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Abstract. Large number of taxicabs in major metropolitan cities are now equipped
with a GPS device. Since taxis are on the road nearly twenty four hours a day (with
drivers changing shifts), they can now act as reliable sensors to monitor the behav-
ior of traffic. In this paper we use GPS data from taxis to monitor the emergence
of unexpected behavior in the Beijing metropolitan area. We adapt likelihood ratio
tests (LRT) which have previously been mostly used in epidemiological studies to
describe traffic patterns. To the best of our knowledge the use of LRT in traffic
domain is not only novel but results in accurate and rapid detection of anomalous
behavior.
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1 Introduction

Thousands of taxis ply the roads of large metropolitan cities like New York, London,
Beijing and Tokyo every day. Most taxis are on the road twenty four hours a day with
drivers changing shifts. Many of these taxis are now equipped with GPS and their spatio-
temporal coordinates are available. Thus if a city is partitioned into a grid then at a
given time we can estimate the count of the number of taxis in the grid cells. Over
time, the cell counts will settle into a pattern and vary periodically. For example, during
morning rush hour more taxis will be concentrated in business districts than at other
times of the day. Similarly taxi counts near airports will synchronize with aircraft arrival
and departure schedules. Occasionally there will be a departure of the cells counts from
periodic behavior due to unforeseen events like vehicle breakdowns or onetime events like
big sporting events, fairs and conventions.

Our objective is to identify contiguous set of cells and time intervals which have the
largest statistically significant departure from expected behavior.

Once such regions and time intervals have been discovered then experts can begin
identifying events which may have caused the unexpected behavior. This in turn can
help make provisions to manage future traffic behavior. Similar problems appear in many
other domains. For example, government healthcare agencies are interested in detecting
emergence of disease patterns which deviate from expected behavior.

The number of contiguous regions and time intervals is very large. For example, if
the spatial grid corresponds to a n X n matrix and there are T time intervals, then
there are potentially O(n?T') spatio-temporal cells and O(n?T?) cubic regions. The huge
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(a) Road Network of Beijing (b) Grid Map

Fig. 1: An example of the traffic network of Beijing. Based on the longitude and latitude,
the entire city is partitioned into a grid map. Subfigure (a) is partitioned into subfigure
(b).

amount of spatio-temporal data, such as taxi count across different grid regions within
different time steps from minutes to hours to days, requires an efficient approach to detect
spatial-temporal outliers for predicting abnormal events and implementing traffic control
measures in advance. For this motivation, we apply road network of Beijing and partition
it into grid to find outliers (Fig. 1).

In a paper of particular relevance to our work, the LRT framework [15] states the
computation cost for single statistic value as well as enumerating all the spatial regions to
be expensive. To avoid performing statistical computations for every region, it provides a
pruning strategy based on classical likelihood test statistic. In this paper, we extend the
LRT framework to detect abnormal traffic pattern. More specifically, the contributions
are: (1) A general and efficient pattern mining approach for spatio-temporal outlier de-
tection is proposed. (2) In this work, persistent and emerging outlier detection statistical
models are provided. (3) We give our proof that the upper-bounding strategy of LRT
is applicable to “persistent” and “emerging” outlier detection models. (4) We conducted
experiments on synthetic data to verify the extended pruning approach and show the
significant improvement of searching when data set size is large; We also performed real
data validation in the detection of emerging taxi count trend due to some major events.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
illustrates the statistic background and upper-bounding methodology for pruning. Section
4 proposes our approach, in which the statistic detection models are provided. The upper-
bounding and pruning mechanism in this framework based on our proof are presented in
section 5. Computational complexity is also discussed in this section. Section 6 shows the
experiments and case studies results. Finally, section 7 concludes this work.

2 Background

2.1 Statistical Background

We provide a brief but self-contained introduction for finding the most anomalous region
(rectangle) in a spatial setting . We also explain a pruning strategy which can cut down



the number of rectangles that need to be checked. The basic tool to find the anomalous
region is the Likelihood Ratio Test (LRT).

