
Light at the End of the Tunnel: A Monte Carlo Approach to
Computing Value of Information

Ece Kamar
Microsoft Research

Redmond, WA 98052
eckamar@microsoft.com

Eric Horvitz
Microsoft Research

Redmond, WA 98052
horvitz@microsoft.com

ABSTRACT
Calculating the expected value of information (VOI) for se-
quences of observations under uncertainty is intractable, as
branching trees of potential outcomes of sets of observations
must be considered in the general case [11]. We address
the combinatorial challenge of computing ideal observational
policies in situations where long sequences of weak evidential
updates may have to be considered. We introduce and vali-
date the use of Monte Carlo procedures for computing VOI
with such long evidential sequences. We evaluate the pro-
cedure on a synthetic dataset and on a challenging citizen-
science problem and demonstrate how it can effectively cut
through the intractability of the combinatorial space.

Categories and Subject Descriptors
I.2 [Problem Solving, Control Methods, and Search]:
Plan execution, formation, generation

General Terms
Algorithms, Experiments

Keywords
Monte Carlo planning, POMDP, crowdsourcing systems

1. INTRODUCTION
An important pillar of intelligent behavior is the ability

to balance the value and costs of collecting information in
advance of taking action [11]. Calculating the expected value
of information (VOI) for sequences of observations under
uncertainty is intractable [9]. The task involves computing
expectations over an exponentially growing tree of future
evidence-gathering actions and outcomes. Researchers have
relied largely on the use of myopic approaches for calculating
VOI [5, 23]. For example, calculations of the value of a single
next test has been used to guide decision making in medical
diagnosis and in machine troubleshooting systems [6, 10].

Such myopic approximations of VOI are poorly charac-
terized as they rely on the assumption that only a single
piece of evidence will be observed in advance of action, but
are nevertheless applied in sequential information-gathering

Appears in: Proceedings of the 12th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2013), Ito, Jonker, Gini, and Shehory (eds.), May,
6–10, 2013, Saint Paul, Minnesota, USA.
Copyright c© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

settings. Some researchers have pointed to proofs of well-
defined error bounds for greedy computation of VOI hinging
on confirming submodular structure in the relevance of infor-
mation [16]. For submodular problems, acquiring additional
information has diminishing marginal value.

Many real-world problems are not submodular. Thus,
proofs of bounds on error in VOI relying on the submod-
ularity property are often irrelevant. Indeed, information
revelation may even have supermodular influences on be-
lief updates, where dependencies among disparate pieces of
evidence come together in synergistic ways. Obtaining a se-
quence of observations may significantly change a system’s
belief and consequently the best action to take, but obtain-
ing a single piece of observation may have little or no effect.

Beyond greedy VOI computations, researchers have pro-
posed non-myopic methods for computing VOI, relying on
specific independence assumptions among observations and
state variables [9, 3, 17]. The assumptions are not satisfied
in many real-world evidence gathering tasks, which makes
existing non-myopic approaches either invalid or intractable.

In summary, real-world challenges bring to light problems
that cannot be solved with available methods. We pursue
a solution to computing VOI for long evidential sequence
(LES) tasks. For an LES task, observations individually
provide only weak evidence about the state of the world,
yet sets of observations may provide significant value. Com-
puting VOI for decisions about stopping versus collecting
additional information is difficult in these situations because
the value of an agent’s ultimate domain action hinges on the
fusion of long sequences of observations. Greedy procedures
fail as they do not identify significant value in single pieces
of evidence and halt evidence gathering prematurely. And
attempts to execute even small amounts of lookahead face a
rapidly rising combinatorial wall.

We present MC-VOI, a Monte Carlo algorithm for com-
puting VOI in LES tasks. The procedure considers a spe-
cial partially observable Markov decision process (POMDP)
where we decouple domain actions from observation gather-
ing. The algorithm performs large lookaheads using a sam-
pling technique that can explore multiple observation and
action outcome sequences with a single sample, reducing the
number of samples required to accurately estimate VOI.

We evaluate the performance of MC-VOI on both a syn-
thetic dataset and a real-world LES problem, in which an au-
tomated system collects observations from people in a large-
scale citizen science effort. We find that MC-VOI effectively
cuts through the intractability of the combinatorial space
and outperforms existing Monte Carlo planning algorithms.



2. RELATED WORK
Our research on generating observational plans for tasks

that require the consideration of long evidential sequences
relates to multiple lines of work on solving large MDPs, on
computing VOI, on solving optimal stopping problems, and
on multi-armed bandit problems. Heuristic search has been
a popular solution technique for large MDPs when good
heuristic functions are available for a domain (i.a., [2]). For
solving large MDPs in a general way, Monte Carlo planning
has been proposed [14, 15, 22]. However, existing algorithms
cannot efficiently explore long horizons in LES tasks and
they may fail to make effective decisions when constrained
with runtime limitations.

In addition to the related work on computing VOI that
we present in Section 1, researchers have sought to develop
tractable VOI computations by developing inferential pro-
cedures that leverage the special structure of specific classes
of problems. Hajishirzi, et al. explores the use of a POMDP
on the challenge of detecting changes in the world when
the search space corresponding the problem grows linearly
with time in contrast to the exponential search space of LES
tasks [7]. The timed-decision problem introduced by Reches
et. al. studies when to terminate evidence collection, but in
tasks in which states are static and the observations about
domain actions are independent [20].

