paper, we consider the novel distributed database
workload characteristics of these services, and present
IDP, an online, adaptive data placement and replication
system tailored to this workload. Given a hierarchical
database, IDP automatically partitions it among a set
of networked hosts, and replicates portions of it. IDP
makes decisions based on measurements of access local-
ity within the database, read and write load for individual
objects within the database, proximity between queriers
and potential replicas, and total load on hosts participat-
ing in the database. Our evaluation of IDP under real and
synthetic workloads, including flash crowds of queriers,
demonstrates that in comparison with previously-studied
replica placement techniques, IDP reduces average re-
sponse times for user queries by up to a factor of 3 and re-
duces network traffic for queries, updates, and data move-
ments by up to an order of magnitude.

1 Introduction

Emerging wide-area sensing services [18,26,27] promise
to instrument our world in great detail and produce vast
amounts of data. For example, scientists already use such
services to make observations of natural phenomena over
large geographic regions [2, 5]; retailers, such as Wal-
mart [9], plan to monitor their inventory using RFID tags;
and network operators (ISPs) monitor their traffic using
a number of software sensors [16]. A key challenge that
these services face is managing their data and making it
easily queriable by users. An effective means for address-
ing this challenge is to store the vast quantity of data in a
wide-area distributed database, which efficiently handles
both updates from geographically dispersed sensors and
queries from users anywhere in the world [14].

Like traditional distributed databases, sensing service
databases must carefully replicate and place data in order
to ensure efficient operation. Replication is necessary for
avoiding hot spots and failures within the system, while
careful data placement is required for minimizing network
traffic and data access latency. Although replication and
data placement have been extensively studied in the
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context of many wide-area systems [10, 12, 24, 32, 36,
37, 40, 41], existing designs are ill-suited to the unique
workload properties of sensing services. For example,
unlike traditional distributed databases, a sensing service
database typically has a hierarchical organization and a
write-dominated workload. Moreover, the workload is
expected to be highly dynamic and to exhibit significant
spatial read and/or write locality. These unique work-
load properties, discussed in further detail in this pa-
per, significantly complicate the design of replication and
placement techniques. For example, although replicating
data widely can reduce query response times by spread-
ing client load among more host machines and providing
replicas closer to queriers, it also increases network traffic
for creating replicas and propagating the large volume of
writes to them. Similarly, placing data near the sources
of reads/writes can reduce network overheads, but it also
increases latency and CPU load for answering the hierar-
chical queries common in sensing services.

In this paper, we present an online, adaptive data place-
ment and replication scheme tailored to the unique work-
load of wide-area sensing services. This scheme, called
IrisNet Data Placement (IDP), has been developed in the
context of the IrisNet wide-area sensing system [8]. With
IDP, each host efficiently and locally decides when to off-
load data to other hosts and what data to off-load. The
target hosts are selected such that data accessed together
tend to reside on the same host. IDP makes such online
decisions based on workloads, locality of queries, prox-
imity of queriers and candidate replica locations, and to-
tal load on the hosts running the service. In making these
decisions, IDP tries to balance three performance metrics:
response time, bandwidth used for creating replicas, and
bandwidth used to keep replicas up-to-date, in a way par-
ticularly suited to wide-area sensing service workloads.
Such automatic and adaptive techniques are essential for
a large-scale, widely-distributed sensing service because
service administrators cannot be expected to determine
and maintain an effective partitioning across all the hosts.

IDP explicitly detects flash crowds (i.e., sudden bursts
in queries to spatially localized data), replicates in re-
sponse to them, and sheds load to newly created replicas,
but only as long as the flash crowd persists. Thereafter,
if load on the new replicas drops, unneeded replicas are
destroyed. IDP places new replicas in proximity to the
sources of queries and updates, but routes queries using a
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Figure 1: Result of injecting a real query workload into a
310 PlanetLab host deployment of IrisNet with and with-
out IDP. A flash crowd is emulated at time = 30 minutes
by increasing query rate by 300 times. A response time of
8 second represents a timeout.

combination of proximity routing and randomization, to
ensure that queries favor nearby replicas but new replicas
can succeed in drawing query load away from preexisting
closer replicas.

We implemented IDP within IrisNet and evaluated
its performance under real and synthetic sensing system
workloads. Figure 1 presents a sample result demonstrat-
ing IDP’s effectiveness (details of the experimental setup
will be described in Section 7). As shown, IDP helps
IrisNet tolerate a flash crowd gracefully, keeping the re-
sponse times close to their pre-flash crowd levels. With-
out IDP, IrisNet quickly becomes overloaded, resulting in
higher response times and frequent query timeouts. Fur-
ther results show the effectiveness of various components
of IDP and provide a comparison with two previously-
studied adaptive placement schemes [36, 41]. Compared
to these schemes, IDP reduces average response time for
user queries by up to a factor of 3 and reduces network
traffic by up to an order of magnitude, while serving user
queries, propagating new sensor data to replicas, and ad-
justing data placements.

In the remainder of the paper, we describe the charac-
teristics of wide-area sensing service workloads and the
architecture of a wide-area sensing system, present the al-
gorithms that comprise IDP, describe our implementation
of IDP, evaluate IDP through real deployment and simu-
lation, briefly discuss related work, and conclude by sum-
marizing our findings.

2 Wide-Area Sensing Systems

Although IDP has been developed in the context of Iris-
Net, the techniques are tailored more to the workload than
to the specific sensing system, and hence should be effec-
tive for many wide-area sensing systems. In this section,
we describe the workload in further detail by consider-
ing a few example wide-area sensing services. Then we

present an architecture for a generic sensing system on
which these services can be built; IDP will be discussed
in the context of this generic system, in order to empha-
size its applicability beyond IrisNet.

2.1 Wide-Area Sensing Services

We consider representative services from five classes of
wide-area sensing services, as summarized in Table 1:

Asset Tracker: This service is an example of a class of
services that keeps track of objects, animals or people.
It can help locate lost items (pets, umbrellas, etc.), per-
form inventory accounting, or provide alerts when items
or people deviate from designated routes (children, sol-
diers, etc.). Tracking can be done visually with cameras
or by sensing RFID tags on the items. For large organi-
zations such as Walmart or the U.S. Military, the global
database may be TBs of data.

Ocean Monitor: This service is an example of a class
of environmental monitoring services that collect and
archive data for scientific studies. A concrete example is
the Argus coastal monitoring service [2,18], which uses a
network of cameras overlooking coastlines, and analyzes
near-shore phenomena (riptides, sandbar formation, etc.)
from collections of snapshot and time-lapse images.

Parking Finder: This service monitors the availability of
parking spaces and directs users to available spaces near
their destination (see, e.g., [14, 18]). It is an example of
a class of services that monitors availability or waiting
times for restaurants, post offices, highways, etc. Queriers
tend to be within a few miles of the source of the sensed
data, and only a small amount of data is kept for each item
being monitored.