Given a data set X, the distribution P(X,#), a null hypothesis Hy and an alternate
hypothesis H;, the LRT is the ratio

_ supy{L(0]X)| Ho}
sup { (6] H }

where L() is the likelihood function. In a spatial setting the null hypothesis is that the
statistical aspects of the phenomenon of interest in a region (that is currently being tested)
are no different from their complement. Thus if a region is indeed anomalous then the the
alternate hypothesis will most likely be a better fit and the denominator of the A will have
a higher value for # which is a maximum likelihood estimator. A remarkable fact about A is
that under mild regularity conditions, the asymptotic distribution of A = —2log A follows
a X% distribution with k& degrees of freedom, where & is the number of free parameters’
(see below). Thus regions whose A value likes in the tail of x? distribution are likely to
be anomalous.
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Fig. 2: An example of (4x4) grid to illustrate the LRT calculation and the upper-bounding
methodology

2.1.1 Upper-bounding Methodology: The basic idea of upper-bounding methodol-
ogy in LRT [15] is: if region R is composed of two non-overlapping regions R; and Rz, then
L(Or|XRr)<L(0'Rr,|XRr,)XL(0'r,|XR,) , Where O is calculated by performing MLE: (R, f(G));
0'r, and 0'g, are computed directly by performing M LEq(f(R1)) and MLEy(f(Rz2)). And
the formula is equivalent to: logL(0r|Xr)<log L(0'r,|Xr, )+ log L(0'r,| X r,). Therefore, the
log likelihood of any given region R can be upper-bounded.

2.1.2 Example: We generate a grid of 4 x 4 in Table 2. The number of successes (k)
generated by poisson model P,(b.p) is displayed in each cell. The baseline b, in each cell
is set to be 10. The success rate of p is 0.5 for the region R and p is 0.1 for the rest of
cells. The significant level a=0.05. Here we refer the success rate of p as test parameter.

. . . . ko—(bep)
(1) The likelihood function of each cell is: f(p|c) = %
ki o= (be; P)
(2) The likelihood of any given region R is: L(p|R) = HcieR(b“p)kii
LIf the x? distribution is not applicable then Monte Carlo simulation can be used to ascertain
the p-value



(3) The MLE, of p for a region R (denoted as ), which is composed of cell ¢q, ca, ..., ¢4,
Zt: ki

=1
t

> bi
i=1
are obtained as: 0.14, 0.7 ,0.8 and 0.21.

. Thus pg = (fgﬁg) = 0.75. Similarly, pp, Pr, . Pr, and pg

is calculated as: p =

(4) A of region R are calculated by the above definition:

. 0.7515 5 e =0-75X20 5 (7 1419 5 o —0.14% 140 |
Ap = (_2) log( 0.2119F15 x ¢—0.21X340 ) = 20.79

From above steps, we get the exact log likelihood value of region R: log L(p|R) =
—19.31; and the exact log likelihood of R; and R»: log L(p|R1) = —9.49, log L(p|R2) = —9.78
separately.

We know the critical value of x?(a)=3.84. Obviously, 20.79 is greater than 3.84. There-
fore region R is treated as a potential outlier. As a verification of the upper-bounding
strategy, we can see that the sum of log likelihood of Ry and R is -19.27, which is greater
than the exact log likelihood value of R with -19.31.

3 Proposed Framework

3.1 Preliminaries

Definition 1. KP: It refers to “key parameter”, denoted as KP{61, 02,.., 0; , ..,0,}. 0;
is a parameter coming from the key parameter set. For instance, in epidemiology, if we
concern about the trend of the disease rate in a spatio-temporal view, the disease rate is

KP. For simplicity, we only consider one parameter from the key parameter set in our
work (denoted as KP).