Optimal stopping problems are concerned with optimiz-
ing the timing of domain actions to maximize performance.
Threshold-based algorithms are proposed for a special class
of optimal stopping problems for optimizing the exploration
of candidates to identify the best candidate [19]. These
tractable algorithms are not applicable to LES tasks, as
combinations of evidence influence rewards of LES tasks
arbitrarily. Dynamic programming approaches for general
optimal stopping problems are intractable for long horizons
[8]. Methods for solving multi-armed bandit problems are
not applicable in LES tasks, as an action taken on an LES
task may change the expected utility of taking any action in
the future [18].

3. LONG EVIDENTIAL SEQUENCE TASKS
A long evidential sequence task centers on identifying the

best domain action to take under uncertainty about the
world. An LES task terminates when a domain action is
taken, and is assigned a reward based on the action and the
state of the world. Agents may delay their domain actions
and invest time and effort to collect information that may
enhance the expected values of their actions. Thus, agents
need to balance the expected utility of collecting additional
evidence with the overall cost of the observations.

LES tasks arise in a wide spectrum of arenas from medical
diagnosis to supporting people decision making in daily life.
As an example, it may be valuable for an agent to wait for
new sets of weak evidence streaming in about traffic and
to trade the value of the newly arriving information for the
cost of delayed assistance to a driver. We shall introduce
a challenging example of LES tasks within a citizen science
application that involves the acquisition of long sequences of
votes from workers about classifications of heavenly bodies.

To solve LES tasks, an agent needs to reason about multi-
ple dimensions of uncertainty. The state of the world is not
fully observable, the state can stochastically change, and the
evidence that might be collected with future observations is

uncertain. Formally, a LES planning task can be modeled
as a finite-horizon POMDP [12], which is represented as a
tuple < S,A, T, R, Ω, O, l >. S is a finite set of states of the
world. Se ⊂ S is a set of terminal states. A is a finite set
of actions. A = D ∪ {c}, where D = {d1, ..., dn} is the set
of domain actions, and c is the evidence collection action.
T : S × A × S → [0, 1] is the transition function. Since LES
tasks terminate once a domain action is taken, for any state
s ∈ S and any domain action d ∈ D, T (s, d, s′), the prob-
ability of transitioning to any non-terminal state s′ from s
by taking action d, is 0. R : S × A → R is the reward
function. For any d ∈ D, R(s, d), the reward for taking ac-
tion d in state s, depends on the quality of domain action
d in state s. R(s, c) may correspond to a negative value
that represents the cost for collecting additional evidence.
Ω is a finite set of observations available in the domain, and
O : S ×A×Ω → [0, 1] is the observation function. O(s, a, o)
represents the probability of observing o after taking action
a in state s. l is the horizon of decision making.

An agent solving an LES task typically cannot directly
observe the state of the world. The agent maintains a belief
state, which is a probability distribution over world state S
at each step. The agent has access to a belief update func-
tion which updates the belief state based on the observation
received, the action taken, and the previous belief state [12].
τ(b, a, b′) represents the probability of transitioning to belief
state b′ after taking action a at belief state b.

LES tasks terminate after a domain action is taken. Thus,
the decision of which domain action to take at any belief
state depends only on the immediate rewards of domain ac-
tions at the current belief state. This characteristic enables
us to decouple decisions about whether to collect more ev-
idence from decisions about the best domain action. We
map the POMDP definition given above to a specialized be-
lief MDP representation that we refer to as an LES-MDP,
though the same mapping can be achieved with a POMDP.
An LES-MDP decouples observation and domain actions,
and is represented by a tuple < B,A′, τ ′, r, l >, where

• B is the set of belief states over S.
• A′ = {c,¬c} is a set of actions, where ¬c is the action

for termination. When ¬c action is taken, the agent
identifies d∗(b), the optimal domain action at belief
state b, and executes that domain action as follows:

d∗(b) = arg max
d∈D

X

s∈S

b(s)R(s, d)

• τ ′, the belief state transition function, is:

τ ′(b, c, b′) = τ(b, c, b′)

τ ′(b,¬c, b′) = τ(b, d∗(b), b′)

• r, the reward function on belief states, is:

r(b, c) =
X

s∈S
b(s) R(s, c)

r(b,¬c) =
X

s∈S
b(s) R(s, d∗(b))

A policy π specifies whether it is beneficial for the system
to take a domain action or to collect more evidence at any
belief state. An optimal policy π∗ with value function V π∗

satisfies the Bellman equation:

V π∗

(b) = max
a∈A′

`

r(b, a) +
X

b′

τ ′(b, a, b′) V π∗

(b′)
´



For an LES task, the VOI computed for a belief state repre-
sents the expected utility for gathering additional evidence
rather than taking an immediate domain action by consid-
ering the immediate cost for collecting evidence as follows:

V OI(b)) = V c(b) − V ¬c(b)

= r(b, c) +
X

b′

τ ′(b, c, b′) V π∗

(b′) − r(b,¬c)

If VOI at a belief state is positive, it is beneficial to collect
evidence. As demonstrated by the Bellman equation, the
number of belief states to be searched for an exact VOI com-
putation grows exponentially in the horizon, which makes
exact solution approaches intractable for long horizons.