Network Monitor: This service represents a class of dis-
tributed network monitoring services where the “sensors”
monitor network packets. A key feature of this service is
the large volume of writes. For example, a network mon-
itoring service using NetFlow [4] summarization at each
router can generate 100s of GBs per day [16]. We model
our Network Monitor service after IrisLog [7,18]. IrisLog
maintains a multi-resolution history of past measurements
and pushes the distributed queries to the data.

Epidemic Alert: This service monitors health-related
phenomena (number of people sneezing, with fevers, etc.)
in order to provide early warnings of possible epidemics
(see, e.g., [3]). When the number of such occurrences sig-
nificantly exceeds the norm, an alert is raised of a possible
epidemic. We use this service to consider a trigger-based
read-write workload in which each object in the hierarchy
reports an updated total to its parent whenever that total
has changed significantly, resulting in a possible cascad-
ing of updates. Trigger-based workloads have not been
considered previously in the context of data placement,
but they are an important workload for sensing services.



Asset Tracker Ocean Monitor Parking Finder Network Monitor Epidemic Alert
Global DB Size large very large medium large medium
Write Rate medium low low very high very low
Read/Write Ratio low very low low very low one
Read Burstiness low very low high low very low
Read Skewness building, skewed root, uniform neighborhd, skewed domain, uniform uniform, uniform
R/W Proximity neighborhood root neighborhood domain root
Consistency variable: secs–mins relaxed: ≈mins variable: secs–mins strict: ≈secs relaxed: ≈mins

Table 1: Five representative wide-area sensing services and their characteristics.

A Qualitative Characterization. In Table 1, we charac-
terize qualitatively the five representative services along
seven dimensions. Global DB Size is the size of the global
database for the service. Note that for Ocean Monitor,
it includes space for a full-fidelity historical archive, as
this is standard practice for oceanography studies. For
Network Monitor, it includes space for a multi-resolution
history. In order to provide different points of compari-
son, for the remaining services, we assume only the most
recent data is stored in the database.1 Write Rate is the
rate at which objects are updated in the global database.
We assume services are optimized to perform writes only
when changes occur (e.g., Parking Finder only writes at
the rate parking space availability changes). Read/Write
Ratio is the ratio of objects read to objects written. A dis-
tinguishing characteristic of sensing services is that there
are typically far more writes than reads, as far more data
is generated than gets queried. An exception in our suite
is Epidemic Alert, because we view each triggered update
as both a read and a write. Read Burstiness refers to the
frequency and severity of flash crowds, i.e., large num-
bers of readers at an object in a short window of time.
For example, Parking Finder has flash crowds right be-
fore popular sporting events. Read Skewness is measured
in two dimensions: the geographic scope of the typical
query (e.g., parking queries are often at the neighborhood
level) and the uniformity across the objects at a given level
(e.g., parking queries are skewed toward popular destina-
tions). R/W Proximity reflects the typical physical dis-
tance from the querier to the sensors being queried, as
measured by the lowest level in the hierarchy they have in
common. For example, an oceanographer may be inter-
ested in coastlines halfway around the world (root level
proximity), but a driver is typically interested only in
parking spaces within a short drive (neighborhood level
proximity). Consistency refers to the typical query’s tol-
erance for stale (cached) data.

2.2 Sensing System Architecture

We now describe the architecture of a generic wide-area
sensing system on which the above services can be built.
At a high level, a sensing system consists of three main

1This assumption is not crucial for the results that follow.

components.
Data Collection. This component collects data from the
sensors, which may be cameras, RFID readers, micro-
phones, accelerometers, etc. It also performs service-
specific filtering close to the sensors, in order to reduce
high-bit-rate sensed data streams (e.g., video) down to a
smaller amount of post-processed data. In IrisNet, for ex-
ample, this component is implemented as Sensing Agents
(SAs) that run on Internet-connected hosts, each with one
or more attached sensors. The post-processed data is
stored as objects in the data storage component, described
next.
Data Storage. This component stores and organizes the
data objects so that users can easily query them. Be-
cause of the large volume of data and because objects
are queried far less frequently than they are generated,
a scalable architecture must distribute the data storage
so that objects are stored near their sources. Sensed
data are typically accessed in conjunction with their ori-
gin geographic location or time. Organizing them hier-
archically, e.g., according to geographic and/or political
boundaries, is therefore natural for a broad range of sens-
ing services. We assume that each sensing service orga-
nizes its data in its own hierarchies, tailored to its com-
mon access patterns. For example, the data of the Parking
Finder may be organized according to a geographic hier-
archy (for efficient execution of common queries seeking
empty parking spots near a given destination), while data
in an Ocean Monitor may further be organized accord-
ing to timestamps (supporting queries seeking all riptide
events in the year 2004).2 Thus, the storage component
of a sensing system provides a hierarchical distributed
database for a sensing service. Let the global database
of a service denote a sensor database built from the com-
plete hierarchy for a service and the data collected from
all the sensors used by that service. A host in the sens-
ing system contains a part of this database, called its lo-
cal database. Thus, each sensing service has exactly one
global database, which can be distributed among multi-
ple hosts. However, each host may own multiple local
databases, one for each sensing service using the host.

In IrisNet, for example, this storage component is
implemented as Organizing Agents (OAs) that run on

2A service can have multiple hierarchies over the same data.



Internet-connected hosts. The global database is repre-
sented as a single (large) XML document whose schema
defines the hierarchy for the service. Note that the hierar-
chy is logical—any subset of the objects in the hierarchy
can be placed in a host’s local database.

Query Processing. A typical query selects a subtree from
the hierarchy. The query is then routed over the hierar-
chy, in a top-down fashion, with the query predicates be-
ing evaluated at each intermediate host. The hierarchy
also provides opportunities for in-network aggregation—
as the data objects selected by the query are returned back
through the hierarchy, each intermediate host aggregates
the data sent by its children and forwards only the aggre-
gated results. For example, a query for the total value of
company assets currently within 100 miles of a given dis-
aster is efficiently processed in-network by first summing
up the total asset value within each affected building in
parallel, then having these totals sent to each city object
for accumulation in parallel, and so on up the object hi-
erarchy. This technique, widely used in wireless sensor
networks [31], is also used in a few existing wide-area
sensing systems [14, 17, 39].