Definition 2. PSTO (Persistent Spatial-Temporal Outlier): The K P is consistent through-
out its duration.

Definition 3. ESTO (Emerging Spatial-Temporal Outlier): The KP is non-decreasing
throughout its duration until it reaches the peak.

Definition 4. Spatio-Temporal Data Cube: A cube is the minimum spatial-temporal unit
with relation to spatial and temporal perspective. The data in each cube is based on a
statistical model characterized by a probability density function.

Definition 5. Temporal Unit: It is the time length that we apply test statistic on every
time step.

Definition 6. Temporal Interval: It is the period that the user defines to detect outlier.

3.2 Statistical Models

Definition 7. PSTO Model (Persistent Spatio-Temporal Outlier Model): It is used to
detect persistent spatio-temporal outliers. The null hypothesis Hy assumes that the KP is
consistent for all regions over time. The alternative hypothesis Hy assumes that KP has
a higher value in region r; € R than the value outside of region r; € G-R (i.e. R ), but
the value in region r; € R is consistent over time. We calculate the likelihood ratio test
as follows:



I, caL(0c|Xa)

Do~ MrjenL(0r|Xr) I, e nL(0r|X7) for 0. > 0z,
1 otherwise.

This formula is the classical LRT statistic. We first calculate the MLE of 6, and 6; to
maximize the numerator and the MLE of 64 to maximize the denominator. Then the ratio
is the score we use to evaluate the “anomalousness” of a given spatio-temporal region.

Definition 8. ESTO Model (Emerging Spatio-Temporal Outlier Model): This model is
used to detect emerging spatio-temporal outliers. The null hypothesis Hy assumes that the
KP is consistent for all regions over time. The alternative hypothesis Hy assumes that
KP is non-decreasing with every time step over region r; € R and higher than r; € R.
We calculate the likelihood ratio test as follows:
Mazor<o,  <..<opIlr erL(OLI XD, crL(05XY)
D(R) _ e UZGGL(GZ;‘XE) - for 07 < etmm <..<0rp,
1 otherwise.

This formula is derived from the classical LRT statistic and designed for the emerging
scenario. User needs to find a solution to maximize the numerator with the increasing K P.
For instance, Barlow [2] provide an approach to solve the constrained maximum likelihood
estimation on the reliability growth model in which the relative risk is non-decreasing over
time. Or EM algorithm can be performed to estimate the key parameter.

4 Upper-bounding Strategy and Pruning Mechanism for
Proposed Framework

4.1 Upper-bounding Strategy

(1) In PSTO model, the upper-bounding strategy explained in section 2.2.2 can be ex-
tended directly to spatio-temporal dimension.

(2) In ESTO model, KP is assumed to vary at different time step; we show below that
the upper-bounding strategy is still applicable to this model.

Lemma 1. Let region R = Ry U Ryo for non-overlapping time interval t1 and t2, we
have:

L(Or|XRr) < L(0' R,y [ X Ry ) X L(0'Ry5 | XRy») (1)

, where Or = 0r,, UOg,, and Xr = Xg,, U Xg,,

Proof. We know L(0r|Xr) = L(0r,,| X R ) X L(0R,5| XR,,) - Using the LRT upper-bounding
basic concepts, we know that 0p,, is chosen under more strict complete parameter space
and 0’ g,, is chosen under loosen null parameter space. That means performing M LEj on
a sub-interval of R has loosen the constraints comparing with performing M LF; on R.
Thus, we have L(@Rtl |XRt1) < L(@lRtl |XRt1) and L(@th ‘XRQ) < L(9’Rt2 |XR,52)- Therefore,
L(0r|Xr) < L(0'R,y | X R,y ) ¥ L(0'R,»| XR,)

Lemma 2. Let region R = R1 U R2 for non-overlapping spatial region R1 and R2,we
have:

L(eRl: 9R2|XR17 XR2) < L(Q/le 5 9/R1t2 |XR1t1 ) XR1t2) X L(OIRQM ’ 0/R2t2 |XR2t1 ’ XRQtz) (2)

,where R, R1, R2 are composed of (t1,t2) time steps respectively. Here we just use two
time steps to illustrate. It is applicable to any t time steps.
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Fig. 3: Precomputation of any given spatial-temporal region R and tiling of R. Subfigure
(a) shows a 8 x 8 x 8 spatial-temporal grid; subfigure(b) shows: one of the cuboids from
spatial precomputed set is split from temporal dimension and results in 15 smaller cuboids.
Subfigure(c) is the radial method to tile R

Proof. For each time step i, we have:L(0r,,|Xr,;) < L(0'r1,,| Xr1,;) X L(0'r2,;| XR2,;)

L(0r1,0r2| XR1, XRr2) = L(0r1|XR1) X L(Or2| XR2)
L(Or141,0R1,5 | X R0, XR140) = L(OR1,, | XR1,1) X L(OR1,5| X R1,0)
L(Or2,1,0R2,5 | X Ryt s XR2,5) = L(OR2,, | XR2y5) X L(OR2,5| X R2,5)

Therefore we get
L(Or1,0r2| Xr1, Xr2) < L(0"R1,1, 0 R1p0 | XR1p s XR1,5) X L(0' 2,1, 0 R2,5 | X R0 S XR2,5)

From lemma 1 and lemma 2, we know that the upper-bounding strategy is applicable to emerging
model (ESTO).

4.2 Precomputation and Pruning Mechanism

4.2.1 Precomputation for region R: We recursively split the region into two sub-
regions of the same size, starting from the biggest cuboid enclosed by two planes from
time view, ending at the lowest resolution of the spatial-temporal grid. Fig. 3b shows the
split approaches for a sub-cuboid highlighted as blue from the temporal dimension in a
8 x 8 x 8 grid (Fig. 3a). The likelihood of any given region can be upper-bounded by this
pre-computed set via the tiling of LRT.

4.2.2 Precomputation for the complement of region R (i.e. R): By considering
all of the intersection points, we connect each intersection point on the 3-dimensional grid
with the eight corners of the grid. This produces eight diagonals, each of which creates
one cuboid in the precomputed set. Since there are O(n?*) intersection points, there are
O(n*) cuboids in the precomputed set. After we get the precomputed set, for any given
region R, we use the radial and sandwich methods in LRT to get the upper-bounded
likelihood value of R. It involves of a total of twelves times tiling in 3-dimension view.
Fig. 3c shows the tiling in radial way.

4.2.3 Computational Complexity In the brute-force approach, there are a total of
O(n®) regions that need to be searched. Our approach reduces the cost by precomputing



Algorithm 1 Top k spatio-temporal outlier detection
Input: a spatial-temporal grid G, f, MLEy, MLE;, L, k and «
Output: top-k anomalous spatio-temporal regions.

1: Precompute the O(n*) cuboids for upper-bounding any given cuboid R.
2: Precompute the O(n3) cuboids for upper-bounding any given cuboid R
4: for Each cuboid R in the grid do
5. Get the upper-bounded value for log L(0r|XRr)
6:  Get the upper-bounded value for log L(63]|X7)
7:  Combine the results of step 3, 5, 6 to an upper bound for Agr
8:  Check upper-bounded value of Ar from chi-square distribution
9:  if The Ag is in the « level and less than the kth best then
10: Prune R
11:  else
12: Compute real Ag;
13: if AR is in the top k, then
14: Remember R
15: end if
16:  end if
17: end for

two likelihood data set with size of O(n*). The likelihood of every region is upper-bounded
and the real likelihood is calculated only for a number of regions. Furthermore, In our
implementation, we have already ranked the top-k regions according to the likelihood
ratio values. Therefore, the performance won’t be affected no matter which significance
testing method is applied.