4. CROWDSOURCING TESTBED
We now turn to a class of crowdsourcing that we re-

fer to as consensus tasks to demonstrate the need to de-
velop tractable procedures for computing information value
in LES tasks. An owner of a consensus task seeks to identify
a correct answer to a prediction or classification problem,
and turns to populations of workers who can provide evi-
dence about the answer. Hiring a worker is associated with
a cost. An automated system designed to assist with the
solution of consensus tasks needs to make a decision at each
step: hire a worker or terminate the task with a prediction
about the correct answer based on reports collected so far.
The goal is to optimize the expected utility for the owner
over one or many tasks given utilities and costs for making
correct or incorrect predictions, and costs for hiring workers.

We perform studies on a citizen science a project named
Galaxy Zoo, one of the largest citizen science efforts to date.
Galaxy Zoo was designed to engage members of the public
to contribute to consensus tasks aimed at identifying the
correct classifications of millions of galaxies [1]. In each ses-
sion, a worker is asked to classify galaxies into one of six
possible galaxy classes (e.g., elliptical galaxy, spiral galaxy,
etc.). The system was made available for 20 months and
during this time more than 100,000 participants provided
34 million votes (observations) on 886 thousand galaxies.
We employed this dataset in our studies.

In previous work, Kamar et. al. defined Galaxy Zoo tasks
as a consensus task and formalized solving these tasks as
sequential decision making [13]. Following this definition,
we use L to denote the set of galaxy classes. For a given
galaxy, the system collects a vote from worker i, vi ∈ L,
about the correct classification of the task. According to the
consensus definition provided by the designers of the Galaxy
Zoo system, after collecting as many votes as possible for a
galaxy, the system identifies the correct answer (i.e., correct
classification of a galaxy) as the answer that is agreed upon
by at least 80% of the workers. If such a consensus is not
reached after hiring a large number of workers, the correct
answer is called undecidable. The set of decisions that can
be taken by the system about the classification of a galaxy,
D, is defined to be D = L ∪ {undecidable}.

4.1 Predictive Models
A formal representation of a consensus task includes mod-

els for predicting (1) the state of the world, (2) future obser-
vations (worker votes), and (3) how the state of the world
changes. We build these predictive models from data via su-
pervised learning. The predictive models take as input a set

of features f which characterizes a task (e.g., visual features
of a galaxy), and a history of observations ht =< v1, ..., vt >.
We perform Bayesian structure learning to build probabilis-
tic models from a training set [4] and evaluate the models
on a test set.

The answer model Md∗ predicts the state of the world
without knowing the number of votes available for each task.
Md∗(d, f, ht) is the probability of the correct answer being
d, given features and the history of worker votes. An evalu-
ation of the answer model on a separate test set shows that
it has 88% accuracy in the absence of worker votes. Its ac-
curacy increases to 98% when a large number of votes are
available. Mv refers to the vote model, which predicts future
observations. Mv(vt+1, f, ht) predicts the probability of the
next vote being vt+1, given task features and the history of
votes. We found that the model predicts the next vote with
57% accuracy when no votes are available and achieves a
64% accuracy after 15 votes or more are collected.

The number of worker votes for each galaxy varies greatly
in the Galaxy Zoo dataset. When we run experiments on
the dataset, a task may terminate stochastically when no
additional votes are available for a galaxy. We estimate a
probabilistic termination model from the training set. For
simplicity of representation, we exclude this model from the
LES-MDP formalization given below. However, our experi-
mental evaluations are performed on an updated LES-MDP
model with transition and reward functions extended with
the stochastic termination model.

4.2 Galaxy Zoo as LES-MDP
We model Galaxy Zoo tasks as an LES-MDP, represented

by the tuple < B, A′, τ ′, r, l >. The horizon of a task l is
determined by the ratio of the maximum utility gained from
a correct prediction to the cost of a worker. bt =< pt, f, ht >
is the belief state at time t, where pt is the system’s belief
about the correct answer as a probability distribution over
possible answers of a task. The set of actions is A′ = {c,¬c}.
Once the system decides to terminate, the system’s decision
about the correct answer is computed as

d∗(bt) = arg max
d∈D

X

dc∈D

pt(d
c)U(d, dc)

where U(d, dc) is the utility for the system predicting the
correct answer as d when the correct answer is dc.

The belief state transition function τ ′ models the system’s
uncertainty about worker votes and the stochastic transi-
tions about the world. When the system either reaches the
horizon or takes action ¬c, it transitions deterministically
to a terminal state. Otherwise, the probability of system’s
belief transitioning from bt to bt+1 is

τ ′(bt, c, bt+1) =

8

<

:

Mv(vt+1, f, ht)
if ht+1 = ht ∪ {vt+1} and pt+1 = p′

0 otherwise

where bt =< pt, f, ht >, bt+1 =< pt+1, f, ht+1 >, and for
each d ∈ D, p′(d) = Md∗(d, f, ht+1).