For example, in IrisNet, a query is specified in
XPATH [43], a standard language for querying an XML
document. Figure 2 shows a portion of an example hi-
erarchy (for a Parking Finder service), a partitioning of
the hierarchy among hosts (OAs), and an example of how
queries are routed on that particular partitioning. The
hierarchy is geographic, rooted at NE (the northeastern
United States), continuing downward to PA (state), Pitts-
burgh (city), Oakland and Shadyside (neighborhoods),
and then individual city blocks within those neighbor-
hoods. In the figure, a single physical host holds the NE,
PA, and Pittsburgh objects (i.e., the data related to the cor-
responding regions). The (XPATH) query shown is for all
available parking spaces in either block 1 or block 3 of
Oakland. The query is routed first to the Oakland host,
which forwards subqueries to the block 1 and block 3
hosts, which respond to the Oakland host, and finally the
answer is returned to the query front-end. In general, a
query may require accessing a large number of objects in
the hierarchy in a specific top-down order, and depending
on how the hierarchy is partitioned and placed, the query
may visit many physical hosts.

3 The Adaptive Data Placement Problem

In this section, we describe the adaptive data placement
problem, motivated by the characteristics of wide-area
sensing services.

3.1 Data Placement Challenges
Based on the discussion so far, we summarize the dis-
tinguishing challenges and constraints for adaptive data

Query front end
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Hierarchy Message

/parkingSpace[available=’yes’]

Pittsburgh
NE, PA

block2 block3

/block[@id=’block1’ OR @id=’block3’]

/USRegion[@id=’NE’]/state[@id=’PA’]

Figure 2: Top: An XPATH query. Bottom: A mapping of
the objects in the hierarchy to seven hosts, and the mes-
sages sent to answer the query (numbers depict their rel-
ative order).

placement for wide-area sensing services as follows:
Data Access Pattern. The data access patterns for wide-
area sensing are far more complex than traditional dis-
tributed file systems or content distribution networks.
First, the in-network aggregation within a hierarchically-
organized database requires that different parts of the
database be accessed in a particular order and the data be
transmitted between the hosts containing the data. More-
over, in-network aggregation updates may be trigger-
based. Second, different queries may select different, pos-
sibly overlapping, parts of the hierarchy. As a result, the
typical granularity of access is unknown a priori.
Dynamic Workload. Since many different sensing ser-
vices can share the same set of hosts, even the high-level
access patterns to the hosts are not known a priori. More-
over, the read and write load patterns may change over
time and, in particular, the read load may be quite bursty.
For example, after an earthquake, there may be a sudden
spike in queries over sensed data from the affected geo-
graphic region. The data placement should quickly adapt
to workload dynamics.
Read/Write Workload. With millions of sensors con-
stantly collecting new readings, the aggregate update rate
of the sensor database is potentially quite high (e.g., 100s
of GB per day for Network Monitor). Moreover, the
number of writes is often an order of magnitude or more
greater than the number of reads. Thus, any placement
must consider the locations of the writers–not just the
readers–and the number of replicas is constrained by the
high cost of updating the replicas.
Capacity Constraints. Each object has a weight (e.g.,
storage requirement, read and write load) and each host
has a capacity (e.g., storage, processing power) that must
be respected.
Wide-area Distribution. The sensors and queriers may



span a wide geographic area. On the other hand, many
services have high R/W proximity. Thus, data placement
must be done carefully to minimize communication costs
and exploit any proximity.

Consistency and Fault Tolerance. Each service’s con-
sistency and fault tolerance requirements must be met.
Based on our representative services, we assume best ef-
fort consistency suffices. (Note that most data have only a
single writer, e.g., only one sensor updates the availability
of a given parking space.) For fault tolerance, we ensure
a minimum number of replicas of each object.

3.2 Problem Formulation and Hardness

To capture all these aspects, we formalize the data place-
ment problem for wide-area sensing services as follows.
Given a set of global databases (one for each service),
the hosts where data can be placed, a minimum num-
ber of copies required for each object, and the capacities
(storage and computation) of the hosts, adapt to the dy-
namic workload by determining, in an online fashion, (1)
the local databases, possibly overlapping, to be placed
at different hosts, and (2) the assignments of these local
databases to the hosts such that the capacity of each host
is respected, the minimum number of copies (at least) is
maintained for each object, the average query latency is
low, and the wide-area traffic is low.

Given the complexity of this task, it is not surprising
that even dramatically simplified versions of this prob-
lem are NP-hard. For example, even when there is an un-
bounded number of hosts, all hosts have the same capac-
ity C, all pairs of hosts have the same latency, the query
workload is known, and there are no database writes, the
problem of fragmenting a global database into a set of
fragments of size at most C, such that the average query
latency is below a given threshold, is NP-hard.3

Because the global hierarchical database can be ab-
stracted as a tree, selecting fragments is a form of graph
(tree) partitioning and assigning fragments is a form of
graph (tree) embedding. Many approximation algorithms
have been proposed for graph partitioning and graph em-
bedding problems (e.g., in the VLSI circuit optimization
literature [25, 38]). None of these proposed solutions ad-
dress the complex problem we consider. However, we get
the following two (intuitive) insights from the existing ap-
proximation algorithms, which we use in IDP. First, the
final partitions are highly-connected clusters. If, as in our
case, the given graph is a tree, each partition is a subtree
of the graph. Second, if the edges are weighted (in our
case, the weights reflect the frequency in which a hop in
the object hierarchy is taken during query routing), and
the objective is to minimize the cost of the edges between
partitions, most of the heavy edges are within partitions.

3By a reduction from the Knapsack problem.

4 IDP Algorithms

Due to the complexity of optimal data placement, IDP re-
lies on a number of practical heuristics that exploit the
unique properties of sensing services. Our solution con-
sists of three simplifications. First, each host selects
what parts of its local database to off-load using efficient
heuristics, instead of using expensive optimal algorithms.
Second, each host decides when to off-load or replicate
data independently, based on its local load statistics. Fi-
nally, to mitigate the suboptimal results of these local
decisions, we use placement heuristics that aim to yield
“good” global clustering of objects. These three compo-
nents, called Selection, Reaction, and Placement respec-
tively, are described below.

4.1 Fragment Selection

The selection component of IDP identifies the fragments
of its local database (i.e., the sets of objects) that should
be transferred to a remote host. The fragments are se-
lected so as to decrease the local load below a threshold
while minimizing the wide-area traffic for data movement
and queries. At a high level, fragment selection involves
partitioning trees. However, previous tree partitioning al-
gorithms [30, 38] tend to incur high computational costs
with their O(n3) (n = number of objects) complexity, and
hence prevent a host from shedding load promptly. For
example, in IrisNet, using a 3 GHz machine with 1 GB
RAM, the algorithms in [30, 38] take tens of minutes to
optimally partition a hierarchical database with 1000 ob-
jects. Such excessive computational overhead would pre-
vent IDP from shedding load in a prompt fashion. On
the other hand, trivial algorithms (e.g., the greedy algo-
rithm in Section 7.1.1) do not yield “good” fragmenta-
tion. To address this limitation, we exploit properties of
typical query workloads to devise heuristics that provide
near optimal fragmentation with O(n) complexity. We
call our algorithm POST (Partitioning into Optimal Sub-
Trees). As a comparison, under the same experimental
setup used with the aforementioned optimal algorithms,
POST computes the result in a few seconds. Below we
describe the algorithm.