The process of outlier detection is shown in Algorithm 1. The inputting parameters are:
data grid (G), probability density function (f), maximum likelihood estimation function
under different parameter space (M LEy, M LE}), likelihood function (L), number of top
regions to be returned (K) and the significance level («). In this process, step 1 and 2
perform precomputations; Step 5 to step 8 obtains the upper-bounded likelihood value of
current cuboid for each iteration. During each iteration, the chi-squared distribution is
applied to prune normal regions. Finally, it outputs top-k anomalous regions.

5 Experiments, Results and Analysis

We report on experiments conducted where we have used Algorithm 1 to test for accuracy,
pruning ability and performance. K was set to 1. In this section all experiments were
carried out on synthetic data. In Section 5.3, we will demonstrate the usefulness of our
approach on a real data set.

We tested four variants of the outlier detection:

(1) brute-force persistent spatio-temporal outliers (bpsto)

(2) brute-force emerging spatio-temporal outliers (besto)

(3) pruning-based persistent spatial-temporal outliers (ppsto)
(4) pruning-based emerging spatio-temporal outliers (pesto)



Test Pruning(%)| Accuracy(%) Test Pruning(%)| Accuracy(%)
4x4x4 100 no false alarm 4x4x4 100 no false alarm
8 x 8x8 100 no false alarm 8 X 8x8 99.99 0.01 false alarm

16 x 16 x 16 99.9 0.1 false alarm| |16 x 16 x 16 100 no false alarm

(a) Scenario

(b) Scenario IT

Table 1: Average Pruning Rate and Accuracy in Scenario I and 11

Test |16 x 16 x 16]32 x 16 x 16]64 x 16 x 1632 x 32 x 32[128 x 16 x 16
ppsto (%)|  95.27 97.35 97.64 97.47 96.74
pesto (%)|  98.37 98.46 98.69 99.11 99.23

Table 2: Average Pruning Rate in Scenario 117

5.1 Evaluations on Synthetic Data

We generated data set on a grid size varying from (4 x 4 x 4) to (128 x 16 x 16). Fifty
separate trials were carried out for each scenario (see below) and we measured three
aspects: (a) pruning rate (b) accuracy, and (c) running time. The significance level was
set at a = 0.05.

5.1.1 Scenario I The null hypothesis holds. The baseline b, is generated relatively
uniformly by a normal distribution (= 10%, 0 = 10%) and a fixed success rate p of 0.001.
The number of successes k. is generated from Po (b.p). Results are shown in Table 1.
5.1.2 Scenario IT The null hypothesis holds. The only difference with scenario I is
that the data in a random selected cuboid area with size of (5 x 4 x 3) is generated by a
normal distribution with different parameter setting (1 = 10°,0 = 5 x 10%). Results are
shown in Table 1.

Analysis: The results of Scenario I and II show that the we achieve a high pruning
rate and almost no false alarm even when we perturb the distribution of one region. This
is as expected and demonstrates that the algorithm is well calibrated. By a high pruning
rate we mean that we can rule out the outliers by just checking the LRT upper bound
derived from the tiling. If the upper bound value is less than the critical value then the
true LRT value of the region cannot be anomalous.

5.1.3 Scenario III The alternative hypothesis holds. It is similar to the null model
except that the data of a randomly selected cuboid area of size (5 x 4 x 3) is generated from
a Poisson distribution with p = 3,6,9, 18,36 for emerging case and p = 3 for persistent
case. The data not within the cuboid area was also from a Poisson distribution with p = 1.
Results are shown in Table 2.

5.1.4 Scenario IV The alternative hypothesis holds. It is similar to scenario IIT except
that data of a randomly selected cuboid area of size (5 x 4 x 3) was generated from a
Poisson distribution with p = 10,50, 250, 1250, 6250 for emerging case and p = 10 for
persistent case. Results are shown in Table 3.