The reward for action c is (−γw), where γw is the cost for
hiring a worker. The reward for taking action ¬c in belief
state bt is:

r(bt,¬c) =
X

dc∈D

pt(d
c) U(d∗(bt), d

c)

The Galaxy Zoo domain frames important challenges in



solving real-world LES tasks. A Galaxy Zoo task has 44
votes on average, and may have up to 93 votes. Thus, the
horizon of these tasks can be large, which makes exact so-
lution approaches intractable. The answer model learned
from Galaxy Zoo data is noisy when only a few votes are
available, and becomes more accurate as more votes are col-
lected. Consequently, the reward estimation of early belief
states may be erroneous. Such errors in the reward esti-
mation may degrade the performance of traditional solution
algorithms that evaluate the goodness of taking an action
on a belief state, based on the value of the reward func-
tion. An early belief state that is overly confident about
a classification may mislead these algorithms to terminate
prematurely.

5. MONTE CARLO PLANNING FOR VOI
Monte Carlo planning is an approach to solving large plan-

ning problems [14, 15]. General Monte Carlo planning al-
gorithms hit a combinatorial challenge in exploring the long
horizons typically associated with LES tasks; the number
samples for exploring state–action outcomes grows exponen-
tially in the horizon. These algorithms initially favor parts
of the search space closer to the root, and thus require large
number of samples to explore long horizons. Finally, the
way belief state–action outcomes are evaluated by these al-
gorithms are susceptible to noise in belief estimation of LES
tasks when few evidences have been observed.

We present MC-VOI, a Monte Carlo planning algorithm
that uses the special structure of LES tasks for address-
ing the drawbacks of existing algorithms for solving these
tasks. MC-VOI explores the search space with sampling.
Each sample corresponds to an execution path, which is a
sequence of belief state outcomes that the system would en-
counter when it takes action c from an initial belief state to a
terminal belief state. For each execution path, the algorithm
evaluates the rewards associated with taking actions c and
¬c for any belief state encountered on the path. The evalu-
ation uses a state sampled at the terminal belief state when
all available observations are collected. It builds a search
tree based on execution paths sampled, and optimizes ac-
tions for each belief state on the tree. MC-VOI differs from
existing Monte Carlo planning algorithms in a number of
ways: Because a LES task terminates after taking a domain
action, MC-VOI can evaluate the utility of any sequence of
c and ¬c action outcomes with a single sample. Doing so
requires fewer number of samples to explore long horizons
of LES tasks. Each sample of the algorithm traverses be-
lief states from the root to the horizon, thus the algorithm
can simultaneously explore belief states close to the root, as
well as ones close to the horizon. The algorithm evaluates
all belief state–action outcomes based on a state sampled
at the horizon when all available evidence is observed, thus
utility estimates are less susceptible to noise in earlier belief
updates.

We first present the MC-VOI algorithm for LES tasks
where the state of the world is static. Such LES challenges
include Galaxy Zoo tasks in which the world state (i.e. the
correct classification of a galaxy) does not change in time
but the belief state changes over time as the system collects
additional worker reports and becomes more confident about
the correct answer. We shall later generalize the MC-VOI
algorithm for LES tasks where the ground truth of state is
changing during evidence gathering.

5.1 MC-VOI for Static Tasks
We present the MC-VOI algorithm for LES tasks with

static state as Algorithm 1. For a given LES-MDP and an
initial belief state b0, the MC-VOI algorithm builds a par-
tial search tree iteratively by calling the SampleExecution-
Path function. As captured in the pseudocode, every call
to SampleExecutionPath samples one execution path, which
includes a sequence of belief states that would be visited
when the system continuously takes action c until reaching
a terminal belief state. The algorithm grows the search tree
by adding a new node when the SampleExecutionPath func-
tion samples a belief state that is not encountered before.
For each encountered belief state bt, the algorithm keeps
four values; bt.C as the expected immediate cost for taking
action c, bt.V

c as the expected value for taking action c,
bt.V

¬c as the expected value for taking action ¬c, and bt.V
as the expected value for taking the best of these actions.
In addition, bt.N keeps count of the number of times bt is
encountered. All these values are initialized to 0.

The SampleExecutionPath function samples an execution
path by starting from the initial belief state (b0) and sam-
pling future belief states as it continuously collects more ob-
servations until reaching a terminal belief state. For a given
belief state bt, the likelihood of sampling bt+1 as the next
belief state is equal to τ ′(bt, c, bt+1). The SampleTrueState
function is called at a terminal belief state to sample a state.
At a terminal belief state bl, the likelihood of SampleTrueS-
tate sampling any s ∈ S is bl(s). This sampled state is used
by the Evaluate function to evaluate the rewards for taking
actions c and ¬c at any belief state on the execution path.
The algorithm samples the state at a terminal belief state
when all available evidence is collected and when belief es-
timation is most accurate. By doing so, it can evaluate the
rewards of all belief states on an execution path consistently
and can reduce the negative effects of noisy belief estimates
at earlier states.