Database Partitioning with POST. We use the following
terminology in our discussion. For a given host, let GI

denote the set of (Internal) objects in the local database,
and GE denote the set of non-local (External) objects (re-
siding on other hosts) and the set of query sources. De-
fine the workload graph (Figure 3) to be a directed acyclic
graph where the nodes are the union of GI and GE , and
the edges are pointers connecting parent objects to child
objects in the hierarchy and sources to objects. Under
a given workload, an edge in the workload graph has
a weight corresponding to the rate of queries along that
edge (the weight is determined by locally collected statis-



105
10

15 15 2525

GE

GI

T 1
T 2

55

10

10

15 5

Figure 3: The workload graph of a host. GI represents
the local database and GE is a set of objects on other
hosts. The edges are labeled with the load on the corre-
sponding edge. The circles labeled T1 and T2 represent
two fragments of the local database of size 3.

tics, as described in Section 6.1). The weight of a node in
GI is defined as the sum of the weights of all its incoming
edges (corresponding to its query load) and the weights
of all its outgoing edges to nodes in GE (corresponding
to its message load).

For any set T of objects within GI , we define T ’s
cost to be the sum of the weights of nodes in T . The
cutinternal of T is the total weight of the edges coming
from some node in GI to some node in T , and it cor-
responds to the additional communication overhead in-
curred if T were transferred. The cutexternal is the to-
tal weight of the edges coming from some node in GE

to some node in T , and it corresponds to the reduction of
load on the node if T were transferred. In Figure 3, the
cutinternal of T1 is 10, while the cutexternal is 15.

Intuitively, to select a good fragment, we should min-
imize cutinternal (achieved by T2 in Figure 3) so that it
introduces the minimum number of additional subqueries
or maximize cutexternal (achieved by T1 in Figure 3) so
that it is the most effective in reducing external load.

To design an efficient fragmentation algorithm for sens-
ing services, we exploit the following important charac-
teristics in their workloads: A typical query in a hier-
archical sensor database accesses all objects in a com-
plete subtree of the tree represented by the database, and
the query can be routed directly to the root of the sub-
tree. This observation is well supported by the IrisLog [7]
query trace (more details in Section 7), which shows that
more than 99% of user requests select a complete subtree
from the global database. Moreover, users make queries
on all the levels in the hierarchy, with some levels being
more popular than the others. Under such access patterns,
the optimal partition T is typically a subtree. The reason
is that transferring only part of a subtree T from a host H1

to another host H2 may imply that a top-down query ac-
cesses objects in H1 (the top of T ) then in H2 (the middle
of T ) and then back in H1 (the bottom of T ), resulting in
a suboptimal solution.

The above observation enables POST to restrict the

search space and run in linear time. POST sequentially
scans through all the nodes of the workload graph, and for
each node it considers the whole subtree rooted at it. For
all the subtrees with costs smaller than the given capac-
ity C, it outputs the one with the optimal objective. The
search space is further decreased by scanning the nodes
in the workload-graph in a bottom-up fashion, thus con-
sidering the lower cost subtrees near the leaves before the
higher cost subtrees further up the tree. As mentioned be-
fore, in typical settings, POST takes a few seconds to run.
Yet, as we will show in Section 7.1.1, the quality of the
resulting fragmentation, in practice, is very close to that
of the O(n3) optimal algorithms that take tens of minutes
to run.

IDP uses POST with different objective functions for
different situations. For example, POST could choose the
subtree that maximizes the value of cutexternal. In Fig-
ure 3, T1 denotes such a fragment. Replicating or splitting
such fragments would be effective in reducing the external
load on the host. Note that this objective tends to choose
large fragments since cutexternal increases with size. Al-
ternatively, POST could minimize the value of cutinternal.
In Figure 3, T2 denotes such a fragment. Splitting such
fragments would minimize any resulting increase in the
host hop counts of queries. Unfortunately, this objective
tends to pick small fragments which may slow down the
load shedding. To avoid this, POST only considers frag-
ments of size greater that C/2, where C is a parame-
ter (discussed next) specifying the cost of the fragments
POST must select.

Parameters of POST. IDP must choose a value for C to
pass to the POST algorithm. C can be chosen to be the
smallest amount Cmin of load whose removal makes the
host underloaded. This minimizes the network traffic cost
of data placement, but the host may become overloaded
again easily. A C far greater than Cmin would protect the
host from overload but increase the overhead and duration
of a load shedding event. This choice is equivalent to hav-
ing two thresholds in the system: the load shedding is trig-
gered when the load is above a high-watermark threshold
Thhigh, and at that point the load is shed until the load goes
below a low-watermark threshold Thlow. In addition to
these two thresholds, IDP uses a deletion threshold Thdel
that characterizes the lowest load at an object replica that
still justifies retaining that replica.

Load Estimation. Each host needs to monitor its load
in order to decide when to start shedding load. The load
could be estimated using an exponentially-decaying aver-
age, Lavg , of the instantaneous loads, Li, on all the ob-
jects in the local database. However, after shedding load,
Lavg overestimates the actual load for a while, because its
time-decaying average is unduly inflated by the load just
prior to shedding. As a result, unwarranted further shed-
ding could occur repeatedly. A possible fix would be to
prevent the host from shedding load until Lavg becomes



valid; however, this approach would react too slowly to
increasing flash crowds. Instead, we adapt a technique
used by TCP to estimate its retransmission time out val-
ues [20]. We maintain the exponentially-decaying aver-
age, Vavg , of the value |Lavg − Li|, and then estimate the
load as Lavg − 2Vavg , until Lavg again becomes valid.
Our experiments show that this provides a stable estimate
of a host’s local load.

4.2 Reaction
In IDP, hosts exchange database fragments in order to
adapt to changing workloads, using the following four op-
erations:

• Delete removes a fragment from the local database.
IDP ensures that each object maintains a minimum
number of replicas (defined by the service author as a
fault tolerance parameter), by not permitting deletes
that would violate the specified minimum.

• Coalesce merges a fragment from a remote host into
the local database. If the local database already con-
tains some part of the fragment, it gets overwrit-
ten. Proactive coalesce retrieves a fragment and co-
alesces it. IDP uses this to reduce communication
cost and thereby improve performance.

• Split deletes a fragment from the local database and
sends it to a host where the fragment gets coalesced.

• Replicate creates a replica of a fragment and sends it
to a host where the fragment gets coalesced.

Naturally, the appropriate action to take at a given time
depends on the conditions at the hosts. The following
summarizes five host conditions and the corresponding
actions taken by IDP:

1. Read/write load of an object is below Thdel: IDP can
delete the object if it has more than the minimum
number of replicas.