Analysis: For Scenario IIT and IV the anomalous regions were correctly identified
while maintaining a high pruning rate. Also there were no regions declared as false posi-
tives.

5.1.5 Running Time We analyze the running time with and without pruning for
Scenario IIT and IV. Figure 4 shows that as the size of the spatial and temporal region



Test |16 x 16 x 16(32 x 16 x 16]64 x 16 x 16{32 x 32 x 32]128 x 16 x 16
ppsto (%) 79.27 97.51 97.77 97.22 96.68
pesto (%) 95.57 97.40 96.78 94.70 95.23

Table 3: Average Pruning Rate in Scenario IV
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Fig. 4: The proportion of running time of pruning vs. brute-force approach. It shows
that outlier pruning searching is significantly improved when the dataset size starts from
32 X 16 x 16 in these four different scenarios.

increase, the effect of pruning becomes prominent. For the largest data tested, the pruning
mechanism resulted in a savings of nearly 50% compared to the brute-force approach. We
have also calculated the cost of a single likelihood calculation as the dimension of the grid
size increases. For the 8 x 8 x 8 data set, the cost of the likelihood calculation using the
brute-force approach is 0.0lms while with pruning it increases to 0.08ms. However, for
the larger data sets (e.g., 128 x 16 x 16) the cost of a single likelihood calculation goes
does from 0.30ms for the brute-force approach to around 0.16ms with pruning. Another
observation is that the cost of the single likelihood calculation is nearly similar for data
sets of the same size but different dimensions, for example 128 x 16 x 16 and 32 x 32 x 32.

We have also analyzed and compared the running of the different components both for
the brute-force and pruning approaches. The results are shown in Figure 5. The brute-
force approach has the following components:

(1) The cost of the likelihood calculation for each region R (R Computation).
(2) The cost of the likelihood calculation for the complement of each region R, denoted
as R (R Computation).
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Fig.5: The running time of comparable parts of brute-force vs. pruning approach in
scenario III. It shows that the pruning searching is faster with the larger dataset. Although
the tiling of every R takes longest time in pruning searching, the cost is small compared
to the likelihood calculation of every R in brute force searching.

The pruning approach is more complex and involves the following components:

(1)

The cost of computing the likelihood for each element of the tiling set Tr. This will
be used to upper bound the likelihood value for an arbitrary spatio-temporal region.
(R precomputation)

The cost of computing the likelihood for each element of the tiling set T (R precom-
putation).

The cost of upper-bounding the likelihood of R. This involves first expressing R as a
union of subregions and then each subregion as a union of tiles from Tg.

The cost of upper-bounding the likelihood of R (R Computation). This involves first
expressing R as union of subregions and then each subregion as a union of tiles from
Tg. Each R region can be expressed as a union of six subregions and there are two
types of tiling methods: sandwich and radial. We calculate the likelihood value using
both tiling methods and then select the tightest upper-bound. As is clear from Figure
5, this is the most expensive part of the calculation. However, as the data set size



increases, the overheads of the tiling give way to its more efficient reuse resulting in
considerable savings.

5.2 Case Study: Beijing Taxi GPS Data

We illustrate the use of the Pesto method on a real data set [4], [8], [3]. The data
set consists of three months of GPS trajectories collected from 33,000 taxis in Beijing
between 01/03/2009 and 31/05/2009. We search for the most anomalous region and the
time period and then provide a possible explanation for the anomaly.
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Fig. 6: Comparison of outlying and non-outlying regions in 8 x 8 x 8 grid. It shows: (a)
the average taxi counts within outlier regions is non-decreasing compared to non-outlier
regions which share the same emerging period with outlier. (b) the average taxi counts
within outlier regions throughout the emerging period is non-decreasing compared to the
outlier regions for the rest of the period.

Case I: All (8 x 8) grid were tested between 9 : 00 : 00am and 10 : 00 : 00am for
sixteen days. We choose 20 days of data to calculate the baseline probabilities.

