Semantic Parsing for Single-Relation Question Answering

Microsoft Research

Scott Wen-tau Yih, Xiaodong He & Christopher Meek {scottyih, xiaohe, meek}@microsoft.com

Capture Question Variations using Convolutional Neural Networks. 66% Error Reduction!

Single-Relation Questions

- Most common questions in the search query logs
 - "How old is Kirk Douglas, the actor?"
- "What county is St. Elizabeth MO in?"
- "What year was the 8 track invented?"
- "Who owns the Texas Rangers?"
- Foundation for answering complicated questions
 - "Name a director of movies starred by Tom Hanks."
 - CKY parsing that chains answers of single-relation questions [Bao et al., 2014]
- Challenge: lots of ways to ask the same question
 - "What was the date that Minnesota became a state?"
 - "Minnesota became a state on?"
 - "When was the state Minnesota created?"
 - "Minnesota's date it entered the union?"
 - "When was Minnesota established as a state?"
 - "What day did Minnesota officially become a state?"
 - • • •

Key Ideas & Related Work

- Simple Context-Free Grammar
- Separate a question into a relation pattern and an entity mention
- Paraphrase detection using convolutional neural net
- Inspired by Paralex [Fader et al. 2013]
 - 35M question paraphrase pairs from WikiAnswers
 - Learn weighted lexical matching rules

Task & Problem Definition

<u>Input</u>

- A KB as a collection of triples (r, e_1, e_2)
- A single-relation question, describing a relation and one of its entity arguments

"When were DVD players invented?"

<u>Output</u>

An entity that has the relation with the given entity

High-level Approach: Semantic Parsing

Q = "When were DVD players invented?"

 $Q \rightarrow P \wedge M$

 $P \rightarrow when \ were \ X \ invented$ $M \rightarrow DVD \ players$ $when \ were \ X \ invented \rightarrow be-invent-in_2$ $DVD \ players \rightarrow dvd-player$

 λx . be—invent—in(dvd—player, x)

Procedure: Enumerate All Hypotheses

Q = "When were DVD players invented?"

 $P \rightarrow when X players invented$

 $M \rightarrow were DVD$

Q = "When were DVD players invented?"

 $P \rightarrow when were X invented$

 $M \rightarrow DVD players$

 $Prob(be-invent-in_2|when were X invented) = 0.5$ Prob(dvd-player|DVD players) = 0.7

 $Prob(\lambda x. be-invent-in(dvd-player, x)|Q) = 0.35$

Paraphrase Detection via Siamese Neural Networks!

Convolutional Deep Semantic Similarity Model [Shen et al., 2014]

Siamese neural networks

- Input is mapped to two k-dimensional vectors
- Probability is determined by softmax of their cosine similarity

Experiments: Data & Task

Knowledge base: ReVerb [Fader et al., 2011]

Relation	Entity Argument #1	Entity Argument #2
be-official-language	chinese-and-english	hong-kong
be-second-largest-city-in	arequipa	peru
be-tallest-mountain-in	ararat	armenia
have-population-of	city-of-vancouver	587,891
provide	microsoft	office-software
use-for	laser	lasik
•••	•••	•••

Paralex dataset [Fader et al., 2013]

- 1.8M (question, single-relation queries) $\int When were DVD players invented?$ $\lambda x. be-invent-in(dvd-player, x)$
- 1.2M (relation pattern, relation)
- When were X invented?

 be—invent—in₂

Task: Question Answering

- What language do people in Hong Kong use?
 be-speak-in(english, hong-kong)
 be-predominant-language-in(cantonese, hong-kong)
- Where do you find Mt Ararat?
 be-highest-mountain-in(ararat, turkey)
 be-mountain-in(ararat, armenia)

Experiments: Results

- Same test questions in the Paralex dataset
- 698 questions from 37 clusters

Conclusions

- A new semantic parsing framework for single-relation questions
 - Use a semantic similarity function to match patterns and relations, as well as mentions and entities
 - Semantic similarity model Convolutional neural networks with letter-trigram vector input
 - Go beyond bag-of-words and handle OOV better
 - Outperform previous work using lexical matching rules
- Future work
 - Apply this approach to more structured KB (Freebase)
- Extend this work to handle multi-relation questions