2. Read load of the host is above the threshold Thhigh:
IDP must delete some objects (by applying the above
action, as appropriate), replicate a fragment, or split
the local database. As discussed in Section 4.1, IDP
replicates or splits based on (1) whether POST maxi-
mizes cutexternal or cutinternal and (2) the capacity
of the target host to handle part or all of the frag-
ment’s load.

3. A local database is too large: IDP must delete some
objects or split the database.

4. Write load of the host is above Thhigh: IDP must
replicate a fragment or split the database.

5. The host is generating a lot of subqueries for an ob-
ject owned by some other host: To eliminate these
subqueries, IDP proactively coalesces the object. If
the host is overloaded as a result, IDP will take addi-
tional steps to shed load.

4.3 Fragment Placement
Given a fragment and its load information, IDP must find,
through a suitable discovery mechanism, a host that can
take the extra load. The simplest approach selects a ran-
dom host capable of taking the extra load. However, this
may require a query to visit multiple hosts, increasing
query latency. Therefore, we use two heuristics that ex-
ploit the query and data source characteristics to improve
the overall performance.

The first heuristic uses our previous observation that
subtrees of the global database should be kept as clustered
as possible. Thus the host discovery component first con-
siders the neighboring hosts as possible destinations for a
fragment. A host H1 is a neighbor of fragment f if H1

owns an object that is a parent or a child of some object
in f . A host H2, trying to split or replicate a fragment,
f , first sees if any of the neighboring hosts of f can take
the extra load, and if such a host is found, f is sent to
it. If more than one neighboring host is capable of taking
the extra load, then the one having the highest adjacency
score is chosen. The adjacency score of a host H1 with re-
spect to the fragment f is the expected reduction of read
traffic (based on local statistics) if f is placed in H1. This
helps maintain large clusters throughout the system.

When no suitable neighboring host is found, IDP’s sec-
ond heuristic searches for the host capable of taking the
extra load that is the closest to the optimal location among
all such hosts. The optimal location for an object is the
weighted mid-point of its read and write sources. We ac-
count for the location of sources using the GNP [34] net-
work mapping system. Specifically, each component of
the sensing system (sensor, host, or client web interface)
has GNP coordinates, and the cartesian distance between
hosts is used to estimate the latency between them. If
the read and write loads of an object are R and W , and
the average read and write source locations are GNPread

and GNPwrite, then the optimal location is given by
GNPopt = R·GNPread+W ·GNPwrite

R+W . The optimal loca-
tion of a fragment is the average of the optimal locations
of all the objects in the fragment.

4.4 A Simple Run
Intuitively, IDP achieves its goal by letting hosts quickly
readjust their loads by efficiently partitioning or replicat-
ing objects and by keeping the neighboring objects clus-
tered. We illustrate a simple run of IDP in Figure 4. Rect-
angular boxes represent hosts and the trees represent their
local databases. Initially the global database is placed at
one host (1), which experiences high read and write load.
To shed write load the host then determines two fragments
(one containing object 5 and the other containing objects
3 and 6) for splitting. The fragments are then placed at
newly-discovered hosts near the write sources (2). To
shed read load, it then determines two more fragments
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Figure 4: A simple adaptive data placement scenario.

and places them in hosts already owning objects adjacent
to the fragments (3).

5 Replica Selection During Queries

While processing a query, if a host’s local database does
not contain some objects required by the query, sub-
queries are generated to gather the missing objects. Be-
cause the global database is split or replicated at the gran-
ularity of individual objects, IDP can route subqueries to
any of the replicas of the required objects. Two simple
replica selection strategies are proximity selection that se-
lects the closest replica and random selection that selects
a random replica. However, as we will show in Section 7,
these simple strategies are not very effective for sensing
services. For example, in the presence of read-locality,
proximity selection fails to shed load from the closest (and
the most overloaded) replica. Therefore, we use the fol-
lowing randomized selection algorithm.

Randomized Response-Time Selection. Another pos-
sible policy is to select the replica with the smallest ex-
pected response time (network latency plus the host pro-
cessing time). Each host models the response time of the
replicas using the moving averages of their previous ac-
tual response times. Note that when the load of all the
replicas are similar (i.e., their host processing times are
comparable), the choice is determined by network laten-
cies. This may cause load oscillation of the optimally
placed host due to a herd effect [13]. To avoid this oscilla-
tion, we instead use the following randomized response-
time (RRT) algorithm. Each host, when it contacts a
replica ri, measures its response times and uses them to
estimate ri’s expected response time ei. Suppose a host
is considering the replicas in increasing order of response
time, r1, r2, . . . , rn. The algorithm assigns a weight wi

to replica ri according to where ei falls within the range
e1 to en as follows: wi = (en − ei)/(en − e1). Finally
it normalizes the weights to compute the selection prob-
ability pi of ri as pi = wi/

∑
j wj . Note that if all the

hosts are similarly loaded, RRT prefers nearby replicas.
If the replicas are at similar distances, RRT prefers the
most lightly-loaded host. In addition, the randomization
prevents the herd effect.

6 Implementation Details

We now sketch our implementation of IDP in IrisNet, in-
cluding the various modules and parameter settings.

6.1 Implementation in IrisNet

Our implementation of IDP consists of three modules.

The Stat-Keeper Module. This module runs in each
IrisNet OA (i.e., at each host). For each object, we par-
tition its read traffic into internal reads, in which the
object is read immediately after reading its parent on
the same OA, and external reads, in which a (sub)query
is routed directly to the object from the user query in-
terface or another OA. For each object in an OA’s lo-
cal database, the stat-keeper maintains (1) the object’s
storage requirements, (2) its external read load, de-
fined as an exponentially-decaying average of the rate
of external reads, (3) its internal read load, defined as
an exponentially-decaying average of the rate of inter-
nal reads, (4) its (external) write load, defined as an
exponentially-decaying average of the rate of writes, (5)
GNPread, and (6) GNPwrite. (GNPread and GNPwrite are de-
fined in Section 4.3.)

Moreover, the stat-keeper maintains the current size,
aggregate read load, and aggregate write load for each lo-
cal database. When an OA with multiple local databases
(from multiple co-existing services) incurs excessive load,
the local database with maximum size or load sheds its
load.

The module is implemented as a light weight thread
within the query processing component of the OA. On re-
ceiving a query or an update, the relevant statistics (main-
tained in the main memory) are updated, incurring very
negligible overhead (< 1% CPU load).

The Load Adjusting Module. This module is at the cen-
ter of IDP’s dynamic data placement algorithm. It uses
different statistics gathered by the stat-keeper module, and
when the OA is overloaded, performs the tasks described
in Section 4.1 and Section 4.2.

The OA Discovery Module. This module performs the
tasks described in Section 4.3 and acts as a matchmaker
between the OAs looking to shed load and the OAs capa-
ble of taking extra load.