The Evaluate function updates the statistics (i.e., values
and counts) of belief states visited on an execution path from
bottom to top based on the sampled state s. For each belief
state, the function applies the Bellman equation (Section 3)
on the partial search search tree to update its values: bt.V

¬c,
the value for terminating, is updated based on R(s, d∗(bt)),
the immediate reward at state s for taking the best domain
action according to belief bt. Φ(bt) represents the set of
belief states that bt can transition to in the partial search
tree. bt.V

c, the value for hiring, is computed based on the
values of future states; it is the weighted average of the
values of the belief states in Φ(bt) minus bt.C, the immediate
cost for collecting more evidence. bt.V is computed as the
maximum of bt.V

c and bt.V
¬c. After the algorithm samples

many execution paths, each encountered belief state has an
expected value for terminating and an expected value for
collecting more evidence. The algorithm chooses the action
to take at any belief state by calculating an expected value
of information (VOI) as the difference of the expected values
for terminating and for collecting more evidence.

We demonstrate the workings of the algorithm on a sim-
ple example given in Figure 1. Consider a system that seeks
observations from experts on the correct answer of a task,
where there are two possible answers (D = {1, 2}), two pos-
sible observations (votes) (oi ∈ {1, 2}), and a horizon of 3.
The reward for making the correct prediction is 1.0, and the
cost of hiring an expert voter is 0.1. The initial belief state



CalculateVOI(b0:belief state, l:horizon)
begin

repeat
SampleExecutionPath(b0, l)

until Timeout
V OI ← b0.V

c − b0.V
¬c

return VOI
end

SampleExecutionPath(bt:belief state, l:horizon)
begin

if ¬IsTerminal(bt, l) then
bt+1 ← SampleNextBeliefState(bt)
s ← SampleExecutionPath(bt+1, l)

else
s ← SampleTrueState(bt)

end

Evaluate(bt, s, l)
return s

end

Evaluate(bt:belief state , s:state, l:horizon)
begin

bt.N
¬c ← bt.N

¬c + 1

bt.V
¬c ←

bt.V
¬c(bt.N

¬c − 1) + R(s, d∗(bt))

bt.N¬c

if ¬IsTerminal(bt, l) then

bt.N
c ←

X

b′
t+1

∈Φ(bt)

b′t+1.N

bt.C ←
(bt.C (bt.N

c − 1) + R(s, c))

bt.Nc

bt.V
c ←

X

b′
t+1

∈Φ(bt)

(b′t+1.V b′t+1.N)

bt.Nc
− bt.C

end

if bt.V
¬c ≥ bt.V

c or bt.N
c = 0 then

< bt.V, bt.N >←< bt.V
¬c, bt.N

¬c >
else

< bt.V, bt.N >←< bt.V
c, bt.N

c >
end

end

Algorithm 1: MC-VOI algorithm.

is b1
0. The belief state bi

j is the ith belief state at depth j. oi

is the observation obtained at time i. Figure 1(a) displays
a recursive call of the SampleExecutionPath function. The
flow of control is represented by the directions of the arrows.
When the algorithm reaches the terminal belief state b4

3, it
samples the state by sampling a value for the correct answer
of the task. The correct answer dc is sampled as 2. Diamond
shapes in 1 represent the calculation of immediate reward
for terminating at any belief state. d∗(b4

3), the prediction of
the correct answer at belief state b4

3, agrees with the value
of the correct answer dc, this belief state is rewarded 1 for
terminating. All earlier belief states predict the value of dc

incorrectly and receive a reward of 0. Figure 1(b) displays
the partial search tree that is generated as a result of sam-
pling 10 execution paths. N values represent the number of
times leaves are sampled. The execution path given in bold
represents the execution path given in part (a) of the figure.
Let b1

0.V
¬c be 0.8, b1

1.V and b2
1.V be 0.8 and 1 respectively.

b1
0.V

c is computed as 0.91 by taking the weighted average of
b1
1.V and b2

1.V and subtracting the cost of a worker. EV OI

Figure 1: Illustration of MC-VOI algorithm.

for belief state b1
0 is 0.11 based on this partial tree.

5.2 MC-VOI for Dynamic Tasks
Algorithm 2 expands MC-VOI for dynamic LES tasks

with stochastic state transitions. Examples of such LES
tasks include a robot tracking a moving target, or consen-
sus tasks for which the cost of hiring a worker changes with
per dynamics of the market. In dynamic LES tasks, we do
not have a single, fixed world state; the world state may
be changing as the system collects additional observations.
Thus, the state sampled from a terminal belief state with
the SampleTrueState function cannot be used directly to
evaluate earlier belief states. The SampleEarlierTrueState
function samples states for earlier belief states on an exe-
cution path in a manner consistent with the state sampled
for the terminal belief state. It uses the transition function
T , which models the way the world state changes, to sample
earlier belief states consistently. The function takes as input
st+1, the sampled state for time t + 1, and bt, the system’s
belief state at time t, and samples st, a state for time t.
Using Bayes rule, the likelihood of sampling st is equal to:

Prc(St = st|St+1 = st+1, Bt = bt) ∝ T (st, c, st+1) bt(st)

The convergence analysis for MC-VOI follows from pre-
vious work on Monte Carlo planning [15, 22]. The analysis
is simplified as MC-VOI does not perform action selection.
With each execution path sampled, MC-VOI updates the
utility of taking any action on every belief state encountered
on the path. Under the assumption of accurate belief states,
observation and transition functions, and in the limit of in-
finite samples, the tree generated by MC-VOI constitutes
the complete search tree, and, by induction, the values as-
signed to each belief state–action pair are the true values
that would be computed by an exact solution.