Result I: The period from 01/05/2009 to 02/05/2009 emerged as a top outlier at the
position of (0,1) and (1, 1) on the grid. This period corresponds to the Labor day public
holiday (“Golden Week”) . Usually the holiday duration is seven days (from May 1st to
May Tth) , but starting from 2009, the holiday period was truncated between May 1st
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(a) The region highlighted with blue (b) The region highlighted with blue
borders on the map is the outlier region borders is the outlier of Case II. It is
of Case I. The icon shows the exact lo- the city express road of Beijing. (i.e.
cation of Happy Valley. Tonghuihe North Road)

Fig. 7: Outlier Locations from our two case studies on Beijing Map

and May 3rd. To celebrate the holidays it appears that many people visited Happy Valley,
the biggest amusement park in Beijing. The 3rd International Fashion festival was also
held in that location. Our results coincide with the fact that taxis enjoy good business on
public holidays and there is usually an increase in the number of taxis near tourist spots.
The results are shown in Fig. 6a, 6b, 7a. We can see that the number of taxis increased
from 1st May to 2nd May and then decreased from 3rd of May onwards.

Case II: All (8 x 8) grids were tested. The temporal unit is from 3 : 15 : 00pm to
4 : 30 : 00pm every day for 8 days. Twelve days of data was used to calculate the baseline.

Result II: The region highlighted as blue on the map was detected as an emerging
outlier from 16/03/2009 to 20/03/2009. It is one of the city express road called Tonghuihe
North Road. From 01/03/2009 to 13/0/20093, the 11th National People’s Congress (i.e.
NPC) was held in Beijing, which is the annual meeting of the highest legislative body
of the People’s Republic of China. Nearly 3000 deputies from all over China attended
the Congress. During this period, the traffic authorities in Beijing imposed temporary
restriction measures on vehicles to control traffic flow. Most people choose to take bus
or subway instead of driving or taking taxi to commute to work. The number of taxi
traveling on Tonghuihe North road increased until most of the deputies left Beijing. The
results are shown in Fig. 6¢, 6d, 7b.

6 Related Work

Among the various methods for discovering outlier, the spatial and space-time scan statis-
tic, introduced by Kulldorff [9-11, 14], has been the most widely adopted. However, it is
originally designed for poisson and bernoulli data. Later on, the different variations of
ordinal, exponential and normal models are proposed [12,6,7,13]. They have been im-
plemented in the software (SaTScan)[1]. In the space-time scan statistic of Kulldorff, the
key parameter is assumed as consistent over time. The technique simply applies time as
one more dimension. Niell et al. [5] points out the distinct feature of time aspect and
proposes a modified test statistic to detect localized and globalized emerging cluster .
Tango et al. [16] also proposes a space-time scan statistic based on negative binomial



model by taking into account the possibility of nonnegligible time-to-time variation of
poisson mean. Wu et al. [15] proposes a generic framework called LRT for any underlying
statistics model. It uses the classic likelihood ratio test (LRT) statistic as a scoring func-
tion to evaluate the “anomalousness” of a given spatial region with respect to the rest
of the spatial region. Moreover a generic pruning strategy was proposed that can greatly
reduce the number of likelihood ratio tests. However, it is used for spatial anomaly de-
tection without considering the temporal property. Wei et al. [3] propose an approach
to discover casual relationships among spatio-temporal outliers. Here, we only focus on
detecting spatial-temporal outliers.

7 Conclusions

In this paper, we proposed an efficient pattern mining approach catered for spatio-
temporal traffic data, which is able to detect “persistent outliers” and “emerging outliers”.
We also derived an upper-bounding strategy for the two statistic models. Experiments
show that the performance of computational time is greatly improved when the dataset
size is very large, and we can still find the correct outliers. In our case studies, our model
is able to detect regions with emerging number of taxis that can be validated by known
major traffic events.
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