Currently, the first heuristic described in Section 4.3
(selecting neighboring nodes) is implemented in a dis-
tributed way. Each OA exchanges its current load in-
formation with its neighboring OAs by piggybacking it
with the normal query and response traffic. Thus each
OA knows how much extra load each of its neighboring
OAs can take, and can decide if any of these OAs can ac-
cept the load of a replicated or split fragment. The second
heuristic (selecting optimally located nodes), however, is
implemented using a centralized directory server where
underloaded OAs periodically send their location and load
information. Our future work includes implementing this
functionality as a distributed service running on IrisNet
itself.



6.2 Parameter Settings
We next present the tradeoffs posed by different POST
parameters and their settings within our implementation.
The values are chosen based on experiments with our im-
plementation subjected to a real workload (more details in
Section 7.1 and in [33]).
Watermark Thresholds. The value of the high water-
mark threshold Thhigh is set according to the capacity of
an OA (e.g., the number of objects per minute that can be
processed by queries). The value of the low watermark
threshold Thlow poses the following tradeoff. A smaller
value of Thlow increases the data placement cost (and the
average response time) due to increased fragmentation of
the global database. However, a larger value of Thlow
causes data placement thrashing, particularly when the
workload is bursty. Our experiments in [33] show that
a value of Thlow = 4

5Thhigh provides a good balance among
different degrees of burstiness.
Deletion Threshold. The deletion threshold Thdel for an
object presents additional trade-offs. A small Thdel keeps
replicas even if they are not required. This increases the
local database size and hence the OA processing time.4

A high Thdel can remove replicas prematurely, increasing
the data placement cost. Based on our experiments, we set
the threshold such that an object gets deleted if it receives
no queries in the past 30 minutes (and the object has more
than the minimum number of replicas).

We use these parameter settings in our experiment eval-
uation, discussed next.

7 Experimental Evaluation

Our evaluation consists of the following two steps. First,
we use a real workload with our deployment of IDP
(within IrisNet) running on the PlanetLab to study how
IDP’s different components work in practice. Then, we
use simulation and synthetic workloads to understand
how sensitive IDP is to different workloads.

7.1 Performance in Real Deployment
In this section, we evaluate IDP using IrisLog, an IrisNet-
based Network Monitor application deployed on 310
PlanetLab hosts. Each PlanetLab host in our deployment
runs an IrisNet OA. Computer programs running on each
PlanetLab host collect resource usage statistics, and work
as sensors to report to the local OA once every 30 seconds.
We drive our evaluation by using IrisLogTrace, a real user
query trace5 collected from our IrisLog deployment on
the PlanetLab from 11/2003 to 8/2004 (Table 2). Because
the trace is relatively sparse, we replay this trace with a

4In existing DOM-based XML database engines, query processing
time increases with the local database size.

5Available at http://www.intel-iris.net/ilog-trace/.

Total queries 6467 (100%)
Queries selecting a complete subtree 6409 (99.1%)

Queries selecting all the data 401 (6%)
Queries selecting a country 1215 (19%)
Queries selecting a region 3188 (49%)

Queries selecting a site 1469 (23%)
Queries selecting a host 136 (2%)

Queries not selecting a complete subtree 58 (0.9%)

Table 2: IrisLogTrace: Trace of user queries from
11/10/2003 to 8/27/2004 for the IrisLog application de-
ployed on 310 PlanetLab hosts.

speedup factor, defined as the ratio between the original
duration of the trace and the replay time. For the experi-
ments requiring longer traces than what we have, we con-
catenate our trace to construct a longer trace. At the be-
ginning of each experiment, the global database is ran-
domly partitioned among a small group of hosts. As the
workload is applied, IDP distributes the database among
the available hosts, with the data placement costs decreas-
ing over time. We say that the system has reached initial
steady state if, under our reference workload, no data re-
location occurs within a period of 2 hours. We experimen-
tally ensured that this choice of period was reasonable. In
all our experiments, we measure the cost of data place-
ment from the very beginning of the experiment, while all
other metrics (e.g., response time) are measured after the
system has reached its initial steady state, at which point
the specific workload to be studied is started.

Figure 1 demonstrates the overall performance of IDP.
As shown, IDP helps IrisNet maintain reasonable re-
sponse times even under a high flash-crowd. Without IDP,
IrisNet becomes overloaded and results in high response
times and timeouts.

We now evaluate the individual components of IDP.

7.1.1 Partitioning Heuristics

This section evaluates POST and compares it with three
hypothetical algorithms: GREEDY, LOCALOPT and OR-
ACLE. In GREEDY, overloaded hosts evict individual ob-
jects in decreasing order of their loads. As a result, hosts
make decisions with finer granularity, but do not try to
keep the hierarchical objects clustered. In LOCALOPT,
each host partitions its XML fragment using an optimal
tree partitioning algorithm [30] with O(n3) complexity.
However, because each invocation of LOCALOPT takes
tens of minutes of computation time, we do not use it in
our live experiments on the PlanetLab. ORACLE is an of-
fline approach that takes the entire XML database and the
query workload and computes the optimal fragmentation
(again, using the algorithm in [30]). ORACLE cannot be
used in a real system and only serves as a lower bound for
comparison purposes.

Our evaluation consists of two phases. In Phase 1, we
fragment the IrisLog database by using all but the last
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Figure 5: Comparing different fragmentation algorithms.

1000 queries of IrisLogTrace as warm-up data. To do
this within a reasonable amount of time, we perform this
phase on the Emulab testbed [6] on a LAN. This enables
us to use a large speedup factor of 1200 and finish this
phase in a short period of time. We also assign each Em-
ulab host its GNP coordinates that can be used to model
the latency between any two emulated hosts if required.

In Phase 2 of our experiment, we place the fragments
created in Phase 1 in our PlanetLab deployment and inject
the last 1000 queries from IrisLogTrace.

To understand the advantage of POST’s adaptive frag-
mentation, we also use Static-POST which, under all
speedup factors, starts from the same warm-up data (gen-
erated from Phase 1 with a speedup factor of 1200) and
does not further fragment the database during Phase 2.

Figure 5(a) plots the cumulative overhead of the frag-
mentation algorithms over time during the warm-up phase
of the experiment. The graph shows that the amount of
fragmentation decreases over time, which means that our
load-based invocations of the algorithms do converge un-
der this workload. GREEDY incurs higher overhead than
POST because GREEDY’s non-clustering fragmentation
increases the overall system load which makes the hosts
fragment more often. We do not use LOCALOPT or OR-
ACLE in this experiment due to their excessive computa-
tion overhead.