MC-VOI’s characteristics generalize to LES tasks that
have multiple actions for collecting evidence. For example,
a system for solving a consensus task may need to make de-
cisions about which worker to hire, and which observations



SampleExecutionPath(bt:belief state, l:horizon)
begin

if ¬IsTerminal(bt, l) then
bt+1 ← SampleNextBeliefState(bt)
st+1 ← SampleExecutionPath(bt+1, l)
st ← SampleEarlierTrueState(bt, st+1)

else
st ← SampleTrueState(bt)

end

Evaluate(bt, st, l)
return st

end

Algorithm 2: Updated SampleExecutionPath function for
dynamic LES tasks.

to gather. For such tasks, the action set includes action ¬c,
representing domain actions, and a set of evidence gather-
ing actions. The algorithm can employ an action selection
rule proposed by the previous work to sample evidence gath-
ering actions [15] to generate an execution path. Once an
execution path is sampled, the algorithm can call the Eval-
uate function recursively to evaluate the utility of collecting
more observations and the utility of taking a domain action
simultaneously with a single sampled state.

LES tasks present challenges with long sequences of weak
evidence and noisy belief state estimations that have not
been addressed by studies of Monte Carlo planning algo-
rithms applied to fully observable domains. MC-VOI dif-
fers from existing algorithms in its leveraging of the special
structure of LES tasks in both is exploration of the search
space and the way it resolves uncertainty. It can evaluate
the utility of any action outcome sequence on an execution
path with a single sample, thus requires fewer number of
samples to explore long horizons associated with LES tasks.
The sampling procedure of MC-VOI needs a single sample
to explore leaves close to the root as well as leaves close to
the horizon. In contrast, the sampling procedures of exist-
ing Monte Carlo algorithms initially favor leaves close to the
root, requiring significantly larger samples to explore leaves
close to the horizon, when the horizon is large. The way the
state is sampled in MC-VOI leverages the situation where
belief states closer to the horizon have less error, as these
states will tend to incorporate a relatively large set of ev-
idence. Because the algorithm samples the first true state
at the end of the horizon based on all evidence collected,
and evaluates earlier belief states accordingly, errors on the
rewards of early belief states can be corrected. This proce-
dure differs from the approach taken by existing algorithms,
which sample a true state at the initial state and propagate
it to future states [22].

6. EXPERIMENTS AND DISCUSSION
We evaluate the performance of MC-VOI on two sepa-

rate sets of experiments. The first set of experiments is
performed on synthetic data that represents a LES task in-
spired from a dialogue system. The second set of experi-
ments is performed on a real-world testing set collected from
the Galaxy Zoo system.

In these experiments, we compare the performance of MC-
VOI with baselines, limited lookahead planning algorithms,
and UCT and MCTS–two well-known Monte Carlo plan-
ning algorithms. No collection represents the baseline that

chooses a domain action without collecting observations.
Collect all baseline collects all available observations before
choosing a domain action. The limited lookahead algorithms
solve a LES-MDP up to a certain depth. The depth that can
be considered by these algorithms is limited in practice, as
the complexity grows exponential in the lookahead depth.
UCT and MCTS use sampling to explore the search space
of LES tasks. These procedures compute values for taking
different actions by reasoning about the values of future be-
lief states and the cost of collecting information. UCT uses
regret analysis to sample actions [15]. We experimented with
different C values for the UCT algorithm and report results
for the value that performed the best. We customized the
Monte Carlo tree search algorithm (MCTS) given in [22]
by limiting it to sample a (belief state, ¬c) pair only once
to prevent sampling fixed values multiple times. All algo-
rithms are given access to the same belief update models.
In our experiments, we vary the computational complexity
of lookahead approaches by changing the lookahead depth.
MC-VOI, UCT and MCTS algorithms are flexible, anytime
algorithms; they can be stopped anytime to produce a result.
We provided for each experimental condition, equal running
time to MC-VOI, UCT, and MCTS algorithms. Our C# im-
plementations of these algorithms are tested on a machine
with 267 GHz CPU and 24 GB RAM.

6.1 Experiments on Synthetic Dataset
We generated a synthetic dataset with methods inspired

by efforts to develop a spoken dialog system that assists dif-
ferent users with tasks of daily life. Before engaging, the
system works to correctly identify a user based on observa-
tions made by its face recognition component. The system
makes guesses about the identity of a user based on images
collected at every second using its cameras. The observa-
tions become more informative as the recognition compo-
nent collects larger sets of evidences and this long sequence
of evidence comes together in synergistic manner. At any
time, the system needs to make a decision about whether
to engage with the user immediately, or delay the engage-
ment to enable the collection of additional evidence about
the user’s identity. The system is rewarded for correctly
predicting a user, but delaying the engagement incurs costs.