Replaying IrisLogTrace with a high speedup factor on
IrisLog overloads the hosts. Because of this overload, the
response of a typical query may return only a fraction of
the requested objects. The remaining objects reside in
overloaded hosts that fail to respond to a query within a
timeout period (default 8 seconds in IrisNet). We define
the unavailability of a query to be the fraction of the re-
quested objects not returned in the answer. Figure 5(b)
shows the average unavailability of IrisLog under differ-
ent fragmentation algorithms and under different speedup
factors. GREEDY is very sensitive to load and suffers from
high unavailability even under relatively smaller speedup
factors (i.e., smaller load). This is because GREEDY pro-
duces suboptimal fragments and overloads the system by
generating a large number of subqueries per query (Fig-
ure 5(c)). POST is significantly more robust and it re-

turns most objects even at a higher speedup factor. The
effectiveness of POST comes from its superior choice of
fragments, which generate a near optimal number of sub-
queries (as shown in Figure 5(c)). The difference between
Static-POST and POST in Figure 5(b) demonstrates the
importance of adaptive load-shedding for better robust-
ness against a flash-crowd-like event.

7.1.2 Data Placement Heuristics

We now evaluate the effectiveness of different heuristics
described in Section 4.3 for choosing a target host for a
fragment. The heuristics are compared to the naive ap-
proach of choosing any random host that can accept the
extra load. We start this experiment by placing the frag-
ments generated by Phase 1 of the previous experiment
and then replaying the last 1000 queries from IrisLog-
Trace with a moderate speedup factor. In different set-
tings, we use a different combination of placement heuris-
tics. We represent the cost of a data transfer using the
metric object-sec, which is the product of the number of
objects transferred and the latency between the source and
the destination. Intuitively, this metric captures both the
amount of data transferred and the distance over which it
is transferred. The results of this experiment are shown
in Figure 6. As mentioned before, response times and
read/write traffic are computed only in the second phase
of the experiment (done on the PlanetLab), while the data
placement cost includes the cost incurred in both phases.

The first heuristic Opt Loc, choosing a host near the
optimal location, reduces network latency and traffic, as
shown in Figure 6. The second heuristic Clustering,
choosing a neighboring host, reduces the number of hops
between hosts. This is due to the fact that the heuristic
increases the average cluster size (25% increase on aver-
age in our results). To achieve the best of both heuristics,
we use them together as follows. Because host process-
ing time dominates network latency, we first try to find a
neighboring host capable of taking the extra load; only if
no such host exists, we use the second heuristic to find a
host near the optimal location. This has the following in-
teresting implication: because the read and write sources
of the objects that are adjacent in the global database are
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expected to be nearby (because of read-write locality of
sensor data), first placing an object in the optimal host and
then placing the adjacent objects in the same host auto-
matically places the objects near the optimal location. As
shown in the graph, the combination of the two heuristics
reduces the total response time and read network traffic,
with a slight increase in write network traffic. Also note
that the data placement cost is many times smaller than
the read/write cost, showing that IDP has little overhead.

7.1.3 Replica Selection Heuristics

To demonstrate the effect of different replica selection
heuristics, we do the following experiment. We place a
fragment in a host H on the PlanetLab. We start issuing
queries from a nearby location so that H is the optimal
host for the reader. At time t < 10, the load of the host
is below the threshold ( = 35, the maximum load H can
handle). At t = 10, we increase the query rate by a factor
of 10. This flash crowd exists until t = 50, after which
the read load drops below the threshold. As the query
rate increases, the host creates more and more replicas.
In different versions of this experiment, we use different
heuristics to select a replica to which the query is sent.
We plot the load of the host H and the number of replicas
at different times in Figure 7.

With proximity-based replica selection, host H be-
comes overloaded and creates new replicas. However, as
expected, all the load shedding efforts are in vain because
all the queries continue to go to H . As the figure shows,

its current load promptly goes up (the peak value 400 is
not shown in the graph) while all the newly created repli-
cas remain unused and eventually get deleted.

With random selection, the load is uniformly dis-
tributed among the replicas. As shown in Figure 7, as
the load increases, fragments are replicated among the
hosts until the load of each host goes below the thresh-
old (t = 20). However, after the flash crowd disappears
(t = 50), all the replicas still get the same equal frac-
tion of the total load. In this particular experiment, at
t = 51, the average load of each replica is slightly be-
low the threshold used for deletion of objects. Because of
the randomized deletion decision, two replicas get deleted
at t = 57. This raises the average load of each replica
above the deletion threshold. As a result, these replicas
remain in the system and consume additional resources
(Figure 7(b)).

Randomized response-time (RRT) selection shows the
same good load balancing properties of random selection.
Moreover, after the flash crowd disappears, the replica at
the optimal location gets most of the read load. Thus,
the other replicas become underloaded and eventually get
deleted. Furthermore, because RRT incorporates esti-
mated response times of replicas in its replica selection, it
significantly reduces the query response time (by around
25% and 10% compared to proximity-based and random
selection, respectively). This demonstrates the effective-
ness of RRT for sensing services.
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7.2 Sensitivity Analysis with Simulation

We now use simulation to understand how IDP performs
as the different parameters of the workload change. Our
IrisNet simulator enables us to use a larger setup (with
10,000 hosts) than our PlanetLab deployment of IrisLog.
Each simulated host is given multi-dimensional coordi-
nates based on measurements from the GNP [34] network
mapping system, and the cartesian distance between hosts
estimates the latency between them. We use the GNP co-
ordinates of the 867 hosts from [34]. Because the sim-
ulated hosts and sensors outnumber the available GNP
coordinates by two orders of magnitude, we emulate ad-
ditional GNP coordinates by adding small random noise
to the actual GNP coordinates. To approximate the geo-
graphic locality of sensors, we make sure that sensors that
report to sibling leaf objects are assigned nearby GNP co-
ordinates (e.g., the sensors that report to block 1, 2, and 3
of Oakland have nearby coordinates). The simulator does
not model the available bandwidth between hosts in the
network. However, most messages are small and, there-
fore, their transmission times will be limited more by la-
tency than by bandwidth. Unless otherwise stated, we use
IrisLogTrace with an appropriate speedup factor for our
read workload. For our write workload, we assume that
every sensor reports data once every 30 seconds.

We compare IDP with the following existing adaptive
data placement approaches. In the first approach, aggres-
sive replication (AR), a host maintains replicas of the ob-
jects it has read from other hosts. The second approach,
adaptive data replication (ADR), uses the algorithm pro-
posed in [41]. Although ADR provably minimizes the
amount of replication compared to aggressive replication,
it incurs a higher communication cost. This is because,
for general topologies, it requires building a spanning tree
of the hosts and communicating only through that tree,
which is crucial for the optimality of its data placement
overhead. In all the schemes, if a host has insufficient
capacity to store the new objects, it replaces a randomly-
chosen least-recently-used object.

Note that comparing IDP with ADR or AR is not an

apples-to-apples comparison, since ADR and AR were
designed for different workloads. Still, our experiments
provide important insight about their performance under
a sensing workload. For lack of space, we present only
a few interesting results. More details of the simulation
setup and additional results can be found in [33].

Read and Write Rate. Figure 8(a) shows that for a
given write rate (16, 000 objects/min),6 the average query
response time of IDP increases slightly with the read
rate. This is because of the increased fragmentation due
to higher system load. Surprisingly, even with AR, the
response time increases with the read rate. The reason
behind this counter-intuitive performance is that AR is
oblivious to data clustering. ADR has the worst response
time because it communicates over a spanning tree, ig-
nores data clustering, and does not consider the hierar-
chical data access patterns. At all the read rates shown
in Figure 8(a), IDP performs significantly better than the
other algorithms. Similarly, our experiments have shown
that IDP incurs significantly less read traffic than these
algorithms across all the read rates.

In Figure 8(b), we vary the write rate with a constant
read rate (40 objects/min). As expected, the write cost in-
creases as the write rate increases. Although both ADR
and IDP create similar numbers of replicas, ADR incurs
a higher write cost because updates are propagated us-
ing a spanning tree overlay and, therefore, they traverse
longer distances. AR incurs more cost than IDP, because
it fails to capture the locations of write sources while plac-
ing replicas.

Read-Write Proximity. Read-write proximity reflects
the physical distance between the reader and the writer.
As mentioned in Section 2.1, we model it by the lowest
level (called a locality level) in the hierarchy they have in
common. Our simulated database has 6 levels, with the
root at level 1. Thus, a locality level of 1 signifies the
smallest proximity (because the reader and the writer for

6To be more accurate, we here use the number of objects touched,
instead of the number of updates or queries per minute.



the same data can be anywhere in the whole hierarchy),
and a level of 6 means the highest proximity.

Figure 8(c) shows that increasing the locality level re-
duces the average response time. This is intuitive, because
queries with higher levels of locality select fewer objects,
and, thus, need to traverse fewer hosts. Because it keeps
objects clustered, IDP outperforms the other algorithms.
The difference in performance becomes more pronounced
as the locality level is low, because such queries select
large subtrees from the global database and so the advan-
tages of clustering are amplified.
Representative Services Workload. We have also eval-
uated IDP, AR, and ADR with a wide variety of synthetic
workloads and a heterogeneous mix of them (more details
in [33]). By tuning different parameters, we have gen-
erated workloads outlined in Table 1. Our results show
that IDP outperforms the other two algorithms in both
response time and network overhead for all the work-
loads. AR has worse response time because it ignores
data clustering and optimal placement, and worse network
overhead because it creates too many replicas. The per-
formance of AR approaches that of IDP when both (1)
the write rate is low (e.g., Epidemic Alert) so that eager
replication has minimal cost, and (2) the read locality is
near the leaf objects (e.g., Parking Finder) so that typi-
cal queries select only small subtrees and hence cluster-
ing objects is not that crucial. On the other hand, ADR
has worse response time and network overhead for all the
services, mainly because it communicates over a spanning
tree, ignores data clustering, and does not consider the hi-
erarchical data access patterns.

8 Related Work

The issues of data replication and placement in wide-area
networks have been studied in a variety of contexts. In this
section, we first discuss the relevant theoretical analyses
and then present relevant efforts in Web content delivery,
distributed file systems, and distributed databases.
Theoretical Background. The off-line data allocation
problem (i.e., the placement of data replicas in a system
to reduce a certain cost function) has been studied exten-
sively (see [15] for a survey). The general problem has
been found to be NP-Hard [42], and several approximate
and practical solutions have been proposed [21, 28, 36].
The similar problem of optimally replicating read-only
objects has been addressed in the context of content dis-
tribution networks [22] and the Web [35].

Other studies [11, 29, 41] have explored the on-line
replication of objects in distributed systems. The compet-
itive algorithm in [11] is theoretically interesting, but has
little practical application since on every write, all but one
replica is deleted. [29] uses expensive genetic algorithms
to approximate optimal replication, and requires global
information (e.g., current global read and write loads).

The ADR algorithm in [41] provides optimal data place-
ment when the network topology is a tree. However, its
performance on a general topology is worse than IDP, as
shown in Section 7.
Web Content Delivery. Web proxy caches [40] replicate
data on demand to improve response time and availabil-
ity, but deal with relatively infrequent writes and simpler
access patterns. The replication schemes used by dis-
tributed cache systems and content distribution systems
(CDNs) [1, 23] place tighter controls on replication in
order to manage space resources even more efficiently
and to reduce the overhead of fetching objects. These
approaches may be more applicable to read/write work-
loads. However, they do not support the variable access
granularity and frequent writes of sensing services.
Distributed File Systems. Some recent wide-area dis-
tributed file systems have targeted supporting relatively
frequent writes and providing a consistent view to all
users. The Ivy system [32] provides support for the
combination of wide-area deployment and write updates.
However, while creating replicas in the underlying dis-
tributed hash table (DHT) is straightforward, controlling
their placement is difficult. The Pangaea system [36]
uses aggressive replication along with techniques (effi-
cient broadcast, harbingers, etc.) for minimizing the over-
head of propagating updates to all the replicas. However,
our experiments in Section 7 show that the less aggres-
sive replication of IDP provides better read performance
while significantly reducing write propagation overhead.
These existing works do not consider the complex access
patterns and dynamic access granularity that we consider.
Distributed Databases. Distributed databases provide
similar guarantees as file systems while supporting more
complex access patterns. Off-line approaches [10, 24] to
the replication problem require the complete query sched-
ule (workload) a priori, and determine how to fragment
the database and where to place the fragments. However,
neither [10] nor [24] considers the storage and process-
ing capacity of the physical sites, and [24] considers only
read-only databases. Brunstrom et al. [12] considers data
relocation under dynamic workloads, but assumes that the
objects to be allocated are known a priori and does not
consider object replication. It also allocates each object
independently and thus fails to exploit the possible ac-
cess correlation among objects. The PIER system [19],
like Ivy, relies on an underlying DHT for replication of
data. The Mariposa system [37] considers an economic
model for controlling both the replication of table frag-
ments and the execution of queries across the fragmented
database. While Mariposa’s mechanisms are flexible and
could create arbitrary replication policies, the work does
not evaluate the policies. All of these past efforts are very
specific to relational databases, and, therefore, are not di-
rectly applicable to the hierarchical database systems that
we explore.



9 Conclusion

In this paper, we identified the unique workload character-
istics of wide-area sensing services, and designed the IDP
algorithm to provide automatic, adaptive data placement
for such services. Key features of IDP include proactive
coalescing, size-constrained optimal-partitioning, TCP-
time-out-inspired load estimators, GNP-based latency es-
timators, parent-child peering soft-state fault tolerance,
placement strategies that are both cluster-forming and
latency-reducing, and randomized response-time replica
selection. We showed that IDP outperforms previous al-
gorithms in terms of response time, network traffic, and
responsiveness to flash crowds, across a wide variety of
sensing service workloads.
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