The domain from which the synthetic data is generated is
formalized as follows: n is the number of possible users, I is
the set of all users, l represents the horizon of the recognition
task. The belief state of the system at time t is a probabil-
ity distribution over I. Prior probabilities over users are
generated randomly for each task. ot ∈ I, the observation
at time t, represents the guess of the recognition compo-
nent about the identity of the user at time t. For simplicity,
we assume that the likelihood of an observation at time t
only depends on the correct identity of the user and time t.
To simulate future observations having supermodular influ-
ences in belief updates, we model observations to offer weak
evidences initially, but to become more informative as long
sequences of observations are collected. The likelihood of an
observation matching the true identity at time t is given as
1/n+((n−1)/n)(t/l). The likelihood the observation match-
ing any incorrect identity is equally likely. After receiving an
observation, the belief is updated using the Bayes rule. The
system is rewarded 1$ for a correct prediction, and incurs a
constant cost (in cents) for each second the engagement is
delayed.



Figure 2: Performance of algorithms on synthetic

dataset with varying costs of observation.

Figure 3: Performance of algorithms on tasks with

varying horizon values when cost is 0.5.

The key to solving such streaming observational tasks is
to successfully trade the immediate cost of an observation
with the expected benefit of collecting more observations
on future actions. Accurately performing this tradeoff may
be more challenging for some cost values depending on the
specifics of a LES task. To investigate how different algo-
rithms perform under various conditions, we vary the cost of
an observation from low to high values and report whether
these algorithms can make effective decisions in all range of
observation costs. Figure 2 compares the performance of dif-
ferent algorithms for 1000 randomly generated problem in-
stances, where n is set to 10, l is 100, and cost varies between
1 and 0.1 cents. The performance gap between MC-VOI and
other Monte Carlo planning algorithms grows proportional
to the cost of an observation, as, for large observation costs,
MCTS and UCT cannot explore long horizons to properly
evaluate the value of evidence collection in the given amount
of time, and thus terminate evidence collection prematurely.

LES tasks are associated with long horizons which need
to be explored for making effective decisions. In the next
set of experiments, we increase the horizon from 25 to 100,
which also increases the average number of observations to
be collected to correctly identify a user. Figure 3 shows that
MC-VOI performs consistently well for different horizon val-
ues, whereas the gap between MC-VOI and other algorithms
increases with the horizon.

For the results given in Figures 2 and 3, the average run-
ning times of heuristic approaches are less than 1 millisec-
ond (ms), the running times of MC-VOI, UCT and MCTS
algorithms are 330 ms, and the running time of 17 step
lookahead is 352 ms. In separate experiments, we varied
the running times of MC-VOI, UCT, MCTS and limited

Figure 4: Performance of algorithms for Galaxy Zoo

tasks with varying worker costs.

lookahead algorithms from 1 ms to 1500 ms. For different
running times, MC-VOI consistently performed better than
other algorithms when all algorithms are provided the same
running time.

6.2 Experiments on Galaxy Zoo
Next, we evaluate the performance of MC-VOI on a test-

ing set collected from Galaxy Zoo. The dataset includes
44350 votes for 1000 randomly selected galaxies, and a set
of features describing each galaxy derived from image pro-
cessing. We employed limited lookahead (depths 11 and 16)
with MC-VOI, UCT and MCTS so as to maximize the total
utility for classification of the 1000 galaxies. Every algo-
rithm has access to the same answer and vote models to
model Galaxy Zoo tasks. Approaches that reason about a
single next worker to hire perform identical to the No col-
lection baseline, as no single worker is informative enough
to change the system’s initial prediction of the correct an-
swer. Heuristic and statistical approaches that are proposed
for similar domains in previous work (i.a., [21]) are omitted
since they do not have the ability to trade off the expected
benefit and cost of hiring a sequence of workers, and do not
perform well consistently for varying worker costs.

Figure 4 compares the performance of different algorithms
for the case in which the system is rewarded $1 for cor-
rectly predicting the correct answer of a task. As the an-
swer models cannot predict the correct classification of a
galaxy perfectly, even when all worker reports available for
the galaxy are collected, the accuracy of the answer model
(97.7%) when the maximum number of votes are collected
serves as an upper bound for the average utilities. We vary
the cost of hiring a worker between 1 and 0.01 cents. This
cost can represent monetary or time costs for hiring workers
in different crowdsourcing and citizen science systems. For
the results given in Figure 4, the running times for com-
puting baselines are less than 1 ms, the running times of
MC-VOI, UCT and MCTS algorithms are 1885 ms, and the
average running times of limited lookahead algorithms are
255 and 7891 ms respectively for lookahead depths of 11
and 16. Figure 4 shows that for costs higher than 1 cent,
the performance of MC-VOI is significantly better than all
other baselines and planning algorithms. Although not ob-
vious from the figure, MC-VOI continues to perform better
than Collect all baseline when the cost is 0.01 cents; MC-
VOI can reach the same accuracy as this baseline by only
hiring 54% of all available workers.

Figure 5 compares the performance of different algorithms



Figure 5: Influence of running time on performance

of planning algorithms when cost is 0.01 cents.

for varying running times when the cost of a worker is 0.01
cents. We observe similar behavior for other cost values.
The comparison shows that the other planning algorithms
cannot reach the performance of the MC-VOI algorithm,
even when they are provided larger running times. For many
Galaxy Zoo tasks, all planning algorithms except MC-VOI
terminate evidence collection prematurely because they can-
not accurately estimate VOI. The number of state–action
outcome sequences to be explored by UCT and MCTS algo-
rithms grows exponentially in the horizon, which prevents
these algorithms from exploring the long horizons of these
LES tasks in the running times provided. Moreover, the
performances of these algorithms are influenced negatively
by the noise in predictive models in evaluating the values of
taking different actions. The MC-VOI algorithm is able to
explore the search space of a LES task efficiently by using its
special structure, and its performance appears to be robust
to noise in beliefs inferred by the answer models given the
approach to evaluation.

7. SUMMARY AND FUTURE WORK
We presented MC-VOI as a procedure for computing VOI

for tasks requiring the consideration of long evidential se-
quences. The tractability of the procedure hinges on ex-
ploiting the special structure of LES tasks for exploring the
search space. We demonstrated that the algorithm out-
performs existing methods with experiments on a synthetic
dataset and on a challenging crowdsourcing problem.

In ongoing work, we seek to understand the behavior of
MC-VOI across a spectrum of domains, including systems
that perform spoken dialogue and medical diagnosis. We are
also investigating extensions of MC-VOI for tasks that may
not terminate after taking a domain action. We believe that
a Monte Carlo approach to computing information value will
be valuable for fielding tractable solutions when we cannot
rely on assumptions of submodularity. More generally, we
hope that MC-VOI methods and results will inspire efforts
to better understand the use of simulation methods to ef-
fectively probe intractable combinatorial spaces for solving
hard problems in machine intelligence.

8. ACKNOWLEDGMENTS
We thank Chris Lintott for sharing Galaxy Zoo data, Paul

Koch for assistance with accessing the data, and Dan Bohus,
Rich Caruana, Ashish Kapoor, Paul Koch, Barbara Grosz,
and Chris Lintott for discussions and feedback.

9. REFERENCES
[1] Galaxy Zoo, 2007, http://zoo1.galaxyzoo.org/.

[2] A. Barto, S. Bradtke, and S. Singh. Learning to act
using real-time dynamic programming. Artificial
Intelligence, 72(1):81–138, 1995.

[3] M. Bilgic and L. Getoor. Value of information lattice:
Exploiting probabilistic independence for effective
feature subset acquisition. JAIR, 2011.

[4] D. Chickering, D. Heckerman, and C. Meek. A
Bayesian approach to learning Bayesian networks with
local structure. In UAI, pages 80–89, 1997.

[5] S. Dittmer and F. Jensen. Myopic value of information
in influence diagrams. In UAI, pages 142–149, 1997.

[6] G. Gorry, J. Kassirer, A. Essig, and W. Schwartz.
Decision analysis as the basis for computer-aided
management of acute renal failure. AJM, 1973.

[7] H. Hajishirzi, A. Shirazi, J. Choi, and E. Amir.
Greedy algorithms for sequential sensing decisions. In
IJCAI, pages 1908–1915, 2009.

[8] E. Hansen and S. Zilberstein. Monitoring and control
of anytime algorithms: A dynamic programming
approach. Artificial Intelligence, 126(1):139–157, 2001.

[9] D. Heckerman, E. Horvitz, and B. Middleton. An
approximate nonmyopic computation for value of
information. TPAMI, 15(3):292–298, 1993.

[10] D. Heckerman, E. Horvitz, and B. Nathwani. Toward
normative expert systems. Part I: The Pathfinder
project. Methods of Information in Medicine, 1992.

[11] R. Howard. Information value theory. Systems Science
and Cybernetics, 2(1):22–26, 1966.

[12] L. Kaelbling, M. Littman, and A. Cassandra. Planning
and acting in partially observable stochastic domains.
Artificial Intelligence, 101(1):99–134, 1998.

[13] E. Kamar, S. Hacker, and E. Horvitz. Combining
human and machine intelligence in a large-scale
crowdsourcing system. In AAMAS, 2012.

[14] M. Kearns, Y. Mansour, and A. Ng. A sparse
sampling algorithm for near-optimal planning in large
markov decision processes. In IJCAI, 1999.

[15] L. Kocsis and C. Szepesvári. Bandit based
Monte-Carlo planning. ECML, pages 282–293, 2006.

[16] A. Krause and C. Guestrin. Near-optimal observation
selection using submodular functions. In AAAI, 2007.

[17] W. Liao and Q. Ji. Efficient non-myopic
value-of-information computation for influence
diagrams. International Journal of Approximate
Reasoning, 49(2):436–450, 2008.

[18] A. Mahajan and D. Teneketzis. Multi-armed bandit
problems. Foundations and Applications of Sensor
Management, pages 121–151, 2008.

[19] G. Peskir and A. Shiryaev. Optimal stopping and
free-boundary problems, volume 10. 2006.

[20] S. Reches, M. Kalech, and R. Stern. When to stop?
that is the question. In AAAI, 2011.

[21] V. Sheng, F. Provost, and P. Ipeirotis. Get another
label? Improving data quality and data mining using
multiple, noisy labelers. In ACM SIGKDD, 2008.

[22] D. Silver and J. Veness. Monte-Carlo planning in large
POMDPs. 2010.

[23] Y. Zhang. Multi-task active learning with output
constraints. In AAAI, 2010.


